【受賞】北原教授が筑波大学2019 BEST FACULTY MEMBERに選ばれました

計算科学研究センター 計算情報学研究部門の北原 格教授が、筑波大学2019 BEST FACULTY MEMBERに選ばれました。

表彰式
日  時: 2020年2月10日(月)14:00-16:40
配信会場: 中央図書館本館2階チャットフレームC
次  第:  14:00- 14:30   表彰式 
       14:30- 16:40   表彰された教員による講演

詳しくは大学ホームページをご覧ください。

133rd Colloquium of Center for Computational Sciences

133rd Colloquium

Title: I/O on Hierarchical Storage Systems: The Past, Present, and Future

Speaker: Dr. Kathryn Mohror (Lawrence Livermore National Laboratory)

Date: February 12, 2020 (Wed)

Time: 13:00-14:00

Venue: Center for Computational Sciences, International Workshop Room

Language: English

Abstract:
High-end supercomputing systems generally achieve increased computing
speeds by increasing the number of computing cores in the system. This
strategy is successful in achieving system FLOP goals, but as
applications running on theses systems complete their compute
activities more quickly or at a finer granularity, they ingest and
produce data at faster rates. The performance of data management tasks
is critical for achieving practical scientific throughput on
leadership class systems, but data management infrastructure is
generally an afterthought compared to the spotlight given to compute
infrastructure.  In this talk, I will discuss issues surrounding I/O
and data management performance on high-end systems and several
strategies that we have employed over the years to address these
issues. In particular, I will discuss multilevel checkpointing with
the Scalable Checkpoint/Restart Library (SCR) and disjoint storage
utilization with the UnifyFS burst buffer file system. Additionally, I
will briefly discuss our plans for supporting more complex application
workflows on future platforms.

Biography:

Kathryn Mohror is the Group Leader for the Data Analysis Group in the
Center for Applied Scientific Computing (CASC) at Lawrence Livermore
National Laboratory (LLNL). Kathryn’s research on high-end computing
systems is currently focused on I/O for extreme scale systems. Her
other research interests include scalable performance analysis and
tuning, fault tolerance, and parallel programming paradigms. Kathryn
has been working at LLNL since 2010 and is a 2019 recipient of the DOE
Early Career Award.

Kathryn’s current research focuses primarily on user-level file
systems for HPC in the Unify project and on scalable I/O with the
Scalable Checkpoint/Restart Library (SCR), an R&D100 Award-winning
multilevel checkpointing library that has been shown to significantly
reduce checkpointing overhead. She is also a Co-Chair of the
Administrative Steering Committee for PMIx, a portable interface for
tools and applications to interact with system management
software. She was the lead for the Tools Working Group for the MPI
Forum from 2013-2019 and served as the Scientific Editor for LLNL’s
Science & Technology Review in 2018.

Kathryn received her Ph.D. in Computer Science in 2010, an M.S. in
Computer Science in 2004, and a B.S. in Chemistry in 1999 from
Portland State University (PSU) in Portland, OR.

Coordinator :Osamu Tatebe

第133回計算科学コロキウムを、2月12日(水)13:00より開催します

第133回計算科学コロキウムを、2月12日(水)に開催いたします。多数のご来聴をお待ちしております。

場所:筑波大学 計算科学研究センター 国際ワークショップ室
日時:2020年2月12日(水)13:00-14:00

講演タイトル:
I/O on Hierarchical Storage Systems: The Past, Present, and Future

講演者氏名:Dr. Kathryn Mohror (Lawrence Livermore National Laboratory)

使用言語:英語

アブストラクト:
High-end supercomputing systems generally achieve increased computing
speeds by increasing the number of computing cores in the system. This
strategy is successful in achieving system FLOP goals, but as
applications running on theses systems complete their compute
activities more quickly or at a finer granularity, they ingest and
produce data at faster rates. The performance of data management tasks
is critical for achieving practical scientific throughput on
leadership class systems, but data management infrastructure is
generally an afterthought compared to the spotlight given to compute
infrastructure.  In this talk, I will discuss issues surrounding I/O
and data management performance on high-end systems and several
strategies that we have employed over the years to address these
issues. In particular, I will discuss multilevel checkpointing with
the Scalable Checkpoint/Restart Library (SCR) and disjoint storage
utilization with the UnifyFS burst buffer file system. Additionally, I
will briefly discuss our plans for supporting more complex application
workflows on future platforms.

Biography:
Kathryn Mohror is the Group Leader for the Data Analysis Group in the
Center for Applied Scientific Computing (CASC) at Lawrence Livermore
National Laboratory (LLNL). Kathryn’s research on high-end computing
systems is currently focused on I/O for extreme scale systems. Her
other research interests include scalable performance analysis and
tuning, fault tolerance, and parallel programming paradigms. Kathryn
has been working at LLNL since 2010 and is a 2019 recipient of the DOE
Early Career Award.

Kathryn’s current research focuses primarily on user-level file
systems for HPC in the Unify project and on scalable I/O with the
Scalable Checkpoint/Restart Library (SCR), an R&D100 Award-winning
multilevel checkpointing library that has been shown to significantly
reduce checkpointing overhead. She is also a Co-Chair of the
Administrative Steering Committee for PMIx, a portable interface for
tools and applications to interact with system management
software. She was the lead for the Tools Working Group for the MPI
Forum from 2013-2019 and served as the Scientific Editor for LLNL’s
Science & Technology Review in 2018.

Kathryn received her Ph.D. in Computer Science in 2010, an M.S. in
Computer Science in 2004, and a B.S. in Chemistry in 1999 from
Portland State University (PSU) in Portland, OR.

世話人:建部 修見

 

Call for Full Professor or Associate Professor Position (Division of Quantum Condensed Matter Physics)

Center for Computational Sciences, University of Tsukuba, is inviting applications for the post of Full Professor or Associate Professor in Division of Quantum Condensed Matter Physics.

Position:
Full Professor or Associate Professor, full-time, tenured.

Affiliation:
Division of Quantum Condensed Matter Physics
Center for Computational Sciences, University of Tsukuba
https://www.ccs.tsukuba.ac.jp

Contents of work, Research field:
Theoretical condensed matter physics in a broad sense. Center for Computational Sciences is promoting “Multidisciplinary Computational Science” through enhanced cooperation between, and the fusion of, computational and computer sciences. The successful candidate is expected to contribute actively to the mission of the Center. The candidate will also take part in education and supervision in College of Physics (undergraduate) and Degree Program in Physics, Graduate School of Science and Technology.

Qualifications:
Applicants must hold a Ph. D.

Expected Start Date:
The earliest possible date after the hiring decision is made.

Term of Employment, Compensation:
Tenured. The University has mandatory retirement, requiring employees to retire at age 65. Salary, working hours, social insurance, etc. are based on regulations of University of Tsukuba.

Closing Date for Application:
Applications must be received by March 27, 2020.

Selection Process:
Selection will be based on a comprehensive review of applications and interviews.

Required Documents:
The following (1) to (8) has to be e-mailed with PDF format. An incomplete document may not be accepted.

(1) Note for an expected position (full professor, associate professor, or either)
(2) Curriculum Vitae (with photograph)
(3) List of publications (separate lists for refereed and non-refereed papers)
(4) Summary of research activities
(5) Research and education plan
(6) List of research grants
(7) Reprints of five major papers (Four or more should be published within last five years)
(8) Two and more reference letters, or names and contact information of two or more reference persons. The reference letters should be sent directly to
koubo-condmat[at]ccs.tsukuba.ac.jp ([at] should be replaced with @)
with the subject line “Reference-NAME” where NAME is the applicant’s name.

Contact Information:
Prof. Kazuhiro Yabana
Division of Quantum Condensed Matter Physics,
Center for Computational Sciences, University of Tsukuba
Tel: +81-29-853-4202
Email: yabana[at]nucl.ph.tsukuba.ac.jp ([at] should be replaced with @)

Submission:
Application materials (1)-(6) should be combined into a single PDF file with a password. This PDF file together with PDF files of major papers (7) should be submitted by e-mail to the following address:
koubo-condmat[at]ccs.tsukuba.ac.jp ([at] should be replaced with @).
The subject line should be written as “Application for Division of Quantum Condensed Matter Physics”. The password of the PDF file should be sent by e-mail to the following address:
yabana[at]nucl.ph.tsukuba.ac.jp ([at] should be replaced with @).
Contact us if you do not receive confirmation within two days after you submit the documents.

Other:

  1. The personal information provided in the submitted documents will be used solely for recruitment and not for any other purpose, and will be properly discarded after the selection process.
  2. University of Tsukuba is promoting gender equality.

[量子物性研究部門] 教授または准教授公募(締切:2020年3月27日)

1.公募する職名・人数
教授または准教授・1名

2.所属部門、講座、研究室等
計算科学研究センター量子物性研究部門

3.専門分野、仕事の内容
広い意味の物性理論分野。計算科学研究センターにおける学際計算科学の活動に意欲的に取り組み、研究と教育に熱意を持つ方を望みます。理工学群物理学類、数理物質科学研究群(物理学学位プログラム)において、教育・研究指導を担当します。

4.着任時期
決定後できるだけ早い時期

5.任期
なし (定年は筑波大学規則に従う)

6.応募資格
博士の学位を有する者

7.提出書類
以下の(1)-(7)の内容を含む電子ファイルをメールで送付してください。

(1)希望する職位(「教授希望」「准教授希望」「教授または准教授希望」のいずれか)
(2)履歴書(写真添付)
(3)業績リスト(査読論文とその他を区別すること)
(4)これまでの研究の概要
(5)着任後の研究計画と教育に関する抱負
(6)外部資金の獲得状況
(7)主要論文別刷5編(うち4編以上は最近5年以内のもの)
(8)意見書2通以上、または照会可能者2名以上の氏名・所属・連絡先

意見書は、作成者が応募書類の送付先に直接電子メールの添付ファイルとして送付してください。メールの件名は、「〇〇氏意見書」または「Reference-Name」(Nameは応募者の氏名)としてください。

8.応募締切
2020年3月27日(金)必着

9.問い合わせ先
筑波大学計算科学研究センター量子物性研究部門主任 矢花一浩
Tel: 029-853-4202
Email: yabana[at]nucl.ph.tsukuba.ac.jp ([at]を@に置き換える)

10.応募書類送付先
提出書類の(1)-(6)を一つのPDFファイルにまとめパスワードをかけ、(7)の各論文のPDFファイルとともに電子メールの添付ファイルとして、下記のアドレス
koubo-condmat[at]ccs.tsukuba.ac.jp ([at]を@に置き換える)
にお送りください。PDFファイルのパスワードは、別途下記のアドレス
yabana[at]nucl.ph.tsukuba.ac.jp ([at]を@に置き換える)
にお送りください。ファイルサイズの合計が10MBを超える場合は、問い合わせ先に連絡してください。メールの件名は、「量子物性研究部門応募書類」としてください。メール送信後、2日以内に受領確認のメールが届かない場合は、問い合わせ先に連絡してください。

11.その他
(1) 応募書類に含まれる個人情報は、本人事選考のみに使用し、他の目的には一切使用しません。選考終了後はすべての個人情報を適切に破棄します。
(2) 計算科学研究センターは、文部科学省共同利用・共同研究拠点に認定されており、計算機共同利用を含む学際計算科学を推進しています。筑波大学では男女雇用機会均等法を遵守した人事選考を行っています。

第132回計算科学コロキウムを、1月21日(火)13:00より開催します

第132回計算科学コロキウムを、1月21日(火)に開催いたします。多数のご来聴をお待ちしております。

場所:筑波大学 計算科学研究センター 国際ワークショップ室
日時:2020年1月21日(火)13:00-14:50

プログラム  

13:00-13:50 高速流体解析プログラムの高速化チューニング ー FX100から「富岳」へ ー
高木 亮治 先生(JAXA宇宙科学研究所・准教授)
休憩(10分)
14:00-14:50  「はやぶさ2」関連の可視化
三浦 昭 先生(JAXA宇宙科学研究所・助教)

使用言語:日本語

世話人:重田育照

Call for Applications of Multidisciplinary Cooperative Research Program in 2020

The mission of CCS is the promotion of “Multidisciplinary Computational Science” through enhanced cooperation and fusion of computational and computer sciences. For that purpose, the CCS provides a part of resources of supercomputer systems to Multidisciplinary Cooperative Research Program (MCRP).

The application for MCRP in 2020 is open now.

Application for MCRP *Online submission only

Deadline of online submission:January 31, 2020 (24:00 JST) 

【受賞】原田准教授が分子シミュレーション学会2019年度学術賞を受賞

計算科学研究センターの原田 隆平准教授が分子シミュレーション学会2019年度学術賞を受賞いたしました(受賞日:2019年12月10日)。

受賞業績は以下の通りです。

受賞業績:タンパク質の機能発現に重要なレアイベントを抽出するサンプリング手法の開発

分子シミュレーション学会学術賞ページ

 

Machine Learning That Works Like a Dream

Researchers at the University of Tsukuba develop a machine-learning algorithm for automatically classifying the sleep stages of lab mice. Combining two techniques, they achieve 96.6% accuracy, which may help accelerate sleep research

Tsukuba, Japan – Researchers at the University of Tsukuba have created a new artificial intelligence program for automatically classifying the sleep stages of mice that combines two popular machine learning methods. Dubbed “MC-SleepNet,” the algorithm achieved accuracy rates exceeding 96% and high robustness against noise in the biological signals. The use of this system for automatically annotating data can significantly assist sleep researchers when analyzing the results of their experiments.

Scientists who study sleep often use mice as animal models to better understand the ways the activity in the brain changes during the various phases. These phases can be classified as awake, REM (rapid eye movement) sleep, and non-REM sleep. Previously, researchers who monitored the brainwaves of sleeping mice ended up with mountains of data that needed to be laboriously labeled by hand, often by teams of students. This represented a major bottleneck in the research.

Now, researchers at the University of Tsukuba have introduced a program for automatically classifying the stage of sleep that a mouse experienced based on its electroencephalogram (EEG) and electromyogram (EMG) signals, which record electrical activity in the brain and body, respectively. They combined two machine learning techniques, convolutional neural networks (CNN) and long short-term memory (LSTM) recurrent neural networks, to achieve accuracies that surpass those of the best existing automatic methods.

“Machine learning is an exciting new field of research with important applications that combine medicine with computer science. It allows us to automatically classify new data based on labeled examples,” corresponding author Kazumasa Horie explains. This is especially valuable when the patterns to look for are not well known, as with sleep stages. In this way, the algorithm can ‘learn” how to make complex decisions without being explicitly programed. In this project, the accuracy was very high because of the large dataset used. With over 4,200 biological signals, it was the biggest dataset of any sleep research so far. Also, by implementing a CNN, the algorithm showed high robustness against individual differences and noise.

The main advance in this work was to divide the task between the two machine learning methods. First a CNN was used to extract features of interest from the recordings of the electrical activity in the brain and body. These data were then passed to an LSTM to determine which features were most indicative of the sleep phase the mouse was experiencing. “We are optimistic that we can translate this work into classifying sleep stages in humans”, senior author Hiroyuki Kitagawa says. In the meantime, this program can already speed up the work of researchers in the field of sleep, which may lead to a much clearer understanding of how sleep operates.

Original Paper

The work is published in Scientific Reports as “MC-SleepNet: Large-scale Sleep Stage Scoring in Mice by Deep Neural Networks” (doi:10.1038/s41598-019-51269-8)

2019 CCS-EPCC Workshop

Date: December 3rd (Tue) – 4th (Wed), 2019
Venue: International Workshop Room, Center for Computational Sciences, University of Tsukuba

DAY-1 (December 3rd)

09:30-10:00 Recent Activities in CCS (Taisuke Boku, CCS, University of Tsukuba)
10:00-10:30 The UK Exascale Roadmap (Mark Parsons , EPCC, The University of Edinburgh)
10:30-10:45 BREAK
10:45-11:15 Development of FPGA-GPU combined application and FPGA-FPGA communication system (Norihisa Fujita, CCS, University of Tsukuba)
11:15-11:45 Crossing the chasm: Accelerating HPC codes using FPGAs (Nick Brown, EPCC, The University of Edinburgh)
11:45-12:15 NGIO: Next generation I/O for HPC (Michele Weiland, EPCC, The University of Edinburgh)
12:15-13:30 LUNCH
13:30-14:00 Accuracy improvement of Block Krylov subspace methods for linear systems with multiple right-hand sides (Hiroto Tadano, CCS, University of Tsukuba)
14:00-14:30 Analysis of parallel I/O use on the UK national supercomputing service, ARCHER using Cray’s LASSi and EPCC SAFE (Juan Herrera, EPCC, The University of Edinburgh)
14:30-15:00 Proactive preservation activities of cultural heritage by crowdsourcing (Hidehiko Shishido, CCS, University of Tsukuba)
15:00-15:15 BREAK
15:15-15:45 Accelerating regular path queries using FPGA (Kento Miura, CCS, University of Tsukuba)
15:45-16:15 Delivering easy-to-use frameworks to empower data-driven research (Rosa Filgueira, EPCC, The University of Edinburgh)
16:15-16:45 Application of Tensor Renormalization Group to Particle Physics (Yoshinobu Kuramashi, CCS, University of Tsukuba)
16:45-17:15 Future climate projection considering the coupled effects of global warming and local urbanization (Doan Quang Van, CCS, University of Tsukuba)

DAY-2 (Dececmber 4th)

09:30-10:00 A New TDDFT Method for Isolated Systems (Xiao-Min Tong, CCS, University of Tsukuba)
10:00-10:30 Simulations of galaxy formation with radiative transfer and its application for near-infrared bio-imaging (Hidenobu Yajima, CCS, University of Tsukuba)
10:30-11:00 Extreme scale computational imaging for radio astronomy and medical imaging (Adrian Jackson, EPCC, The University of Edinburgh)
11:00-11:30 Phylogenomic analyses unveiled multiple endosymbioses of pedinophycean green algae in distantly related dinoflagellates (Yuji Inagaki, CCS, University of Tsukuba)
11:30-12:30 FUTURE PLAN & WRAP UP
12:30- LUNCH

GPU Bootcamp 参加募集(2019/12/2)

GPU Bootcamp 参加募集

筑波大学計算科学研究センターでは、NVIDIA社の協力の下、OpenACC言語によるGPUコンピューティングに関するセミナー「GPU Bootcamp」を開催します。OpenACCやGPUの初心者の方からある程度経験のある方まで、どなたでも自由に参加頂けます。参加費は無料です。
特に、筑波大学計算科学研究センターのGPU+FPGAクラスタであるCygnusのユーザの方、これから同システムを使ってみようという方の積極的な参加を歓迎します。

GPU Bootcamp は科学者や研究者の方々が、GPU コンピューティングを始めるのに必要なスキルを、素早く学ぶためのイベントです。このイベントでは、以下のことを学びます。
① GPU コンピューティングと、GPU プログラミングの概要
② OpenACC の基礎(講義、ハンズオン、ミニアプリの GPU 化チャレンジ)

—————————————————————
開催日時    :2019年 12月2日(月) 10:00 – 18:00
場所      :筑波大学 計算科学研究センター ワークショップ室(https://www.ccs.tsukuba.ac.jp/)
モデレータ   :丹 愛彦 (エヌビディア合同会社)
申込期限    :2019年 11月29日(金)17:00
申込方法    :下記ページの申し込みフォームより、お申込みください。
                https://forms.gle/Fr3bEkQAfqRZaHdc6
—————————————————————

*参加者の方は、【受講に際しまして】を必ずご確認下さい。


当日のアジェンダ

Part 1: OpenACC で始める GPU Computing (10:00 – 12:00)
  – GPU programming 入門
  – OpenACC 入門
  – OpenACC によるデータ管理

昼食: 12:00-13:00(昼食の用意はございません。学内の食堂等を適宜ご利用下さい。)

Part 1: OpenACC で始める GPU Computing (続き) (13:00-14:00)
  – はじめての Gangs, Workers, and Vectors

Part 2: ミニアプリ チャレンジ (14:00 – 18:00)

休憩: 適宜

【受講に際しまして】
Cygnusアカウントをお持ちでない方はセミナー用のゲストアカウントを作成いたしますので、ssh公開鍵を kobayashi at cs.tsukuba.ac.jp (at は @ に置き換えてください) までご送付ください。

当日は参加者ご自身でノートPCを持参して頂き、そこからハンズオンセッションで使用するスーパーコンピュータ (Cygnus) に ssh でログインして頂きます。ログインに必要な情報はこちらで提供しますが、ssh ログイン環境及び無線LANが備わっているPCをご持参下さい。

– エディタ(vi や emacs など) による、ファイルの編集ができる必要があります。

– Linux でのコマンドライン操作の経験があることが望ましいです。

 

[宇宙物理研究部門]研究員公募(締切:2020年1月10日)

募集人員: 研究員 1名

所属組織: 筑波大学 計算科学研究センター 宇宙物理研究部門

専門分野: 宇宙物理学(理論または観測)

職務内容

計算科学研究センター宇宙物理研究部門では,科学研究費 基盤研究(A)「多重AGNの統合研究で紐解く超巨大ブラックホールの起源」(2019年度~2023年度,代表者 梅村雅之)に基づき,観測研究者と連携し超巨大ブラックホールと銀河の共進化に関わる研究を推進しています。本研究では,詳細な理論シミュレーションと,新たなサーベイ観測を組み合わせて,多重AGNをもつ原始銀河の統合アプローチにより共進化過程の解明を目指しています。理論では,銀河形成シミュレーションに多重AGNの形成・進化を取り入れた新たなモデルを構築します。観測では,すばる望遠鏡/HSC用の新たな狭帯域フィルター(NB506)を製作し,赤方偏移2~3における多重AGNの候補天体を探査し,面分光追観測を実施します。本公募では,この科学研究費による研究員として,理論もしくは観測的なアプローチで本研究に参画して頂ける方を求めます。

着任時期: 2020年4月1日

任  期: 2023年3月31日まで(1年間延長の可能性あり)

給  与: 年俸制(本学規則による)(年俸額は,経歴等を考慮し決定)

応募資格: 博士の学位を有する者又は2020年3月に博士の学位取得見込みの方

提出書類

 (1)履歴書(写真貼付)

 (2)業績リスト(査読論文とその他を区別すること)

 (3)これまでの研究の概要

 (4)研究計画と今後の抱負

 (5)照会可能者2名以上の氏名・連絡先

応募締切: 2020年1月10日(金)17:00 必着

 

応募方法

上記提出書類を一つのpdfファイルにし,電子メールの添付ファイルにて

umemura_AT_ccs.tsukuba.ac.jp (_AT_を@に置き換え)

に送付してください。

(応募者には,受領の返信をしますので確認してください。)

 

問合せ先:〒305-8577 茨城県つくば市天王台 1-1-1

     筑波大学計算科学研究センター 梅村 雅之

Tel: 029-853-6494, Email: umemura_AT_ccs.tsukuba.ac.jp

 

その他

筑波大学では男女雇用機会均等法を遵守した人事選考を行っています。

SC19 Booth Talk Schedule!

◆We will have a booth talk session in Exhibition at SC19!

“FPGA-FPGA Optical Communication Feature”

We invited the three specialists who are developing some feature/technology to utilize recent FPGA chips with high speed (up to 100Gbps) optical links. It is a good opportunity to share the knowledge/experience/technology on how to utilize it on HPC and other applications.

Booth Talk Schedule @Booth #1943
Nov. 20 (Wed)

14:00–14:15 Taisuke Boku
CCS, University of Tsukuba
“CIRCUS: Computation/Communication Unified Framework on FPGA and its optical link”
14:15-14:30 Torsten Hoefler
ETHZ
“MPI-style streaming messaging on FPGAs”
14:30-14:45 Kentaro Sano
R-CCS, RIKEN
“Networks of FPGA Cluster with High Flexibility of Resource Allocation”

Taisuke Boku “CIRCUS: Computation/Communication Unified Framework on FPGA and its optical link”

Abstract:
The latest FPGA provides multiple ports of very high performance external communication links as well as large capacity of logic elements for computation and memory. For various HPC applications, we are developing a framework to realize computation and communication unification in pipelined manner with easy API utilized on user-level OpenCL programming. This system is named CIRCUS (Communication Integrated Reconfigurable CompUting System) working on our new multi-hybrid cluster Cygnus in CCS, University of Tsukuba. In this talk we will present the concept and overview of the system with several performance evaluation.

Torsten Hoefler  “MPI-style streaming messaging on FPGAs”

Abstract:
Distributed memory programming is the established paradigm used in high-performance computing (HPC) systems, requiring explicit communication between nodes and devices. When FPGAs are deployed in distributed settings, communication is typically handled either by going through the host machine, sacrificing performance, or by streaming across fixed device-to-device connections, sacrificing flexibility. We present Streaming~Message~Interface~(SMI), a communication model and API that unifies explicit message passing with a hardware-oriented programming model, facilitating minimal-overhead, flexible, and productive inter-FPGA communication. Instead of bulk transmission, messages are streamed across the network during computation, allowing communication to be seamlessly integrated into pipelined designs. We present a high-level synthesis implementation of SMI targeting a dedicated FPGA interconnect, exposing runtime-configurable routing with support for arbitrary network topologies, and implement a set of distributed memory benchmarks. Using SMI, programmers can implement distributed, scalable HPC programs on reconfigurable hardware, without deviating from best practices for hardware design.
 
Kentaro Sano “Networks of FPGA Cluster with High Flexibility of Resource Allocation”
 
Abstract:
The data-flow computing with a lot of FPGAs is one of the promising approaches for scalable and high-performance computing in the forthcoming Post-Moore era.
We are researching it with an experimental system of FPGA cluster, which has high flexibility in allocating resources of FPGAs to host CPUs. We introduce the progress of the system development.

131st Colloquium of Center for Computational Sciences

131st Colloquium

Title: Subgraph Isomorphism Search: Overview and State-of-the-Art Approaches 

Speaker: John Wang(Associate Professor, Griffith University, Australia)

Date: November 18, 2019 (Mon)

Time: 10:30-11:30

Venue: Center for Computational Sciences, Meeting Room A

Language: English

Abstract:
Given data graph G and query graph P, subgraph isomorphism search is to find subgraphs of G that are isomorphic (i.e., structurally identical) to P.  The problem finds numerous applications, but is computationally  intractable.  Over the years the problem has attracted researchers from different fields, and many algorithms have been proposed.  Roughly, these algorithms can be grouped into three types: those based on Constraint Solving; those based on Depth-First Search and Backtracking; and those  based on Relational Join. In this talk, I will first give a brief overview of  each of these types of algorithms, and then provide the main ideas on the most recent Backtracking algorithms proposed by Database researchers (including our own work).  I will also discuss some variations of problem.

Bio:
John (Junhu) Wang received his PhD in Computer Science in 2003 from Griffith University, Australia.  He is currently an associate professor at the same university. Before joining Griffith University as an academic staff, he worked as a lecturer at Monash University, Australia from September 2001 to February 2003.  His current research interest is in Graph Query  Processing, Knowledge Representation, Social Network Analysis, and Text Data Analysis.  Previously, he worked on Constraint Reasoning, XML and Tree Pattern Query Processing. More details about Dr Wang can be found at http://www.ict.griffith.edu.au/~jw/.

Coordinator :Toshiyuki Amagasa

130th Colloquium of Center for Computational Sciences

130th Colloquium

Title: Introduction to NCAR and the Research Applications Laboratory

Speaker: Dr.Fei Chen 
Research Applications Laboratory (RAL)
National Center for Atmospheric Research (NCAR), Boulder, CO, USA

Date: November 20, 2019 (Wed)

Time: 15:00-17:00

Venue: Center for Computational Sciences, Meeting Room B

Language: English

Abstract:
 The National Center for Atmospheric Research (NCAR) was established by the National Science Foundation in 1960 with the vision being a world-class research center leading, promoting and facilitating innovation in the atmospheric and related Earth and Sun systems sciences. This presentation will briefly introduce NCAR and its seven laboratories, and then focus on the Research Applications Laboratory (RAL). RAL’s main mission is to conduct fundamental and use-inspired research that contributes to the understanding of the Earth system, extend the capabilities of the scientific community, and transfer knowledge and technology for the betterment of society. We will introduce RAL research and development efforts, and technology highlight.

Coordinator :Hiroyuki Kusaka

129th Colloquium of Center for Computational Sciences

129th Colloquium

Title: Understand and improve uncertainties in land-surface model

Speaker: Dr.Fei Chen 
Research Applications Laboratory (RAL)
National Center for Atmospheric Research (NCAR), Boulder, CO, USA

Date: November 15, 2019 (Fri)

Time: 10:00-12:00

Venue: Center for Computational Sciences, Meeting Room A

Language: English

Abstract:
 Uncertainties in land-surface models (LSMs) parameterization and parameters, in atmosphere forcing conditions used to drive LSMs severely limit their applications in understanding the role of land-atmosphere interactions on weather and climate. To assess these uncertainties, we conducted physical ensemble simulations for selected observation sites. The Noah with multiparameterization (Noah-MP) community land model was used to perform 1152 physics ensemble experiments. We will present results of using two statistical methods (natural selection and Tukey’s test) to identify the range of uncertainties associated with atmospheric forcing conditions, vegetation parameter, and sub-processes, and to mitigate those uncertainties to obtain similar performance to the ensemble mean of the “best” ensemble experiment. We will also discuss impacts of these uncertainties on regional climate simulations.

 Advancing the understanding of the nexus among food, energy, and water systems has recently emerged as a new science frontier, and the research community started modeling agricultural management in earth-system models to develop an integrated modeling tool for investigating relevant land-atmosphere interactions and agriculture sustainability issues. We discuss progress in developing of agricultural management (crop-growth, irrigation, tile drainage) models in Noah-MP and WRF-Crop. Especially, we will focus on the uncertainties in transitioning these agriculture models from field scales to continental scales.

Coordinator :Hiroyuki Kusaka

[Award] Assistant Professor Sato received Young Scientist Award of the Physical Society of Japan, 2020

Assistant Professor Shunsuke Sato in CCS received an Young Scientist Award of the Physical Society of Japan, 2020.

Division: Division 5 (Optical Properties of Condensed Matter)

Research topic: Theoretical study of attsecond electron dynamics in condenced matter

Articles:
“Attosecond dynamical Franz-Keldysh effect in polycrystalline diamond,” M. Lucchini, S. A. Sato, A. Ludwig, J. Herrmann, M. Volkov, L. Kasmi, Y. Shinohara, K. Yabana, L. Gallmann, U. Keller, Science 353, 916 (2016).

“Attosecond optical-field-enhanced carrier injection into the GaAs conduction band,” Fabian Schlaepfer, Matteo Lucchini, Shunsuke A. Sato, Mikhail Volkov, Lamia Kasmi, Nadja Hartmann, Angel Rubio, Lukas Gallmann, Ursula Keller, Nature Physics 14, 560 (2018).

“Role of intraband transitions in photocarrier generation,” Shunsuke A. Sato, Matteo Lucchini, Mikhail Volkov, Fabian Schlaepfer, Lukas Gallmann, Ursula Keller, Angel Rubio, Phys. Rev. B 98, 035202 (2018).

 

Please refer to the URL below for more detail.

https://www.jps.or.jp/english/file/14th_wakate2020.pdf

第131回計算科学コロキウムを、11月18日(月)10:30より開催します

第131回計算科学コロキウムを、11月18日(月)に開催いたします。多数のご来聴をお待ちしております。

場所:筑波大学 計算科学研究センター 会議室A  
日時:2019年11月18日(月)10:30-11:30

講演タイトル:
Subgraph Isomorphism Search: Overview and State-of-the-Art Approaches 

講演者氏名:John Wang(豪・グリフィス大学・準教授)

使用言語:英語

アブストラクト:
 Given data graph G and query graph P, subgraph isomorphism search is to find subgraphs of G that are isomorphic (i.e., structurally identical) to P.  The problem finds numerous applications, but is computationally  intractable.  Over the years the problem has attracted researchers from different fields, and many algorithms have been proposed.  Roughly, these algorithms can be grouped into three types: those based on Constraint Solving; those based on Depth-First Search and Backtracking; and those  based on Relational Join. In this talk, I will first give a brief overview of  each of these types of algorithms, and then provide the main ideas on the most recent Backtracking algorithms proposed by Database researchers (including our own work).  I will also discuss some variations of problem.

Bio:
John (Junhu) Wang received his PhD in Computer Science in 2003 from Griffith University, Australia.  He is currently an associate professor at the same university. Before joining Griffith University as an academic staff, he worked as a lecturer at Monash University, Australia from September 2001 to February 2003.  His current research interest is in Graph Query  Processing, Knowledge Representation, Social Network Analysis, and Text Data Analysis.  Previously, he worked on Constraint Reasoning, XML and Tree Pattern Query Processing. More details about Dr Wang can be found at http://www.ict.griffith.edu.au/~jw/.

世話人:天笠俊之

128th Colloquium of Center for Computational Sciences

128th Colloquium

Title: Recent progress and challenge in observing and modeling effects of urbanization

Speaker: Dr.Fei Chen 
Research Applications Laboratory (RAL)
National Center for Atmospheric Research (NCAR), Boulder, CO, USA

Date: November 12, 2019 (Tue)

Time: 10:00-12:00

Venue: Center for Computational Sciences, Meeting Room A

Language: English

Abstract:
  Today’s changing climate poses two formidable challenges: 1) the projected climate change by IPCC will lead to more frequent occurrences of heat waves, severe weather, and floods, and 2) the current trend of population increase and urban expansion is expected to continue. The combined effect of global climate change and rapid urban growth, accompanied with economic and industrial development, will inevitably make people living in cities more vulnerable to a number of the urban environmental problems. It is imperative to employ integrated modeling systems to accurately represent the land-atmosphere interactions cross various temporal and spatial scales in order to assess such problems. In this paper, we will discuss community efforts in modeling urbanization effects in regional and global models (e.g., WRF and CESM), including recent enhancements to urban hydrologic models and new modeling capabilities in addressing urban heat-island mitigation strategies. This paper will also discuss recent observation projects and the observed effects of urbanization on precipitation extremes. We will conclude this paper with a short discussion on current challenges in urban modeling.

Coordinator :Hiroyuki Kusaka