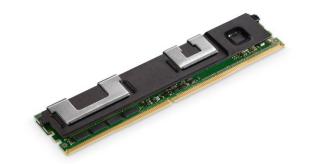
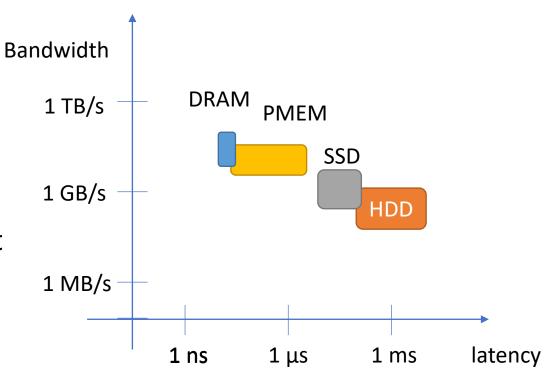

Persistent Memory Supercomputer Pegasus for data-driven and Al-driven Science

> Osamu Tatebe Center for Computational Sciences, University of Tsukuba

### Pegasus background

- CPU performance 50x, but memory size 3.8x in 8 years
- It matters for Data-driven and AI-driven Science
  - Memory size and Storage performance are really important
- Introduce Persistent Memory
  - Memory mode for memory size and direct mode for storage performance





### **Design Goal of Pegasus**

- Accelerates large-scale data analysis and big data AI by utilizing persistent memory for large memory space and high performance storage
- Fosters new fields of large-scale data analysis, new applications of big data AI, and system software research

### **Persistent Memory**

- One order better cost performance
- Minimum latency is ~60 ns (similar to DRAM)
- Half of bandwidth
- Memory mode
  - Larger memory space without much performance penalty
- App direct mode
  - Direct access to byte-addressable persistent memory and high-performance storage



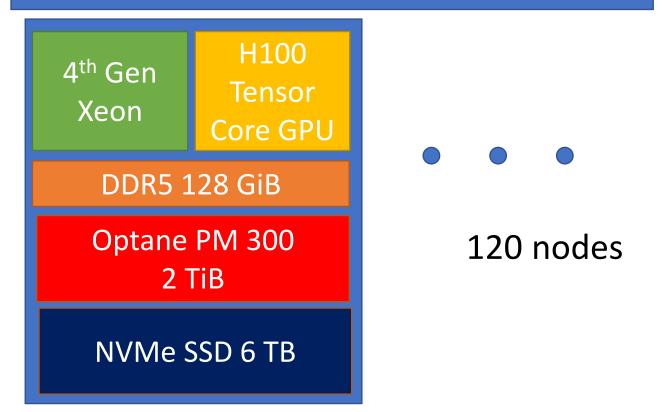


### Pegasus Highlights



- Plans to build with Intel 4<sup>th</sup> Gen Xeon, NVIDIA H100 Tensor Core GPU with PCIe, and 2 TiB Intel Optane PM 300 series will strongly drive Big Data and AI
- The world's first system with NVIDIA H100 PCIe GPUs connected via PCIe Gen5
- First system announced in Japan that will utilize NVIDIA Quantum-2 InfiniBand networking

## **Pegasus Specification**

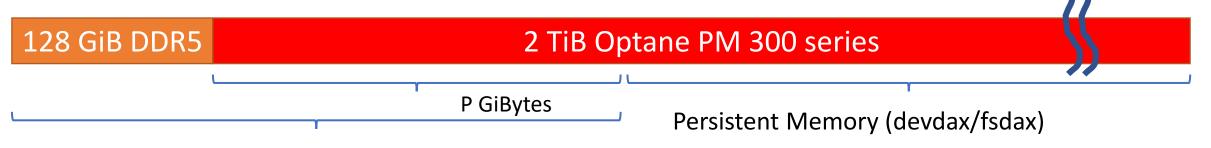

- Will be installed in 4Q 2022
- Total Performance
  - 120 nodes, > 6.1 PFlops, 240 TiB Pmem
- Node specification
  - Intel 4<sup>th</sup> Gen Xeon Scalable Processor
  - 51 TFlops NVIDIA H100 Tensor Core GPU
  - 128 GIB DDR5 DRAM
  - 2 TiB Optane PM 300 series (16x DRAM)
  - 6 TB NVMe SSD (7 GB/s)
- Interconnection Network
  - NVIDIA Quantum-2 InfiniBand platform (200 Gbps) full bisection
- Parallel File System
  - 7.1 PByte DDN EXAScaler (40 GB/s)

#### **NEC LX B1000E Blade Enclosure**





### 200Gbps full bisection




### How to use Persistent Memory

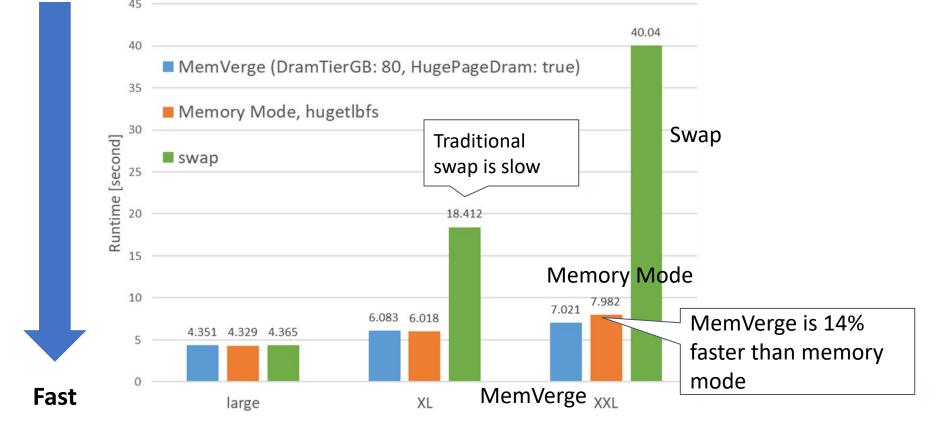
#### 128 GiB DDR5

#### 2 TiB Optane PM 300 series

- All PM regions are configured in App direct mode
- Users can specify PM size as extended memory and as persistent memory



128 + P GiBytes Memory

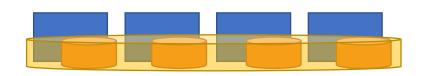

• MemVerge Memory Machine is used for memory extension

### XSBench Application Benchmark (on Optane PM 100)

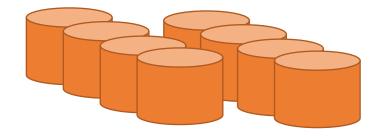
 Proxy application of the Monte Carlo neutron transport algorithm



- Memory usage: large 5.6 GB, XL 120GB, XXL 252GB
- Memory access pattern: random read




### Comparison of Cygnus and Pegasus


|              | <b>Cygnus (2019)</b> | Pegasus (2022) |
|--------------|----------------------|----------------|
| PFLOPS (DP)  | 2.3                  | > 6.1 (2.7x)   |
| CPU          | 0.16                 | ?.?? (?.?x)    |
| GPU          | 2.18                 | 6.12 (2.8x)    |
| FPGA (SP)    | 0.64                 | 0              |
| Memory (TiB) | 15.2                 | 15.36 (1.01x)  |
| Pmem (TiB)   | 0                    | 240            |
| Storage (PB) | 2.4                  | 7.1 (3.0x)     |
|              | C Y G NUS            | PEGASUS        |

## Research of Ad hoc parallel file system

- Temporal parallel file system using nodelocal storage
- Fill the performance gap between CPU/GPU and storage



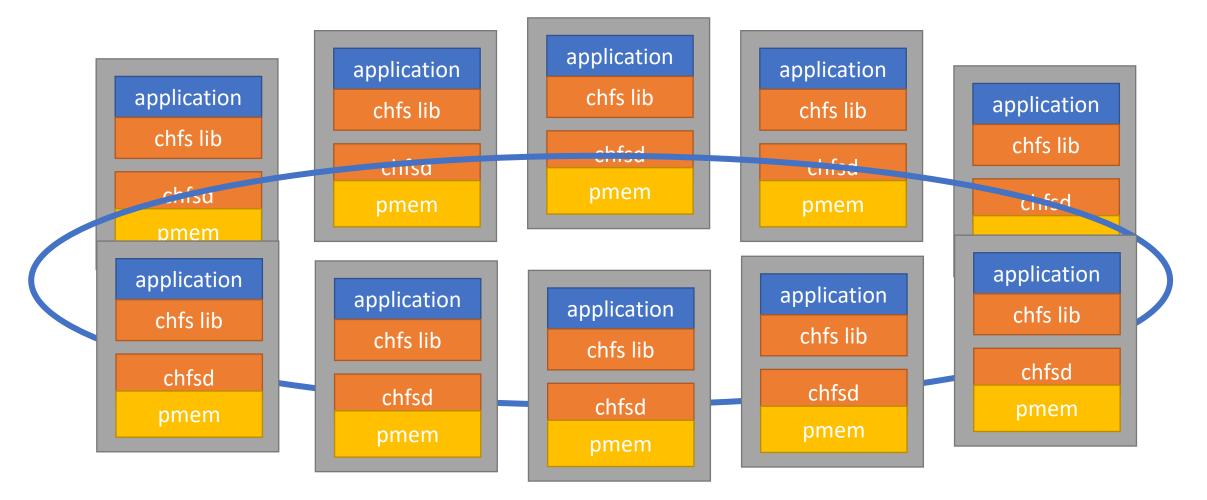




- We are developing CHFS ad hoc file system to utilize persistent memory
  - No metadata server, no sequential processing for performance and scalability

# Design Goal of CHFS [HPC Asia 2022]

- Utilize persistent memory performance
  - In-memory persistent key-value store (not block-based file system)
- Reduce metadata overhead and achieve scalable performance improvement
  - No dedicated metadata server (no additional lookup for metadata)
  - no sequential processing and no central data structure
- Improve single-shared-file performance
  - File is divided into fixed-size chunks to distribute a single file among servers and to avoid lock contentions
- Based on <u>highly parallel distributed key-value store</u> without any central <u>data structure</u>

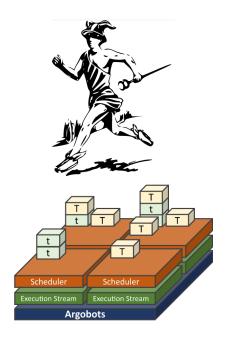

### Design of File System

- All data is stored in a highly parallel distributed KV store
- A single Key-Value format in CHFS for a file chunk and a directory

| Кеу                                                 | Value                                                        |           |  |  |  |
|-----------------------------------------------------|--------------------------------------------------------------|-----------|--|--|--|
| Full path and chunk number                          | Metadata                                                     | File data |  |  |  |
| directory, there is no chunk<br>er and no file data | Metadata (64<br>mode, uid, gio<br>chunk size<br>mtime, ctime |           |  |  |  |

• <u>No file-level information</u> in KV store, such as total chunk numbers and total file size to avoid sequential processing

### System Architecture of CHFS

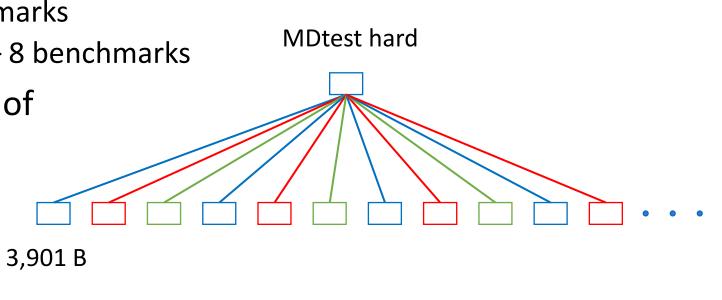



#### Compute nodes

### Implementation of CHFS

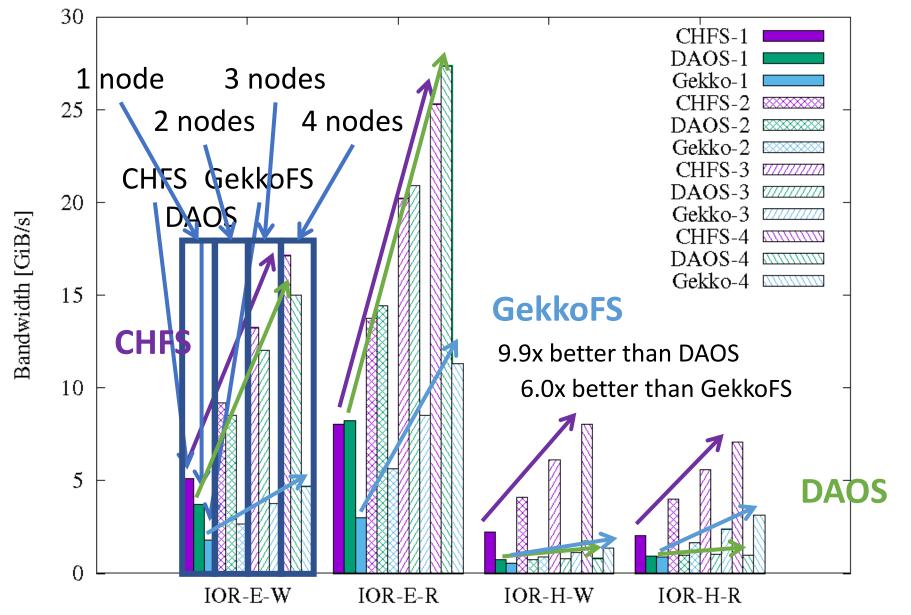
- Mochi-Margo [JCST 2020]
  - https://mochi.readthedocs.io/en/latest/
  - Communication library using Mercury and Argobots
- Mercury [Cluster 2013]
  - Async RPC, RDMA communication library
  - libfabric, UCX, shared memory plug-ins
- Argobots [IEEE TPDS 2018]
  - Light-weight thread library
- Pmemkv persistent key-value store in PMDK



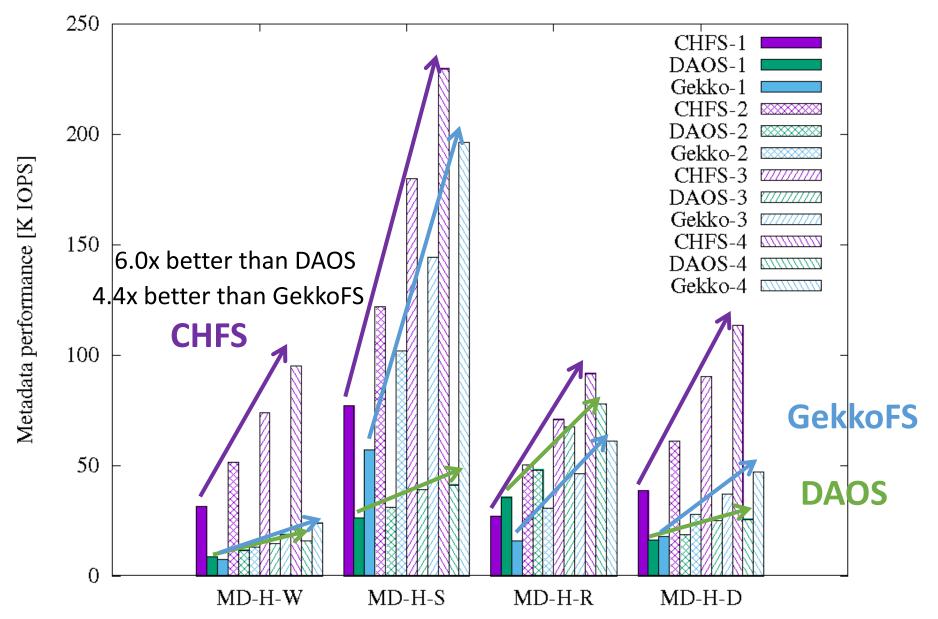




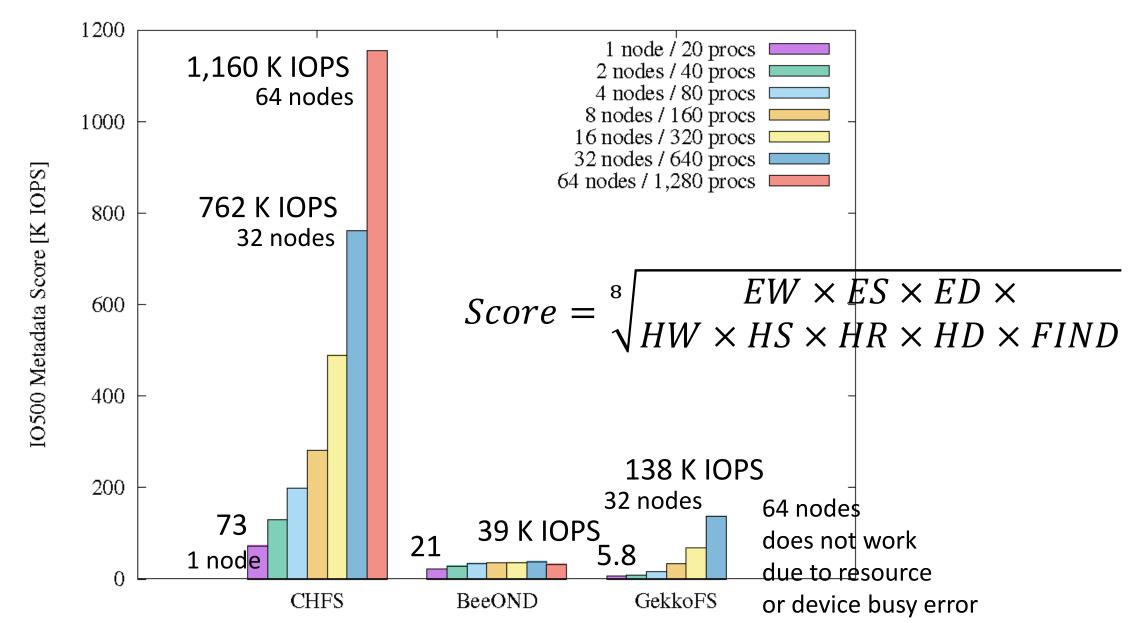

### Performance Evaluation of CHFS


### • IO500 benchmark

- BW: IOR easy/hard 4 benchmarks
- MD: MDtest easy/hard, Find 8 benchmarks
- Score is the geometric mean of benchmark results
- 4-node Pmem cluster and 78-node Cygnus







### IO500 Bandwidth (CHFS/DAOS/GekkoFS)



### IO500 Metadata Hard (CHFS/DAOS/GekkoFS)



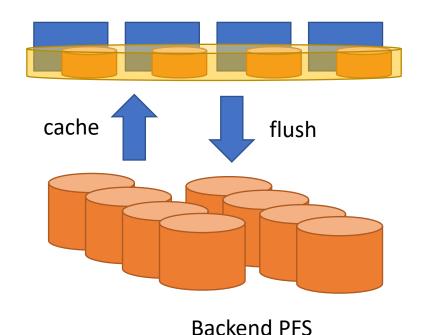
### IO500 Metadata on Cygnus (CHFS/BeeOND/GekkoFS)



|   | ISC20   | Intel                                   |           | Wolf                                   | Intel              |                                | DAOS                 |    | 10                 |        | 420                 | 758.71                                  | 164.77 | 3,493.56 |        |
|---|---------|-----------------------------------------|-----------|----------------------------------------|--------------------|--------------------------------|----------------------|----|--------------------|--------|---------------------|-----------------------------------------|--------|----------|--------|
| 4 | ISC21   | Lenovo                                  |           | Lenovo-Lenox                           | Lenovo             |                                | DAOS                 |    | 10                 |        | 960                 | 612.87                                  | 105.28 | 3,567.85 |        |
| ſ | ISC20   | TACC                                    |           | Frontera                               | Intel              |                                | DAOS                 |    | 10                 |        | 420                 | 508.88                                  | 79.16  | 3,271.49 |        |
|   | ISC21   | National Supercom<br>Center in GuangZho |           | Venus2                                 |                    | l Supercomputer<br>n GuangZhou | kapok                |    | 10                 |        | 480                 | 474.10                                  | 91.64  | 2,452.87 |        |
| ¢ | ISC20   | Argonne National L                      | aboratory | Presque                                | Argonne<br>Laborat | e National<br>ory              | DAOS                 |    | 10                 |        | 380                 | 440.64                                  | 95.80  | 2,026.80 |        |
|   | ISC21   | Supermicro                              |           |                                        | Superm             | icro                           | DAOS                 |    | 10                 |        | 1,120               | 415.04                                  | 112.17 | 1,535.63 |        |
| • | SC19    | NVIDIA                                  |           | DGX-2H SuperPO                         | D DDN              |                                | Lustre               |    | 10                 |        | 400                 | 249.50                                  | 86.97  | 715.76   |        |
| 1 | • SC20  | EPCC                                    |           | NextGENIO                              | BSC & J            | GU                             | GekkoFS              |    | 10                 |        | 3,800               | 239.37                                  | 45.79  | 1,251.32 |        |
| 1 | ISC21   | Olympus Storage Te<br>Innovation Lab    | echnology | OceanStor                              | Huawei             |                                | OceanFS              |    | 10                 |        | 960                 | 220.10                                  | 69.49  | 697.15   |        |
| 1 | 2 SC20  | Johannes Gutenber<br>University Mainz   | ſġ        | MOGON II                               | JGU (AI<br>(NEXTG  | DA-FS)& BSC<br>enIO)           | GekkoFS              |    | 10                 |        | 240                 | 167.64                                  | 22.97  | 1,223.59 |        |
| 1 | 3 SC20  | DDN                                     |           | DIME                                   | DDN                |                                | IME                  |    | 10                 |        | 110                 | 161.53                                  | 101.60 | 256.78   |        |
| 1 | 4 SC19  | WekalO                                  |           | WekalO                                 | WekalO             |                                | WekalO Matri         | x  | 10                 |        | 2,610               | 156.51                                  | 56.22  | 435.76   |        |
| 1 | 5 ISC21 | University of Tsukul                    | ba        | Cygnus                                 | OSS                |                                | CHFS                 |    | 10                 |        | 240                 | 148.69                                  | 30.39  | 727.61   |        |
| 1 | 6 ISC21 | Joint Institute of Nu<br>Research       | ıclear    | Govorun                                | RSC                |                                | DAOS                 |    | 10                 |        | 160                 | 132.06                                  | 20.19  | 863.69   |        |
| 1 | 7 SC20  | TACC                                    | 14 SC19   | Frontera<br>Wekal0                     | DDN<br>WekalO      | WekalO                         | IME<br>WekalO Matrix | 10 | <b>10</b><br>2,610 | 156.51 | <b>280</b><br>56.22 | 109.91<br><sup>435.76</sup> <b>#1</b> 5 | 176.23 | 68.55    | e list |
|   |         | _                                       | -         | University of Tsukuba                  | Cygnus             | OSS                            | CHFS                 | 10 | 240                | 148.69 | 30.39               | 727.61                                  |        |          |        |
|   |         | _                                       | 16 ISC21  | Joint Institute of Nuclear<br>Research | Govorun            | RSC                            | DAOS                 | 10 | 160                | 132.06 | 20.19               | <sup>863.69</sup> #23                   | in f   | ull list |        |
|   |         |                                         | 17 SC20   | TACC                                   | Frontera           | DDN                            | IME                  | 10 | 280                | 109.91 | 176.23              | 68.55                                   | •      |          |        |

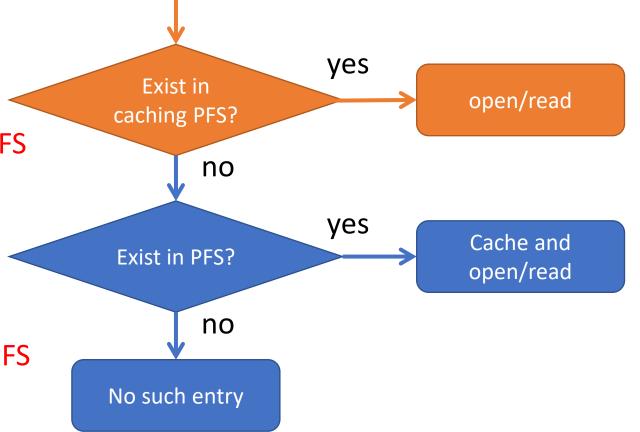
# Design Goal of CHFS/Cache [ESSA 2022]

- Based on CHFS ad hoc PFS [HPC Asia 2022]
  - Exploit node-local persistent memory
  - High metadata performance, high bandwidth
  - Scalable performance
  - A separate FS from the backend PFS
- Design a caching FS by synchronizing with backend PFS
  - Not sacrifice metadata performance
  - Relax consistency between backend PFS in easy-to-understand semantics

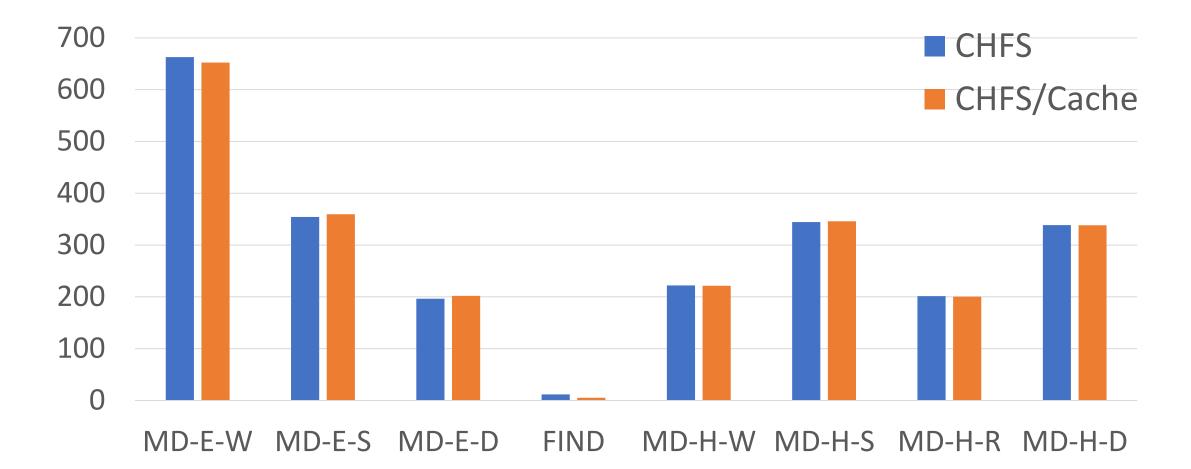

#### IO500 Score of Oakforest-PACS

|        | BW<br>[GiB/s] | Metadata<br>[kIOP/s] | Total  |
|--------|---------------|----------------------|--------|
| Lustre | 21.4          | 88.78*               | 42.18* |
| IME    | 471.25        | 21.85                | 101.48 |

## **Relaxation of Consistency**


### **Assumptions**

- 1. Input data not changed during the execution
- 2. Creation of new entries succeeds
- 3. Before updating an existing file, the file is read once
- Updates not reflected until flushed (updates can be accessed from login nodes)
- 5. Flushing performed before the job terminates




## **Design of File Operation**

- File Open and Read
  - Right figure (From Assumption 1)
  - If exist in caching PFS, no checking performed for backend PFS
- File Creation and Write
  - Creates and writes in caching PFS (From Assumptions 2-4)
  - No checking performed for backend PFS



### Metadata performance on Cygnus P nodes (4 nodes)



Overhead is less than 3% except FIND. It is 55% for FIND, but not problematic

### Summary

- Pegasus will be introduced in 4Q 2022
  - Big memory and high-performance storage for data-driven and AI-driven science
- Research of ad hoc parallel file system
  - Better and scalable performance utilizing persistent memory
  - #15 in 2021 June IO500 10 node list, #23 in full list
- Design CHFS/Cache caching PFS
  - Solve the metadata performance problem
  - Better bandwidth and metadata performance than the backend PFS