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Scientific 
Data 

Management

User-facing 
applications/services

Motifs

Algorithms

Optimized runtime

Hardware abstraction and 
hardware

Automated data reorganization
Intelligent data movement
Vertical storage management
Performance analysis for data pipelines

File formats: ExaHDF5, ADIOS
Object storage management: PDC

Indexing/Querying
Tensor-based operators for analysis
Data transformation
Adapting to distributed workflows

Scientific Data Management at LBNL
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Example Scientific Data Analysis at a HPC Center
-- Reducing Petabytes to Kilobytes

Magnetic reconnection
qApplications: magnetic confinement 

fusion, solar wind
qData from simulation of trillions of 

ions and electrons
• Example: space weather 

simulation on 120,000 hopper 
cores @NERSC
– 20,000 MPI tasks * 6 OpenMP 

threads
• ~35TB per timestep
• Total ~350TB
• Example science result

– Particle energy distribution follows 
the power law

Challenge
• How to quickly and easily get from 

350TB of raw data to a few 
kilobytes in the graph below?

Byna et al SC2012
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http://dl.acm.org/citation.cfm?id=2389077


Scientific Achievement
PDC achieves efficient storage and access of data with simple object 
abstractions, transparently taking advantage of deep and heterogeneous HPC 
storage hierarchy.

Significance and Impact
Applications store data as PDC objects, which the PDC runtime system 
transparently and efficiently manages in the storage hierarchy. PDC is portable 
over underlying HPC file systems, so users don’t need special installations.

Research Details§ Existing data management and I/O solutions are based on POSIX semantics and face 
performance challenges§We developed a novel data management system with simple data object interfaces, efficient 
and transparent data movement in storage hierarchy, proactive analysis in the data path, and 
scalable metadata management§ PDC object management outperforms highly-tuned POSIX I/O based on HDF5 by up to 8X for 
writing and by up to 22X for reading. Searching metadata is 40X faster than Lustre file system§ Public release available at https://github.com/hpc-io/pdc

Technology 1: Efficient I/O with Proactive Data Containers

H. Tang, S. Byna, et al., "Toward Scalable and Asynchronous Object-centric Data Management for HPC", 18th IEEE/ACM 
International Symposium on Cluster, Cloud and Grid Computing (CCGrid) 2018. (DOI: 10.1109/CCGRID.2018.00026)

PDC Overview and Performance: Top figure shows 
an overview of PDC interfaces through HDF5 and 
PDC’s object interface and various PDC services. 
Gray boxes show future work. The bottom figure 
shows the performance of writing particle data (from 
248GB to ~4TB) with HDF5 and different 
configurations of PDC. PDC outperforms highly-tuned 
POSIX I/O with HDF5 by 6.5X on average.
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Technology 2: Fast In-memory Data Movement

• Technology: in memory data movement for stream-based distributed data process• Application: detect fusion plasma blobs:– Which leak energy from tokamak plasmas– and damage walls of the tokamak 
q The experimental facility may not have enough computing power for the necessary data processing
q Distributed in transient processing– Makes more processing power available– Allows more scientists to participate in the data analysis operations and monitor the experiment remotely
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Analysis

Memory-to-memory data delivery (code coupling)
Transparent workflow execution

WAN Transportation
• FlexPath/EVPath
• DataSpaces
• ICEE

Wu, et al. 2016 Trans. Big Data 7

https://doi.org/10.1109/TBDATA.2016.2599929


Technology 3: FasTensor Simplifies Tensor Computation
Scientific Achievement
FasTensor, a data parallelization system for user-defined 
analysis, significantly reduces programming effort for various 
scientific analysis operations. It outperforms popular Big Data 
platforms such as Spark by ~50X to ~90X in executing 
machine learning computations.

Significance and Impact
FasTensor has been evaluated using:
● Earth science for detecting earthquakes and other subsurface 

events
● Fusion science for tracking field evolution
● Climate data analysis with Convolutional Neural Network (CNN) to 

predict extreme weather events

Research Details
FasTensor programming model consists of: 

● Simple data model (i.e., Stencil) abstraction well known in numerical computing
● Single operator (i.e., Transform) to execute user-defined analysis
● An execution engine for automatic parallelization

IPDPS 2020, ISC 2019, SSDBM 2019

Performance comparison of FasTensor with Spark for completing 
CNN (CONV, Pooling and ReLU) on a 2D climate (CAM5) data

FasTensor website: 
https://sdm.lbl.gov/fastensor/

Book
(Springer 
2021)
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Many Data Sources Outside of HPC Centers
• There are many more scientific 

instruments, like those used in 
environmental monitoring, 
producing relatively small amounts 
of data, but might be just as valuable
– Significant amounts of valuable data in 

publications
• Because the efforts available to 

handle the data might be quite 
limited, thus need more automated 
solutions
– QA / QC
– Metadata / provenance
– Formatting and other data convention
– Processing tools: automated curation
– Integration with other data sets

10



Diving into Understanding Drought Processes

● Drought impacts carbon stabilization
○ Major societal impact
○ Mediated by biotic and abiotic factors

● Diverse datasets could elucidate underlying 
processes
○ e.g., meta-analyses, process models
○ Data needs to be collected and integrated 

Multiscale depiction of the microbial response to drought stress.
Malik & Bouskill. 2022. Functional Ecology. https://doi.org/10.1111/1365-
2435.14010

Drought map
of California

11Credit: Damerow, Mungall, et al. (2023)

https://doi.org/10.1111/1365-2435.14010
https://doi.org/10.1111/1365-2435.14010


The Need to Curate Data at Scale

EESA Strategic Vision 2025, p13
https://eesa.lbl.gov/about/strategic-vision

How to curate data at scale?
“...understanding multi-scale ecosystem processes often requires 
acquisition and integration of a variety of data”

Varadharajan et al. 2022. Computers and Geosciences. 
https://doi.org/10.1016/j.cageo.2021.105024

12Credit: Damerow, Mungall, et al. (2023)

https://eesa.lbl.gov/about/strategic-vision
https://doi.org/10.1016/j.cageo.2021.105024


Automating Data Curation Step 1: Expand Ontological Model

1. Curate multi-scale conceptual model
● Manually curate causally linked terms (“pathway 

diagram”) 
● Link each box/edge to ontology concepts

1

Ontology Development Kit: a toolkit for building, 
maintaining and standardizing biomedical 
ontologies
Nicolas Matentzoglu,..., Christopher J Mungall, David Osumi-Sutherland

Database, Volume 2022, 2022, baac087

Gene Ontology Causal Activity Modeling

Paul D Thomas,..., Christopher J Mungall
Nat Genet. 2019 Oct;51(10):1429-1433

13Credit: Damerow, Mungall, et al. (2023)

https://pubmed.ncbi.nlm.nih.gov/?term=Thomas+PD&cauthor_id=31548717
https://pubmed.ncbi.nlm.nih.gov/?term=Mungall+CJ&cauthor_id=31548717


Automating Data Curation Step 2: Link Model to Datasets
1. Curate multi-scale conceptual model
● Manually curate causally linked terms (“pathway 

diagram”) 
● Link each box/edge to ontology concepts

2. Automatically link nodes/edges to papers and datasets 
● Traditional Information-Retrieval
● Next-generation approaches: Large Language Model 

(LLM)

1

2
2

2

https://github.com/monarch-initiative/ontogpt
LILLIE – doi:10.1016/j.is.2021.101938

Transformer behind LLM

14Credit: Damerow, Mungall, et al. (2023)

https://github.com/monarch-initiative/ontogpt
https://doi.org/10.1016/j.is.2021.101938


Automating Data Curation Step 3: Extract Key Variables

15

1. Curate multi-scale conceptual model
● Manually curate causally linked terms (“pathway 

diagram”) 
● Link each box/edge to ontology concepts

2. Automatically link nodes/edges to papers and datasets 
● Traditional Information-Retrieval
● Next-generation Large Language Model (LLM) 

approaches
3. Automatically extract key variables studied
● E.g., moisture, drought duration
● Align to standards: entity matching à fuzzy matching

1

2
2

2

3

Total carbon 
exudation rate by 
fine roots per 
individual plant. 
(F01418)

tropical forest 
(ENVO:01001803)
carbon composition
(CHEBI:27594)

3

Microbiome Metadata Standards: Report of 
the National Microbiome Data 
Collaborative's Workshop and Follow-On 
Activities

Pajau Vangay …Emiley A Eloe-Fadrosh

mSystems 2021 Feb 23;6(1):e01194-20
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Example Information Extract Tools: OntoGPT & LILLIE
• OntoGPT (inside LBNL, Mungall et al. 2023): Generation of Ontologies and Knowledge Bases 

using GPT
– A knowledge extraction tool that uses a large language model to extract semantic information from text.
– This makes use of so-called instruction prompts in Large Language Models (LLMs) such as GPT-4.

• SPIRES: Structured Prompt Interrogation and Recursive Extraction of Semantics
• Zero-shot learning approach to extracting nested semantic structures from text
• Uses text-davinci-003 from OpenAI
• HALO: HAllucinating Latent Ontologies

• Few-shot learning approach to generating/hallucinating a domain ontology given a few examples
• Uses code-davinci-002 from OpenAI

• LILLIE (outside LBNL): Information Extraction and Database Integration Using Linguistics 
and Learning-Based Algorithms
– Based on Clause-based information exchange (ClausIE), Open Information Exchange (Open IE), and 

Stanford CoreNLP
– Process: Step 1 - Extract triples such as subject, predicate and object. Step 2 - Link the extracted subjects 

and objects to specific columns of a relational database to enrich the database. 

16



From Keyword Search to Semantic Search: An Illustration

17

Mt. Baker, a school district

Baker Hostetler, a company

Baker, a job opening

E. Smith, D. Papadopoulos, M. Braschler et al. Information Systems 105 (2022) 101938

Fig. 1. Example of an end-to-end data processing pipeline. Step 1 - Information
Extraction: First we extract triples such as subject, predicate and object from a
text document. Step 2 - Entity Linking: Afterwards we link the extracted subjects
and objects to specific columns of a relational database. As a result we have an
extended relational database that is enriched with information stored in text
documents.

optimized in isolation. Hence, significant potential for improve-
ment is left unexplored when considered in the larger context of
data exploration. When the triple extraction process is viewed as
an integral part of this larger process of integrating and querying
structured and unstructured data, we claim that two considera-
tions are crucial to be treated simultaneously — the combination
of which has previously received only little attention:

• How to optimize the effectiveness of triple extraction, balanc-
ing both recall and precision?

• How to augment the approach to increase generality, making
the extracted triples suitable for linking up with varying
forms of structured data stored in a relational database?

Much work on triple extraction concentrates on the first as-
pect only and is therefore not really optimized towards an end-
to-end pipeline of both triple extraction and database integration.

In this work we tackle an important open gap in triple ex-
traction and database integration. In particular, we present a
novel approach for extracting subject–predicate–object relational
triples from unstructured text, which are then linked to relevant
ontologies and inserted into a relational database. This paper is
part of a greater vision of building a data exploration system with
INODE [8].

The contributions of our paper are as follows:

• We combine a high-precision rule-based triple extractor with
a high-recall learning-based extractor, using a novel triple
refinement method.

• Our system includes additional options for output mod-
ifications, which allow the granularity and specificity of
the extracted triples to be customized to a given structured
database.

• Our approach outperforms current state of the art systems on
the two widely-used benchmark datasets CaRB and ReOIE.

The paper is organized as follows: in Section 2 we review
the related work on information extraction and entity linking for
knowledge base construction; in Section 3, we give an overview
of the LILLIE architecture; in Sections 4 and 5, we describe the
algorithms and functions of the rule-based extractor and the
learning-based extractor, respectively; in Sections 6 and 7, we
show how to combine both engines, and customize their output;
in Section 8, we describe how to apply our triple extractor to the
task of entity linking and database insertion; in Section 9, we give
a detailed analysis and evaluation of all the components of our
system, and compare these to the current state-of-the-art. The
paper culminates in Section 10, where we show how the enriched
database can be queried and discuss performance considerations.

2. Related work

In this section, we provide background information for each
of the distinctive modules that comprise our data processing
pipeline, namely open information extraction and entity linking
for knowledge base construction.

2.1. Information extraction

Information extraction systems aim at distilling structured
representations of information from natural language text, usu-
ally in the form of relational triples {subject, predicate, object},
which correspond to {entity1; relationship; entity2} or n-ary
propositions [9].

There are two types of information extraction systems: Closed
Information Extraction (CIE) systems identify instances from a
fixed and finite set of corpora, considering only a closed set of re-
lationships between two arguments [10]. On the other hand, Open
Information Extraction (OIE) systems use a domain-independent
approach and are capable of extracting entities and relationship
triples from natural language sentences. Since OIE systems fol-
low a relation-independent extraction paradigm, they can play a
key role in many natural language processing (NLP) applications
involving natural understanding (NLU) and knowledge base con-
struction from massive and heterogeneous corpora, by extracting
phrases that indicate semantic relationships between entities.

In order to extract triples, most approaches try to identify
linguistic extraction patterns, either hand-crafted or automati-
cally learned from the data. The line of work on OIE starts with
systems relying on distant supervision [11,12], and rule-based
paradigms that focus on the grammatical and syntactic properties
of the language [13,14]. An abundance of learning-based systems
that leverage annotated data sources to train classifiers has been
proposed [15,16], with more recent implementations making use
of pretrained language models [17,18]. Despite the existence of so
many approaches, however, the majority focus only on evaluating
the effectiveness of different triple extraction tools on raw data,
without incorporating any preprocessing strategies to limit the
number of potentially uninformative triples [19].

Some more recent methods go beyond the triple extraction
task by encompassing more thorough preprocessing and postpro-
cessing strategies, including discourse analysis, coreference reso-
lution or summarization to improve the quality of the extracted
triples [20–22].

2.2. Entity Linking for knowledge base construction

Entity Linking (EL) – also known as Named Entity Recognition
/ Disambiguation – is the task of identifying an entity mention in
a text and establishing a link to an entry in a knowledge base
(KB), e.g. Wikidata [23], DBpedia [24], YAGO [25]. EL systems are
capable of resolving the lexical ambiguity of entity mentions and
can therefore be extremely useful in a plethora of NLU appli-
cations, by enriching the information extracted via OIE systems.
Moreover, by establishing links between the entity mentions and
KB entities, we are able to store and utilize information in seman-
tic graphs, facilitating semantic parsing, question answering and
exploratory data analysis operations.

Earlier approaches leverage statistical models combined with
feature engineering methods to achieve entity linking, viewing
the problem as a word sequence labeling task [26]. More mod-
ern neural-based approaches treat the problem as a multi-class
classification task, in which entities correspond to classes. The
goal is to propose a list of candidate entities for each mention
by encoding both the mentions and the candidate entities into
vector representations, then ranking the candidates based on

2

Keyword search produces mixed results

LILLIE extracts useful information



Potential Collaboration Topics
• Efficient IO for scientific data

– Leverage PDC (LBNL), H5Bench (LBNL), and Pegasus PMEM 
(Tsukuba)

– ML workflow from cosmology?
• Entity matching, data integration, and beyond

– Automating data curation requires efficient entity matching and 
Tsukuba scientists have worked on efficient algorithms

– Fuzzy matching?
• Thick-restart Lanczos method for eigenvalue 

computation
• …

18LBNL Tsukuba Collaboration 2023


