Computies Approach to Development of the Next-Generation Semiconductor Science

Importance of energy-saving semiconductor technology in sustainable society

- Power electronics, Non-volatile memories
- -Necessity of quantum-theory based calculations

Computics: present capability of calculations based on density-functional theory (DFT)

- On current <u>massively parallel computer architecture</u> not with accelerators yet

>Mechanism of the flash memory: Nitrogen vacancy (V_N) in Silicon Nitride

- -Floating state distributed in internal space in the host sparse material
- Multiple charge states which store multi-electrons around V_N

[F. Nanataki, K. Shiraishi & A. Oshiyama: Phys. Rev. B (2022)]

Life and Electron Devices

Cloud

Mobile

Networking

CPU, Memory,

NAND Flash

Autom

However, for energy saving society, *HEAT* is the problem

https://weekly.ascii.jp/elem/000/002/629/2629133/

Wide Bandgap Semiconductors such as GaN or SiC Save Energies

Next-Generation Electron Devices by Replacing Si with Emerging Materials

Non-Volatile Flash Memory

NEED: Accurate Large-Scale Calculations Based on Quantum Theory for 10,000 - 100,000-Atom Systems

Equations in Density-Functional Theory (DFT)

Hohenberg, Kohn: PR 136, B864 (1964)

- Total Energy of a material:
$$E[n] = \int v_{\text{nucl}}(r)n(r)dr + T[n] + \frac{1}{2} \iint \frac{n(r)n(r')}{|r-r'|} dr dr' + E_{XC}[n]$$

is a functional of the electron density, universal functional $n(r) = N \int |\Psi(r, r_2, r_3, r_4, \cdots r_N)|^2 dr_2 dr_3 \cdots dr_N$ accurate enough better E_{xc} - Euler equation: $\frac{\delta E[n]}{\delta n} = \mu$ large-scale to nano and micro world Kohn, Sham: PR 140, A1133 (1965) Kohn-Sham equation $\begin{bmatrix} -\frac{1}{2}\nabla^2 + v_{eff}(\mathbf{r}; n(\mathbf{r})) \end{bmatrix} \varphi_i(\mathbf{r}) = \varepsilon_i \varphi_i(\mathbf{r})$ $v_{eff}(\mathbf{r}) = v_{nucl}(\mathbf{r}) + \int \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' + \frac{\delta E_{XC}[n]}{\delta n(\mathbf{r})}$ long-time simulation Car, Parrinello: PRL 55, 2472 (1985) $\int \mu \ddot{\varphi}_{i} = -\delta E / \delta \varphi_{i}^{*} + \sum_{j} \Lambda_{ij} \varphi_{j}$ $\int M_{I} \ddot{\mathbf{R}}_{I} = -\partial E_{DFT} / \partial \mathbf{R}^{*}.$ Car-Parrinello Molecular **Dynamics** equation

30th Anniversary Symposium of CCS

Need Cross-Disciplinary Approach (Computics) between Physics/Chemistry and Computer Science & Technology

http://computics-material.jp/index.html

Theoretical Performance of TOP1 Supercomputer

Computics:

Collaboration between Physics/Chemistry &

Computer Science

methodology and algorithms suitable to current architecture

<u>Our real-space scheme: RSDFT code</u>

https://github.com/j-iwata/RSDFT All the quantities such as n(r), v(r) etc computed at each real-space mesh points, leading to that Fourier Transform is essentially unnecessary.

Currently,

- ✓ 100,000-atom DFT calculations for Si-Nanowire FET (2011 Gordon-Bell Prize)
- ✓ 10,000-atom DFT calculations with semilocal approximations (LDA/GGA) to E_{xc} feasible
- ✓ 1,000-5,000-atom calculations with hybrid approximation also feasible
- CPMD simulations for 1000 3000 atom systems up to nano seconds feasible

A Recent Example: Epitaxial Growth of Power Semiconductor GaN

Bui, Boero, Shiraishi, Oshiyama: J. Phys. Chem C (2017); J. Cryst Growth (2019); JJAP (2020); Appl Surf Sci. (2021, 2022)

DFT calculations has revealed:

Gas Source NH₃ decomposed on the growth surface

- → Resulting NH diffusing to the surface step-edges
- \rightarrow NHs at the edge incorporated to the GaN film

<u>However, real growth surface seems to be a</u> *liquid* <u>at growth temperature 1300 K.</u>

2-Dimensional Liquid Phase of Ga Adatom at Growth Temperature

30th Anniversary Symposium of CCS

Further Efforts to Larger-Scale Calculations: Order N Scheme

- ✓ Current scheme of DFT (Kohn-Sham Scheme) scales as cube of the target size N, $O(N^3)$
- ✓ But solving Euler equation in DFT costs O(N) in itself, if we get rid of the orbitals $\{\varphi_i(\mathbf{r})\}$

$$\int \left[\frac{-\frac{1}{2} \nabla^2 + v_{\text{eff}}(\mathbf{r}; n(\mathbf{r}))}{\sum_{i=1}^{i} \sim O(N)} \right] \varphi_i(\mathbf{r}) = \varepsilon_i \varphi_i(\mathbf{r}) \qquad \longrightarrow \frac{\delta T_s[n]}{\delta n(r)} + v_{\text{nucl}}(r) + \frac{\delta E_{\text{H}}[n]}{\delta n(r)} + \frac{\delta E_{\text{XC}}[n]}{\delta n(r)} = \mu$$

✓ { φ_i (**r**)} is unnecessary if we know the functional form of the kinetic energy

 $T_{s}[n] = \int \tau^{\mathrm{TF}}(r) \underline{F[n]} dr \xrightarrow{} \text{Enhancement factor} \xrightarrow{Orbital-Free DFT (OFDFT)}$

✓ We rely on the Neural Network to develop $T_s[n]$

Imoto, Imada, Oshiyama: Phys Rev Research 3, 033198 (2021)

Prepare n(r), S(r) and q(r) from the training data (in carbon diamond).

• Construct F as functionals of n, q and s with the NN parameters $W_{ij}^{(l)}$.

• Train the NN (optimize NN parameters $W_{ii}^{(l)}$) so as to minimize the cost function L

TABLE V. Comparison of equilibrium lattice constant (a_0) in Å and bulk moduli (B_0) in GPa obtained by NN and NN^[bare] with those obtained by different approximations to KEDF. Numbers in the parentheses are the relative errors in % with respect to the KS values. In β -tin Si, the ratio of another lattice constant c_0 to a_0 (c_0/a_0) is also listed. Some values are left as blanks because the total energy monotonically decreases with respect to the volume expansion.

	diamond		ds-Si		fcc-Si		β -tin Si			3C-SiC		bcc-Li		fcc-Al	
	a_0	B_0	a_0	B_0	a_0	B_0	a_0	c_{0}/a_{0}	B_0	a_0	B_0	a_0	B_0	a_0	B_0
NN	3.428	411	5.367	85.4	3.642	143	4.673	0.529	165	3.092	157	3.479	15.5	4.118	79.1
	(-2.53)	(25.7)	(-0.46)	(-14.6)	(-0.22)	(5.93)	(0.17)	(-1.67)	(5.10)	(2.28)	(-36.2)	(-0.83)	(4.03)	(1.68)	(2.06)
$\mathrm{NN}^{[\mathrm{bare}]}$	3.130	867	5.187	83.5	3.529	149		()		2.904	253	3.329	18.9	3.841	129
	(-11.0)	(165)	(-3.80)	(-16.5)	(-3.32)	(10.4)				(-3.94)	(2.85)	(-5.10)	(26.8)	(-5.16)	(66.5)
PGSL0.25	3.430	433	5.384	93.4	3.702	118	4.744	0.529	137	3.073	217	3.496	15.5	4.197	67.4
	(-2.47)	(32.4)	(-0.15)	(-6.6)	(1.42)	(-13.0)	(1.69)	(-1.67)	(-12.7)	(1.65)	(-11.8)	(-0.33)	(3.78)	(3.62)	(-13.0)
LKT	3.343	578	5.336	104	3.644	161	4.643	0.532	186	3.066	227	3.492	15.3	4.144	86.0
	(-4.95)	(76.8)	(-1.04)	(4.00)	(-0.16)	(19.5)	(-0.47)	(-1.12)	(18.5)	(1.42)	(-7.72)	(-0.46)	(2.52)	(2.32)	(10.9)
$\mathrm{TF}(1/5)\mathrm{vW}$			5.708	39.6	3.847	54.0	10 U U	n es	nden die Fer	3.353	63.2	3.384	16.4	4.243	44.0
			(5.86)	(-60.4)	(5.40)	(-60.0)				(10.9)	(-74.3)	(-3.54)	(10.1)	(4.76)	(-43.2)
KSDFT	3.517	327	5.392	100	3.650	135	4.665	0.538	157	3.023	246	3.508	14.9	4.050	77.5

<u>.</u>	fcc-Cu		bcc-	Na	Nε	aCl	graphene	MA	RE
	a_0	B_0	a_0	B_0	a_0	B_0	a_0	a_0	B_0
NN	3.730	169	4.227	7.98	5.678	27.7	2.448	-	
ININ	(2.33)	(6.96)	(-0.91)	(3.50)	(3.61)	(6.94)	(0.29)	1.39	11.1
NTNT[bare]	3.887	228	4.045	9.73	5.187	32.4	2.377		
ININ' '	(6.64)	(44.3)	(-5.18)	(26.2)	(-5.35)	(25.1)	(-2.62)	4.74	38.4
DCGL095	3.795	138	4.250	8.00	5.595	22.9	2.433		
r GSL0.25	(4.12)	(-12.4)	(-0.38)	(3.75)	(2.10)	(-11.5)	(-0.32)	1.66	12.1
IKT	3.762	175	4.245	7.91	5.596	23.8	2.402		
	(3.21)	(10.7)	(-0.50)	(2.61)	(2.12)	(-8.20)	(-1.59)	1.66	14.5
$TF(1/5)_{T}W$	3.799	88.4	4.116	8.49	6.056	6.75	2.593		
11(1/3)////	(4.21)	(-44.1)	(-3.51)	(10.1)	(10.5)	(-73.9)	(6.24)	6.10	47.0
KSDFT	3.645	158	4.266	7.71	5.480	25.9	2.441		

Structural Properties of 11 solids

Neural-Network-Assisted Order N - OFDFT Scheme

Imoto, Imada, Oshiyama: Phys Rev Research 3, 033198 (2021)

Computational time measured for SiC 576~4704-atom systems

Computies Approach to Development of the Next-Generation Semiconductor Science

>Importance of energy-saving semiconductor technology in sustainable society

- Power electronics, Non-volatile memories
- Necessity of quantum-theory based calculations

Computies: present capability of calculations based on density-functional theory (DFT)

- On current <u>massively parallel computer architecture</u> not with accelerators yet

> Mechanism of the flash memory: Nitrogen vacancy (V_N) in Silicon Nitride

- -Floating state distributed in internal space in the host sparse material
- Multiple charge states which store multi-electrons around V_N

[F. Nanataki, K. Shiraishi & A. Oshiyama: unpublished (2022)]

Electron States in Condensed Matters

Extended States

vs <u>Localized States</u>

e.g. Bloch states in Crystal

Graphene plane

However, controlled electron trapping is storing the information in the localized region: i.e. the memory <u>V_N in SiN</u>

Interlayer state

^{or} Floating state in sparse material

30th Anniversary Symposium of CCS

Floating State and Band-gap Variation in SiC Polytypes

Polytypes: Sequence of bilayers (A, B & C) have a variety as 2H, 3C, 4H, 6H, 8H, 10H, 15R,,, \succ 3C structure from [101] [periodicity6h] atrdcsynerfretry[220Aagonal/Cubic/Rombohedral] **3C structure**

ung sp3 ever (400 bonded semiconductors is 0.34 ung sp3 hedrally-bonded semiconductors is 0.34 unuction age efficiency of tetrahedrally units is packing effi Band Gaps: 2.2 eV (3C), 2.86 eV (6H), 3.26 eV (414) ti-bonding sp³ = the conduction band

Quantum Confinement in the channel

Length = 7a/2/2

Floating State in Silicon Nitride

<u>Consider β -Si₃N₄: packing efficiency = 0.28</u>

Conduction-band State is FLOATING

Highest amplitude is at back of Si, not along bonds

Then, is distributed in the internal space

Side view perp to [0001]

Nitrogen Vacancy V_N in Silicon Nitride

17

Jahn-Teller and Exchange Splitting ,,,, and Localized Floating Character

 ✓ Floating states hidden in the conduction bands emerge in the gap (red bars), being localization around V_N

12

11

Energy (eV)

6

5

12

11

Energy (eV)

6

Thermodynamic Level of V_N in SiN

<u>Thermodynamic level ε (q/q')</u>: Fermi-energy position in the gap at which the different charge states q and q' has the same total energy

- *This is the level experimentally detected.*
- ✓ Control of the Fermi-level position, presumably by device design
 ⇒ V_N: multi-level memory cell ?

Covalency (Jahn-Teller) Ionicity (Spin splitting) and Sparsity (Floating) make it!

- Importance of Computies Approach based on Quantum Theory for Accurate-Enough Large-Scale Long-Time First-Principles Calculations / Simulations, Contributing to the Development of Energy-Saving Electron Devices
- Ultimate Memory Cells Endorsed by Newly Discovered Floating States? Lattice Vacancy in Silicon Nitride