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Large-Scale Structure (LSS) in the Universe
 inhomogeneous distribution of galaxies in the 

Universe

 gravitational growth of small density fluctuation 
found in the early Universe.

(SDSS survey : www.sdss.org)

 contains lots of valuable physical information 
about the origin and contents of our Universe.

 amount of dark matter, baryons and dark 
energy

 expansion rate of the Universe

 very early stage of the Universe

 mass and mass hierarchy of neutrinos 



Massive Neutrinos

 they are thought to be massless in the standard 
model of elementary particle physics

 discovery of neutrino oscillation reveals that they 
are massive.

 ubiquitous in huge quantities in the Universe.

Dynamical effect of massive neutrinos on the large-
scale structure formation

 their absolute mass and mass hierarchy are still unknow, though 
they are both important for the new physics beyond standard model

Super-Kamiokande



Dynamical effect of massive neutrinos
 collisionless damping (analogue to Landau damping)

 dumping of density fluctuation below the damping scale

power spectra of the density fluctuation

 degree of damping depends on the neutrino mass.

estimation of neutrino mass with 
astronomical observation of the large-scale structure

 non-linear behavior of massive neutrinos in the smaller scales is poorly known.

we need numerical simulations of massive neutrinos to be confronted with observations



N-body simulation ?
 So far, most of numerical simulations of dark matter in the large-scale 

structure have been performed with the N-body method.
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 Can we apply the N-body simulation to massive neutrinos?

 possible drawbacks of N-body simulations

 statistical sampling of matter distribution in 6D phase space (x, p)

 shot-noise contamination in numerical results, especially in smaller scales

 not very good at handling collisionless damping, in which matter in 
the tails of velocity distribution function plays an important role.

 We adopt an alternative approach to the particle-based N-body method to 
avoid such drawbacks.



Vlasov-Poisson simulation
 we directly solve the collisionless Boltzmann equation (aka 

Vlasov equation) in 6-D phase space (x, p) in a finite volume 
manner.

: density of matter in the 6-Dphase space

 mass distribution as a continuum matter

 free from shot noise contamination

 good at simulating collisionless damping

 requires huge amount of memory and computational cost

 head-on merger of two self-gravitating spheres



Large-scale structure formation with 
dark matter and massive neutrinos

 hybrid of N-body / Vlasov simulation of cold dark matter and neutrinos

 “cold” dark matter has very small extension in the velocity space

 neutrinos are followed by Vlasov-Poisson simulation

conventional N-body approach is adopted for the cold dark matter.

 both of cold dark matter and neutrinos are subject to the same grav. potential



N-body + Vlasov Hybrid Simulation

cold dark matter neutrinos



N-body vs Vlasov

N-body (N=15363) Vlasov (1923 x 643)



Mass Functions of Dark Matter Halos

 massive neutrinos suppress the formation 
of dark matter halos, especially at the scale
of galaxy clusters.

 mass distribution of gravitationally bound 
objects (dark matter halos) in the large-
scale structure.



Power Spectrum of Density Fluctuation

 the power of density fluctuation is also suppressed by the massive neutrinos as expected

 the non-linear features are found in the small scales.



Performance Tuning on FUGAKU
 a A64FX processor composed of four core-memory group (CMG)

 12 compute cores + L2C(8MiB) + HBM2(8GiB) / CMG

 4 CMGs / node

48 compute cores + 32GiB HBM2 memory / node

 512-bit wide SIMD instruction set (SVE)

 32 SIMD registers + 16 predicate registers / core

 2 FMA units / core

 ACLE (ARM C-Language Extension)

 set of APIs to exploit SVE instructions in C/C++ languages.



SIMD optimization on the A64FX processor
 solving multiple 1-D advection equations with SIMD instructions

 advection along the x-axis

 load a sequence of data f[i][ j:j+3] with a single instruction

 solve multiple advection equations along multiple y-
coordinates using SIMD instruction set in a straightforward 
manner



SIMD optimization on the A64FX processor
 advection along the y-axis

 a set of data along the x-axis is not contiguous in address

 re-arrangement of the data requires lots of memory operations

 transpose of the data on SIMD registers after loading along y-axis



Performance of the Numerical Advection

direction w/o SIMD inst. 
[Gflops]

w/ SIMD inst. 
[Gflops]

w/ transpose 
[Gflops]

x 4.8 176.7 -
y 7.1 233.3 -
z 7.4 17.9 224.2

Performance / CMG

theoretical peak performance for SP : 1.5Tflops / CMG

 performance of the advection along z-axis is much improved by the transpose scheme.

 performance efficiency w.r.t. the peak performance is 15%



Parallelization

 Only physical (spatial) grids are decomposed among computational nodes.

 Each spatial grids contains the entire velocity (momentum) grids

 Data commnication at the boundary of decomposed domains



Weak and strong scaling efficiencies



Prospects with FUGAKU

 We launched this project in 2011 and perform 6D Vlasov simulations of self-gravitating 
objects with 643 x 323 mesh grids for the first time in the world on T2K-Tsukuba.

 With Oakforest-PACS system and K-computer, we performed 6D Vlasov simulations of 
cosmological neutrinos with 1283 x 643 mesh grids in 2017-2019.

 With 27648 nodes of Fugaku, we conduct 6D Vlasov simulations with 3843 x 643 mesh 
grids.

 Brief history of 6D Vlasov simulations

 Now, we can perform 6D Vlasov simulations for scientifically meaningful problems

 Further applications of Vlasov simulations

 dark matter beyond cold dark matter (warm / self-interacting)

 astrophysical magnetized plasma (magnetic reconnection / collisionless shock / particle acceleration)
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