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The nucleus can be described as a collection of Fermi particles (protons and
neutrons) called nucleons. The mechanics to rule over this microscopic
world, such as the quantum mechanics of many-particle systems and
quantum field theory, is essential. Three of the four fundamental forces
of nature—the strong force, electromagnetic force, and weak force—play
important roles in the atomic nucleus, leading to a variety of aspects of
reactions and structure that are related to the existence of the matter
around us. For example, the sun and the stars in the night sky shine with
atomic nuclei as fuel, and they are the lights of the factories that produce

the elements. The burning (nuclear reaction) process, which depends on

the nature of the forces involved and the nuclear structure, controls the
brightness and lifetime of the star, as well as the type and quantity of
elements produced.

Nuclear physics has progressed through both experiments using
accelerators and theoretical calculations using computers. Numerical
calculations are indispensable for quantum many-body problems, such
as nuclear problems. The Nuclear Physics division works on developing
theories, models, and numerical methods based on quantum mechanics
to clarify the nuclear structure, nuclear reactions, structure of stars, and

quantum dynamics of matter.



Fundamental interactions in nuclei

« Strong interaction: The most important, the force to produce
nucleons/hadrons, the origin of nuclear binding

«lElectromagnetic interaction] Second most important, the
reason of TInite size, repulsive among protons
« Weak interaction: No effect on nuclear structure, but controls

decay and weak process reactions

« Gravity: No effect on nuclei on Earth, but important to
produce neutron stars

Quantum mechanical consequences of nuclear shape
and stability




Systematic investigation of nuclear shape
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Uncertainty principle
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Optimal shape of the box

Problem: Fixing the box size L,L, = L?,
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Isotropic shape » Circular shape (2-dim)
» Spherical shape (3-dim)



Pauli’'s exclusion principle

The second particle cannot be in the same state as the first one.
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Shell effect!




-nergy density functional method

Minimizing the total energy for a given nucleus (N, Z) with respect to
normal and abnormal (pair) densities, (p(r), k(1))

6(E[p, k] — ([ pn(@)dr — N) — 4,(J p,(r)dr — Z)) =0
HFB equation
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Systematic calculation using HFBTHO code



-fects of the electromagnetic interaction

« Perform the systematic calculations with and without the
Coulomb force between protons
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Coulomb increases deformation

« Deformation is principally produced by “shell effect”
« Repulsive Coulomb interaction favors larger deformation
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Near the neutron drip line
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Coulomb stabilizing effect




Shifts of drip lines (“Virtual” to “Real” worlds)
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Why is the repulsive Ttorce able to provide
additional binding”
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Coulomb stabilizing effect
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1. Repulsive Coulomb among protons increases the nuclear size
2. Larger box leads to smaller zero-point kinetic energy
3. Stabilize nuclei at the neutron drip line
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Summary

* Effect of Electromagnetic interaction on nuclear structure
* Enlarge deformation -

 Shift the proton drip line to the right 0
 Shift the neutron drip line to the right i

e Quantum mechanical stabilization effect
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* A possible effect on the boundary between outer and inner crusts of
neutron stars |




