Computing Atomic Nuclei

Nicolas Schunck

12th symposium on Discovery, Fusion, Creation of New Knowledge by Multidisciplinary Computational Sciences

October, 6th 2020

LLNL-PRES-815354 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Nuclear Science

Nuclear physics is the branch of physics that studies the properties, reactions and structure of atomic nuclei

Prepared by LLNL under Contract DE-AC52-07NA27344.

Fundamental Science

Properties of atomic nuclei play a key role in understanding the formation of elements in the universe or the fundamental symmetries of nature

Prepared by LLNL under Contract DE-AC52-07NA27344.

Theoretical Nuclear Physics

Different energy scales require different degrees of freedom and theoretical approaches – each with its computational challenges

- Ab initio approaches
- Configuration interaction (CI)
- Density functional theory (DFT)

Prepared by LLNL under Contract DE-AC52-07NA27344.

Basics of Nuclear Theory

The goal of low-energy nuclear theory is to describe the structure and reactions of nuclei as strongly-interacting, quantum many-body systems

- Quantum-mechanical, many-body system
 - Entirely characterized by wave functions $\Psi_{\alpha}(r_1\sigma_1, ..., r_A\sigma_A)$ where r_k is the position of particle k, and $\sigma_k = \pm 1$ is the spin of that particle
 - Wave functions are eigenvectors of Hamiltonian operator, which determines the dynamics of the system

$$\hat{H} = -\sum_{k=1}^{A} \frac{\nabla^2}{2m_k} + \frac{1}{2} \sum_{k,l=1}^{A} \hat{V}_{NN}(r_k \sigma_k, r_l \sigma_l) + \frac{1}{6} \sum_{k,l,m=1}^{A} \hat{V}_{3N}(r_k \sigma_k, r_l \sigma_l, r_m \sigma_m) + \cdots$$

Observables are obtained from multi-dimensional integrals, e.g.,

$$E_{\alpha} = \sum_{\text{spins}} \int d^3 \boldsymbol{r}_1 \dots \int d^3 \boldsymbol{r}_A \Psi_{\alpha}^*(\boldsymbol{r}_1 \sigma_1, \dots, \boldsymbol{r}_A \sigma_A) \widehat{H} \Psi_{\alpha}(\boldsymbol{r}_1 \sigma_1, \dots, \boldsymbol{r}_A \sigma_A)$$

- Computational grand challenge:
 - 3A continuous degrees of freedom + A discrete ones
 - Spin alone: 2^A combinations...

Nuclear Models

The size of the computational challenge imposes different approaches tailored to specific system sizes and needs

- Two main approaches to the nuclear manybody problem
 - Many-body methods : In some suitable basis, find eigenvalues and eigenvectors of nuclear Hamiltonian
 - By direct diagonalization (no-core shell model)
 - By approximation schemes (coupled-cluster, quantum Monte-Carlo, in-medium similarity renormalization group, etc.)
 - Density functional theory (DFT): Find surrogate many-body wave functions that approximate experimental observables well
- No unique theory = no unique computational implementation

Many-body Methods

The algorithmic and computational building blocks of many-body methods are tensor contractions and (sparse) linear algebra at very large scale

- Choose single-particle basis of $\mathcal{L}^2(\mathbb{C})$ made of eigenfunctions $\phi_n(\mathbf{r})$ of some operator. Ex.: $\left(-\frac{\nabla^2}{2m} + \frac{1}{2}m\omega^2r^2\right)\phi_n = \varepsilon_n\phi_n$
- Build many-body states by taking product states of the ϕ_n
- Compute matrix of Hamiltonian operator (>100 GB...) ⇒ tensor contractions
- Diagonalize / evolve ⇒ very large-scale linear algebra, often sparse
 Sparse

Limitations

Ab initio methods provide the most accurate and precise data on structure and reactions, but are inapplicable beyond the lightest nuclei (memory-bound)

Benefits of New Architectures

New architectures based on GPU open new avenues of research – but often require considerable code refactoring and important human investment

Density Functional Theory

DFT is the only quantum many-body method that can scale up to the entire table of isotopes and provide structure and decay properties

- About 2,500 nuclei predicted to be stable, from Hydrogen to (currently) ²⁹⁴₁₉₆Og₁₁₈
 - Variety of excitation mechanisms: collective rotations, vibrations, nucleonic excitations, et.
 - Decay modes: α -particle emission, β -radioactivity, γ -ray emission, cluster emission, fission

Basic Concepts of DFT

Density functional theory is based on remapping the original A-body problems into an effective 1-body problem

 Energy is a functional (to be determined from physics argument) of the density of particles, e.g.

 $E[\rho(\boldsymbol{r})] = C^{\rho\rho}\rho^2 + C^{\rho\Delta\rho}\rho\Delta\rho + \cdots$

- Actual density is determined by minimizing the energy ⇒ Kohn-Sham equation
 - The density of particles does not conserve the same symmetries as the nuclear Hamiltonian
 - Justification for the concepts of nuclear deformation and nuclear pairing
- Constraints on, e.g., the nuclear shape or the total spin, allow building in more correlations

Computational Implementation

The Kohn-Sham equation involves a self-consistent loop that is solved by an iterative procedure until convergence

• Kohn Sham equation:

$$\hat{h}\varphi_k(\mathbf{r}) = e_k\varphi_k(\mathbf{r})$$
$$\hat{h} = -\frac{\hbar^2}{2m}\nabla^2 + \hat{V}[\rho(\mathbf{r})] \quad \rho(\mathbf{r}) = \sum_{k=1}^{A} |\varphi_k(\mathbf{r})|^2$$

- Linear algebra (structure)
 - Differential operators in Hilbert spaces
 - Define basis of vectors ϕ_1 , ... , ϕ_n
 - Diagonalize matrix h_{ij} in that basis
- PDE on a lattice (reactions)
 - Mesh discretization, e.g., Lagrange
 - Integrate PDE with boundary conditions

Self-consistent mean-field theory

Computational Challenges

Computational challenges come from non-linearity of self-consistent loop and number of configurations required to reach given accuracy

- Variational principle of DFT only gives lowest solution
- Improve model by quantum mixing of different configurations
 - Configurations obtained with constraints on Kohn-Sham solutions
 - Thousands/millions of different calculations (=ensemble runs)
 - 1 iteration of KS loop = up to a few minutes on 4-8 threads
 - Convergence may require 100+ iterations

Application: Theory of Nuclear Fission

A predictive theory of fission built on quantum many-body methods such as DFT remains a formidable computational challenge

- Fission = extreme application of DFT
 - Both collective and intrinsic degrees of freedom relevant
 - Time-evolution of a quantum many-body system
 - Sensitivity of observables on details of model

Real-Time Fission Dynamics

Time-dependent density functional theory for fusion or fission is based on solving hundreds of thousands coupled PDE

PRC 100, 034615 (2019)

Code	CUs	Computer	PDEs	Lattice	Cost (sec.)
Sky3D [18]	128	Titan	1,024	$18^2 \times 30$	3.86×10^{-6}
U&S [<mark>19</mark>]	16	Linux cluster	714	$40^2 \times 70$	8.72×10^{-5}
TDSLDA	514	Titan	442,368	$24^2 \times 48$	4.35×10^{-8}
TDSLDA	256	Piz Daint	442,368	$24^2 \times 48$	1.26×10^{-8}
TDSLDA	240	Summit	442,368	$24^2 \times 48$	1.05×10^{-8}
TDSLDA-simp	2	Titan	684	$20^2 \times 60$	7.55×10^{-8}

 State-of-the-art simulations on advanced architectures

 $\hat{h} := \left(-\frac{\hbar^2}{2} \nabla^2 + \hat{V}[\rho(\mathbf{r})] \right)$

PRL 116, 122504 (2016)

$$h \frac{\partial}{\partial t} \begin{pmatrix} U_{\mu\uparrow}(\mathbf{r},t) \\ U_{\mu\downarrow}(\mathbf{r},t) \\ V_{\mu\uparrow}(\mathbf{r},t) \\ V_{\mu\downarrow}(\mathbf{r},t) \end{pmatrix} = \begin{pmatrix} h_{\uparrow\uparrow} - \lambda & h_{\uparrow\downarrow} & 0 & \Delta \\ h_{\downarrow\uparrow} - \lambda & h_{\uparrow\downarrow} & 0 & \Delta \\ h_{\downarrow\uparrow} - \lambda & h_{\uparrow\downarrow} - \lambda & -\Delta & 0 \\ 0 & -\Delta^* & -h_{\uparrow\uparrow}^* + \lambda & -h_{\uparrow\downarrow}^* \\ \Delta^* & 0 & -h_{\downarrow\uparrow}^* & -h_{\uparrow\uparrow}^* + \lambda \end{pmatrix} \begin{pmatrix} U_{\mu\uparrow}(\mathbf{r},t) \\ U_{\mu\downarrow}(\mathbf{r},t) \\ V_{\mu\downarrow}(\mathbf{r},t) \end{pmatrix}$$

Microscopic Description of Fission

Fission can be characterized by the shape of the nucleus as it deforms: the actual phase space includes millions of different configurations

$$i\hbar\frac{\partial g}{\partial t}(\boldsymbol{q},t) = \left[-\frac{\hbar^2}{2}\sum_{ij}\frac{\partial}{\partial q_i}B(\boldsymbol{q})\frac{\partial}{\partial q_j} + V(\boldsymbol{q})\right]g(\boldsymbol{q},t)$$

Machine Learning / AI

Nuclear theories always rely on a small number of parameters difficult to calibrate: ML/AI offer methods to quantify the related uncertainties

- Two major sources of uncertainties in nuclear models
 - Models for the (unknown) nuclear Hamiltonian
 - Many-body method and its computational implementation
- Quantify and propagate theoretical uncertainties (UQ)
 - Calibration of parameters of nuclear potentials
 - Truncation effects in systematic expansions
 - Extrapolation where experimental data is unavailable
- Build accurate emulators of (very) expensive computational models
 - Approximate solution at limit of infinite basis
 - Run large-scale MCMC calculations with expensive computer models

Machine Learning / Al

Nuclear theories always rely on a small number of parameters difficult to calibrate: ML/AI offer methods to quantify the related uncertainties

ħΩ

Ν

The SciDAC Project

Breakthrough can emerge from jointly-funded, multidisciplinary teams of nuclear theorists, applied mathematicians and computer scientists

- On-going effort since 2007
- Several mathematical/computational methods opened new avenues in physics
- Very effective pipeline for workforce

Conclusions

High-performance computing has been a paradigm shift for low-energy nuclear theory

- There is no "standard model" for nuclear theory: Coexistence of different theoretical approaches imply different computational strategies
 - Extreme-scale linear algebra and tensor contractions (ab initio methods)
 - Dense, complex linear algebra and very large ensemble runs (DFT)
- The two biggest challenges for computational nuclear physics
 - Physics models are not fixed but are continually evolving
 - Cost of adapting existing codes to emerging architectures is high
 - Complexity of legacy codes
 - Physics models are changing
- Nuclear theory is embracing machine leaning / AI
 - As diagnostics of approximate theories
 - For emulating/optimizing computationally expensive models
 - No substitute for better theories...

