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Heterogenous data integration is HARD
• More than 80% of cost (time, money, human, etc.) for 

data analysis is spent for data integration.
• AI/ML models need high-quality training data.
• Making high-quality training data requires huge costs.

• E.g.,
• Real-life data base schema contains

• Hundreds of tables with hundreds of attributes.

Customer  (… , name, …, name2, …, name_new, …)
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Knowledge bases
• Large collections of knowledge about real-world entities.

• Typically modeled as labeled directed graphs.
• Many companies maintain heterogeneous information 

using KBs. 
• IT companies, drug companies, ..
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Entity as a clue for data integration
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Entity linking



Open Information Extraction
（Open IE）
→トリプル抽出

(W3C, endorse, Google)

(Google, type , technology company)

Entity-based document search [DEIM’21]



Querying multiple KBs and text [iiWAS’21]

Main Ideas
Distributed querying to multiple KBs using a 
mediator/wrapper approach to deal with 
heterogeneity in vocabulary and schema.
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・The wrapper corresponding to each KBs 
reconstructs and performs SPARQL queries, and 
the mediator integrates the results of each wrapper.
↔ Traditional Federated queries require a user to specify 
the sources and vocabulary.

・We assume a single universal mediated schema. 
(DBpedia is used in this study.)



Proposed method | Framework

?s
:birthPlace

:United_states ?s
:award

?o

Query

1: Query Decomposition

2: Query to KBs

3: Result Integration

(ⅰ) (ⅱ)

Answer

(ⅰ) (ⅱ)

?s
:birthPlace

:United_states
:award

?o

Mediator

:Tom_Cruise
:birthPlace

:United_states
:award

:Golden_Globe

Wrapper
・Rewriting Each Subquery
・Result Shaping

DBpedia

Wrapper
・Rewriting Each Subquery
・Result Shaping

GeoNames

Wrapper
・Text Search
・Information Extraction

WebText

⋈



Evaluation | Overview

Purpose
Evaluate the improvement of coverage by rewriting 
to multiple KBs and text information resources.

KBs
•DBPedia
•GeoNames

Text Information Sources
• Reverb45K 
(With 36,000 sentences extracted from news text)
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•Created 10 transversal queries to DBPedia and 
GeoNames based on Fed-bench, federated query 
benchmark.
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(a) Query assuming mediated schema

(b) Federated SPARQL query

:commander
?unit

:birhPlace
?city ‘Kefar_Malal’:name?person

:commander
?unit

:birhPlace

?dbpediaCity ‘Kefar_Malal’:name

?person ?city
:sameAsQuery to GeoNames

Evaluation | Queries

Query to DBpedia



Evaluation | Number of results retrieved

•Query results for each of the 20 queries
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Allows users to perform federated queries without 
considering the heterogeneity of schemas between KBs.

(a) Mediated schema query (b) Federated SPARQL query

Proposed method
Previous approach

Proposed method
Previous approach
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Introduction: entity matching

Entity Matching: is the task of discovering matching entries among
disperate data sources.

The goal is to then link these entries with a high-match quality

However, the process meets quadratic complexity problem w.r.t
dataset size

Figure: An example of matching tuples
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Introduction: blocking

“Blocking” is introduced for e�cient execution of entity matching

The naive pairwise comparison (right figure) requires exorbitant
computation due to a massive search space in contrast to a
partitioned search space due to “blocking” (left figure)

Figure: Types of blocking frameworks
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Introduction: blocking techqniues

“Blocking” techniques can be categorized into 3 types;

Figure: Types of blocking frameworks

Rule-based methods require handcrafted features, domain knowledge
& are labour intensive

Learning-based methods have high accuracy but require labelled data
(labels are not always available)

Cluster-based methods circumvent the need of labels & handcrafted
features
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Thesis objective and contributions

We propose a graph-based blocking technique predicated on the
k-nearest neighbour (k-NN) graph algorithm for EM.

We leverage readily available context-aware sentence embeddings
from four pre-trained language models for our blocking scheme

We show that our k-NN graph blocking transcends the existing deep
learning-based cluster blocking solution in terms of time and accuracy.
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Related works

Later the paper of Azzalini1 develops a system for “blocking” based
on the RNN architecture.

However, clustering large data sets proves to be resource-intensive
Morever, vectors have to be down-sampled via the t-SNE algorithm, in
their work, which scales poorly on big data sets
The RNN architecture relies on simple word embeddings that neglect
context

1
F Azzalini, et al. 2020. Blocking Techniques for Entity Linkage: A Semantics-Based

Approach.
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Proposed approach: system overview

An overview of the system is as follows;

Figure: Our blocking system
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Proposed approach: pipeline step 1

First, attributes of data sets to be integrated are concatenated into a string

Figure: Textual representation from table A or B
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Proposed approach:pipeline step 2

Next, each tuple is then input to a pre-trained transformer language model
producing context embeddings

Figure: Feature extraction (generating embeddings)
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Proposed approach:pipeline step 3

Projection of embeddings to lower dimension is possible via UMAP or
CVAE

Figure: elaborating the vector processing in case of dimensionality reduction
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Proposed approach: pipeline step 4

Next, we apply knn graph algorithm on embedding vectors to construct a
graph followed by unsupervised community detection algorithms

Figure: KNN-graph based blocking
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Experimental work: data sets

Each data set has the format of Table A-Table B

Each pair has more than 6 million record comparisons

Figure: Experimental datasets for entity matching
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Experimental work: computing environment & key
parameters

For the transformer based models, we choose the attention spans to
be 200 tokens

Batch size is chosen to be 32 & mean-pooling for summarising input
tokens

A single workstation equipped with Intel(R) Core(TM) i7-4820K
quad-core CPU encompassing 48 GB RAM running Ubuntu 18.04

We use pre-trained models based on Hugging-face 2 & all programs
are executed in python version 3.7.6

2
T. Wolf et al. 2020. HuggingFace’s Transformers: State-of-the-art Natural

Language Processing. arXiv:cs.CL/1910.03771
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Results: blocking time

Figure: Performance on iTunes-Amazon(62,830 tuples)
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Comparison of embeddings as a function of parameter k
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Comparison of embeddings as a function of parameter k
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Conclusion

As future work, we plan to improve representation learning using task
domain data as well combining our approach with a supervised system
for Entity Matching.
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