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Nuclear Science

Nuclear physics is the branch of physics that studies the properties, reactions
and structure of atomic nuclei
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Fundamental Science
Properties of atomic nuclei play a key role in understanding the formation of

elements in the universe or the fundamental symmetries of nature
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Theoretical Nuclear Physics

Different energy scales require different degrees of freedom and theoretical
approaches — each with its computational challenges
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Basics of Nuclear Theory
The goal of low-energy nuclear theory is to describe the structure and
reactions of nuclei as strongly-interacting, quantum many-body systems

= Quantum-mechanical, many-body system

Entirely characterized by wave functions W, (r,07, ..., "404) Where 1y, is the position
of particle k, and o, = +1 is the spin of that particle

Wave functions are eigenvectors of Hamiltonian operator, which determines the

dynamics of the system
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= Observables are obtained from multi-dimensional integrals, e.qg.,

Ea = Z jd3r1 j d3rALP;(T10'1,...,TAUA)HWa(rlal, ...,TAO'A)

spins

= Computational grand challenge:
3A continuous degrees of freedom + A discrete ones

~ Spinalone: 2* combinations...
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Nuclear Models

The size of the computational challenge imposes different approaches

tailored to specific system sizes and needs

= Two main approaches to the nuclear many-
body problem
~ Many-body methods : In some suitable basis, find
eigenvalues and eigenvectors of nuclear Hamiltonian
- By direct diagonalization (no-core shell model)

- By approximation schemes (coupled-cluster, quantum
Monte-Carlo, in-medium similarity renormalization
group, etc.)

~ Density functional theory (DFT): Find surrogate
many-body wave functions that approximate
experimental observables well
= No unique theory = no unique computational
implementation

Scientific Grand Challenges

FOREFRONT QUESTIONS IN NUCLEAR SCIENCE AND
THE ROLE OF COMPUTING AT THE EXTREME SCALE

January 26-28, 2009 + Washington, D.C.

Scientific Grand Challenges
for National Security:
THE ROLE OF COMPUTING AT THE EXTREME SCALE
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Many-body Methods

The algorithmic and computational building blocks of many-body methods
are tensor contractions and (sparse) linear algebra at very large scale

= Choose single-particle basis of L% (C) made of eigenfunctions

¢, (1) of some operator. Ex.: (
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= Build many-body states by taking product states of the ¢,

= Compute matrix of Hamiltonian operator (>100 GB...) = tensor

contractions

= Diagonalize [ evolve = very large-scale linear algebra, often

Sparse
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Limitations

Ab initio methods provide the most accurate and precise data on structure and
reactions, but are inapplicable beyond the lightest nuclei (memory-bound)

Comput. Phys. Commun. 222, 1 (2018)
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Benefits of New Architectures

New architectures based on GPU open new avenues of research — but often
require considerable code refactoring and important human investment

PRC 102, 024616 (2020)

Work by K. Kravvaris, S Quaglioni (LLNL)
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Density Functional Theory

DFT is the only quantum many-body method that can scale up to the entire
table of isotopes and provide structure and decay properties
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= About 2,500 nuclei predicted to be stable, from Hydrogen to

(currently) 435081135

nucleonic excitations, et.

cluster emission, fission

Variety of excitation mechanisms: collective rotations, vibrations,

Decay modes: a-particle emission, B-radioactivity, y-ray emission,
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Basic Concepts of DFT

Density functional theory is based on remapping the original A-body
problems into an effective 1-body problem

= Energy is a functional (to be determined
from physics argument) of the density of

particles, e.g. \
E[p(r)] = CPPp% + CPRPpAp + - Eumml,m
= Actual density is determined by minimizing | 7
the energy = Kohn-Sham equation Eart ] v = Arg(@

'mej( o)

— The density of particles does not conserve the

same symmetries as the nuclear Hamiltonian Eos
. . . Spherical Deformed Angular momentlum
— Justification for the concepts of nuclear mean-field mearield  projected mean-fad

deformation and nuclear pairing
= Constraints on, e.qg., the nuclear shape or
the total spin, allow building in more
correlations
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Computational Implementation

The Kohn-Sham equation involves a self-consistent loop that is solved by an
iterative procedure until convergence

= Kohn Sham equationZ Vp(r)] Ppotental wave-functions
A (mean-field) - A @n(r)
ho () = e (r) ., et =w- B
" h? " —
h=—o—P2 4 Vlp@)] p@) = ) o)l =
k=1 density I
p(r) =) lea(r)| —
= Linear algebra (structure) A
— Differential operators in Hilbert \ /
spaces
— Define basis of vectors ¢4, ..., ¢y, pra
B Diagonalize matrix hij in that basis Self-consistent mean-field theory

= PDE on a lattice (reactions)
~ Mesh discretization, e.g., Lagrange

(a) TDHF

- Integrate PDE with boundary
conditions
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Computational Challenges

Computational challenges come from non-linearity of self-consistent loop
and number of configurations required to reach given accuracy

max|F™|

PRC 78, 014318 (2008) Phys. Scr. 91, 073003 (2016) PRL 113, 162501 (2014)
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= Variational principle of DFT only gives lowest solution
|

Improve model by quantum mixing of different configurations

Configurations obtained with constraints on Kohn-Sham solutions
Thousands/millions of different calculations (=ensemble runs)

1 iteration of KS loop = up to a few minutes on 4-8 threads
Convergence may require 100+ iterations
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Application: Theory of Nuclear Fission

A predictive theory of fission built on quantum many-body methods such as
DFT remains a formidable computational challenge

= Fission = extreme application of DFT
~ Both collective and intrinsic degrees of freedom relevant
- Time-evolution of a quantum many-body system
— Sensitivity of observables on details of model
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Real-Time Fission Dynamics
Time-dependent density functional theory for fusion or fission is based on
solving hundreds of thousands coupled PDE

PRC 100, 034615 (2019) PRL 116, 122504 (2016)

Code CUs Computer PDEs| Lattice| Cost (sec.) Fission of ?*°Pu at excitation energy Ex = 8.05 MeV

Sky3D [18] 128 Titan| 1,024|18% x 30(3.86 x 107°

U&S [19] 16 | Linux cluster 714140% x 70(8.72 x 107 N palcig gl (LET)

TDSLDA 514 Titan |442,368 | 242 x 48(4.35 x 1078

TDSLDA 256|  Piz Daint|442,368 (242 x 48|1.26 x 1078

TDSLDA 240 Summit | 442,368 |24% x 48|1.05 x 1078

TDSLDA-simp| 2 Titan 684 (202 x 60|7.55 x 1078

= State-of-the-artsimulations |EEret I
on advanced architectures
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Microscopic Description of Fission

Fission can be characterized by the shape of the nucleus as it deforms: the
actual phase space includes millions of different configurations
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Credits: D. Regnier, N. Dubray, N. Schunck
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Machine Learning [ Al

Nuclear theories always rely on a small number of parameters difficult to
calibrate: ML/Al offer methods to quantify the related uncertainties

= Two major sources of uncertainties in nuclear models
— Models for the (unknown) nuclear Hamiltonian
- Many-body method and its computational implementation
= Quantify and propagate theoretical uncertainties (UQ)
~ Calibration of parameters of nuclear potentials
— Truncation effects in systematic expansions
- Extrapolation where experimental data is unavailable
= Build accurate emulators of (very) expensive computational
models

- Approximate solution at limit of infinite basis
~ Run large-scale MCMC calculations with expensive computer models

. . a8
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Machine Learning / Al

Nuclear theories always rely on a small number of parameters difficult to
calibrate: ML/Al offer methods to quantify the related uncertainties
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The SciDAC Project

Breakthrough can emerge from jointly-funded, multidisciplinary teams of
nuclear theorists, applied mathematicians and computer scientists

http://nuclei.mps.ohio-state.edu/
ua
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Scientific Achievement
* Parallel optimization code POUNDERS for optimizing low-energy functional
* Disrupted conventional manual and underoptimized approaches

Math of complex systems: POUNDERS foundation

UNEDF SciDAC-2: UNEDFO
Derivative-free optimization —
method developed under UNEDF SciDAC-2: UNEDF1
ASCR math program on
complex systems and ASCR +

NP SciDAC partnership

Nuclear energy
density optimization.
Kortelainen, Lesinski,
Moré, MNazarewicz,

Nuclear energy density
optimization: Large

deformations. An optimized chiral nucleon-

i ............. Sarich, SC'UI"{k,
\ —s Experiment ] Stoitsov, Wild.
) #mee NNLO (FOUNDrS) Phys Rev C, 2010.

k =-aN'Lo

nucleon interaction at next-
to-next-to-leading order.
Ekstrdm, Baardsen, Forssén,
Hagen, Hjorth-Jensen,
Jansen, Machleidt,
Nazarewicz, Papenbrock,
Sarich, Wild.

Kortelainen, McDonnell,
MNazarewicz, Reinhard, Sarich,
Schunck, Stoitsov, Wild.
Phys Rev C 2012.

Open-source, scalable
implementation
available in PETSe

Latest developments
account for correlations

& No B Phys Rev Lett, 2013.
”I_‘g/,je”?-‘”scvj,: g”r?ted mcs.anl.gov/petsc
Gite pop ce,”d’;f‘oao NP researchers
15 16 17 1% 19 20 21 22 23 24 25 26 27 2% S in ’ ASCR researchers
P.!‘jcs

A
Correct neutron dripline at 20

= On-going effort since 2007

= Several mathematical/computational
methods opened new avenues in
physics

= Very effective pipeline for workforce
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Conclusions

High-performance computing has been a paradigm shift for low-energy
nuclear theory

= There is no "standard model” for nuclear theory: Coexistence of
different theoretical approaches imply different computational
strategies
- Extreme-scale linear algebra and tensor contractions (ab initio methods)
- Dense, complex linear algebra and very large ensemble runs (DFT)

= The two biggest challenges for computational nuclear physics
~ Physics models are not fixed but are continually evolving

~ Cost of adapting existing codes to emerging architectures is high
Complexity of legacy codes
Physics models are changing

= Nuclear theory is embracing machine leaning / Al
~ Asdiagnostics of approximate theories

- For emulating/optimizing computationally expensive models
— No substitute for better theories...
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