Research Activity Update of CCS

Taisuke Boku Director, Center for Computational Sciences Unviersity of Tsukuba

Research Divisions and Leaders

- Computational Science
 - Particle Physics (Y. Kuramashi)
 - Astrophysics (K. Ohsuga)
 - Nuclear Physics (T. Nakatsukasa)
 - Quantum Condensed Matter Physics (M. Otani)
 - Life Science
 - Biological Function and Information (Y. Shigeta)
 - Molecular Evolution (Y. Inagaki)
 - Global Environmental Science (H. Kusaka)
- Computer Science
 - High Performance Computing Systems (T. Boku)
 - Computational Informatics
 - Database (T. Amagasa)
 - Computational Media (Y. Kameda)

Y. Kuramashi

K. Ohsuga T.

T. Nakatsukasa M. Otani

Y. Shigeta

Y. Inagaki

H. Kusaka

T. Boku

T. Amagasa

Y. Kameda

Codesigning between Computational and Computer Science

4 CCS-LBNL Workshop 2023

Division of Astrophysics

Topics: The birth and evolution of the first stars and galaxies in the universe, the formation and evolution of galaxies and large-scale structures, the formation and evolution of black holes, the formation of planets, and the origin of life in the universe.

Large-scale structure:

Vlasov and Boltzmann simulation of massive neutrinos and selfinteracting dark matter

Difference in the power spectra is on the order of 0.5 %.

Star cluster:

Radiation hydrodynamics simulations of star cluster formation

Black hole physics:

Development of novel general relativistic radiation transfer code

Division of Nuclear Physics

Main research topics

- Nuclear structure and reaction (fusion, fission, etc.)
- Neutron stars and element synthesis in universe
- Computational nuclear data

"KSHELL" code for nuclear shell-mode

This page is for "KSHELL", nuclear shell-model calculation code.

Division of Quantum Condensed Matter Physics

Topics: First-principles computational methods and software developments, nano-optics, ultrafast phenomena, electrochemistry, strongly correlated systems

1.0

0.0 Charge density [atomic unit]

Developing open-source software SALMON

- Electronic dynamics calculations in first-principles level
- Nano-optics is the main target field

Using SALMON on Fugaku supercomputer

- Electronic dynamics in laser-irradiated glass (SiO₂)
- 10,224 atoms (26,640 electron orbitals) using 27,648 nodes

Developing a reliable method for electrochemical reactions: ESM-RISM

- A hybrid simulation method combining first-principles method and classical liquid theory
- Electrochemical-reaction processes is the main target.

Key reactions in

degradation of next

generation battery

Water containing system Electrochemical interface

Cation dependent

behavior of super

capacitar

Continuum mode

1.5

1.0

 $b = a_0$ (Å)

Experimenta

0.5

0.0

Electrochemical reaction processes @ constant bias

CCS-LBNL Workshop 2023

Division of Life science: Biological Function and Information Group

Topics: Molecular dynamics simulation, Quantum chemical calculation, Virtual screening

FMO-based virtual screening for Covid-19 M^{pro} inhibitor

We have proposed fragment molecular orbital (FMO)-based virtual screening to predict the molecular binding energy of SARS-CoV-2 main protease (M^{pro}) inhibitors. The integration of quantum mechanical approaches and MD trajectory analysis was used to identify potential inhibitors. We identified a brominated baicalein as a potent inhibitor of the M^{pro} and confirmed its inhibitory activity in an *in vitro* assay. Also, cell toxicity was tested to confirm the applicability.

- K. Hengphasatporn, *et al.*, "Halogenated baicalein as a promising antiviral agent toward SARS-CoV-2 main protease", *J. Chem. Inf. Model.* **62**(6), 1498–1509 (2022) (2022).
- K. Hengphasatporn *et al.*, "Promising SARS-CoV-2 main protease inhibitor ligand-binding modes evaluated using LB-PaCS-MD/FMO", *Sci. Rep.* **12**, 17984 (16 pages) (2022).

The upper figure is an example of the tree of eukaryotes inferred from an alignment comprising 340 proteins

CCS-LBNL Workshop 2023

2023/04/12

Division of Life Sciences, Molecular Evolution Group

Our primary interest

We aim to resolve the evolutionary relationship among major groups of eukaryotes.

keyword

Tree of eukaryotes, Genomics, Transcriptomics, Biogeography, Phylogenetic analyses, Phylogenetic artifacts, Organellogenesis, Endosymbiosis.

Recent papers

- Yazaki et al. The closest lineage of Archaeplastida is revealed by phylogenomics analyses that include *Microheliella maris*. *Open Biol* 202212:210376
- Yazaki et al. Barthelonids represent a deep-branching metamonad clade with mitochondrion-related oragnelles predicted to generate no ATP. *Proc Roy Soc B* 2020 287:20201538.
- Sarai et al. Dinoflagellate with relic endosymbiont nuclei as models for elucidating organellogenesis. *Proc Nat Acad Sci USA* 2020 117:5364-5375.
- Nakayama et al. Single-cell genomics unveiled a cryptic cyanobacterial lineage with a worldwide distribution hidden by a dinoflagellate host. *Proc Nat Acad Sci USA* 2019 116:15973-15978.

Division of Global Environmental Science

Topics

- Meso- and Micro-scale Urban Climate
- Global-scale General Circulation

Development of city-scale LES model for urban climate studies

- ✓ Building-resolving LES, Spatial resolution is $O(1) \sim O(10)$ m
- ✓ 3D non-hydrostatic, Bousinessq approximation equations
- ✓ Short- and long-wave radiation models
- ✓ Cloud microphysics model
- ✓ Isolated street tree model
- \checkmark 3D multiple reflections of radiations in the urban canopy layer
- ✓ CPU version (MPI+OPM 3D parallelization) and GPU version

Solid circles and background shading indicate observations and simulations, respectively.

11 CCS-LBNL Workshop 2023

Division of Computational Informatics: Computational Media Group

Topics: Free viewpoint 3D data browsing, 3D shape recovery, computer vision and pattern recognition, <u>sports analysis</u>, <u>assistive technology</u>, industrial applications, <u>3D surgical vision</u>

Markerless Alignment Method of CT Data and X-ray Recognition of Braille blocks by mobile devices and Guidance to Fluoroscopic Images Using 3D Reconstruction Deep Network the nearest Braille block **Regression Analysis** N×2 Tensor Image Points $d_i = (u, v)$ MIR Shape Points Convolutional $p_i = (x, y, z)$ Neural Networks MLPs Nx3 Tanx Output 20 40 60 80 100 120 X Label 2D-3D Corresondences Created datase Annotation $\{(d_1, p_2), (d_2, p_2), \dots\}$ Shot Detection Method Using Footwork Trajectory in **Badminton Video** ognition of dirty block Path estimatio 12

CCS-LBNL Workshop 2023

Cygnus System

Computation node	CPU / node	Intel Xeon Gold (SKL) x2
		sockets
	GPU / node	NVIDIA V100 x4 (PCIe)
	FPGA / node	Intel Stratix10 x2 (each with
		100Gbps x4 links/FPGA and x8
		links/node)
		192 GiB DDR4-2666/node =
	Memory	256GB/s, 32GiB x 4 for
		GPU/node = 3.6TB/s
Number of nodes		81 (32 Albireo (GPU+FPGA)
		nodes, 49 Deneb (GPU-only)
		nodes) + 4 PMEM Nodes
Interconnection network		Mellanox InfiniBand HDR100 x4
		(two cables of HDR200 / node)
		4 TB/s aggregated bandwidth
Peak performance		2.56 PFLOPS DP
		(GPU: 2.2 PFLOPS, CPU: 0.2
		PFLOPS, FPGA: 0.6 PFLOPS SP)
Global file system		Lustre, RAID6, 2.5 PB
Programming language		CPU: C, C++, Fortran, OpenMP,
		GPU: OpenACC, CUDA
		FPGA: OpenCL, Verilog HDL

13 CCS-LBNL Workshop 2023

2023/04/12

Center for Computational Sciences, Univ. of Tsukuba

Single node configuration (Albireo) of Cygnus

- All nodes in Cygnus are equipped with both IB EDR and FPGA-direct network
- Some nodes (Albireo) are equipped with both FPGAs and GPUs, and other nodes (Deneb) are with GPUs only
- GPU: NVIDIA V100 x4
 FPGA: Intel Stratix10 x2

First target application of GPU+FPGA acceleration ⇒ ARGOT code Astrophysical Simulation for first objects in the Universe

Two computation elements in ARGOT code: ARGOT method and ART method

- ARGOT method: Point Source processing
- ART method (Authentic Radiation Transfer): Diffused Photon processing

First target application of GPU+FPGA acceleration ⇒ ARGOT code Astrophysical Simulation for first objects in the Universe

Two computation elements in ARGOT code: ARGOT method and ART method

- ARGOT method: Point Source processing
- ART method (Authentic Radiation Transfer): Diffused Photon processing

ARGOT (Accelerated Radiative transfer on Grids using Oct-Tree) **CODE**

CHARM: Cooperative Heterogeneous Acceleration by Reconfigurable Multi-devices

16 CCS-LBNL Workshop 2023

GPU+FPGA=CHARM (Cooperative Heterogeneous Acceleration with Reconfigurable Multi-devices)

ARGOT for early universe simulation = ARGOT (good for GPU) + ART (good for FPGA)

Pegasus: world first combination of PMEM + SPR + H100

OFP2: Oakforest-PACS II (tentative name)

- Collaboration with U. Tokyo continues toward highest performance of national university system (Tier-2 of HPCI)
- Up to ~200 PFLOPS peak performance by GPU + CPU ⇒ NVIDIA's latest GPU
- Introducing GPU for main performance and CPU-only part still exists for non-GPU application users
- Operation starts from Apr. 2024 ⇒ Later 2024
- RFC will be issued on next month
- GPU-ready code preparation for OFP⇒OFP2 shifting

Development of Novel Scientific Fields Department of Computational Medical Science

Development of medical technology by computational science in cooperation with medicine, physics, biology, mathematics, data science, and image processing technology.

Future Plan

- Continuing the codesigning-base supercomputer and application developments
- Cygnus + Pegasus opens the new accelerated supercomputing with large scale memory by cutting edge technologies
- After Oakforest-PACS (OFP) shutdown, follower system (OFP2?) will be introduced on later 2024, under JCAHPC collaboration with Univ. Tokyo ⇒ same place with OFP (Kashiwa Campus of Univ. Tokyo)
- CCS continues to grow both in quantity and quality for various fields of computational science and HPC technology
- International collaboration is the key to success

