Entity-based data integration using knowledge bases

Toshiyuki Amagasa Database Group, CCS, U Tsukuba amagasa@cs.tsukuba.ac.jp

Our group: KDE Knowledge & Data Engineering Lab.

Heterogenous data integration is HARD

- More than 80% of cost (time, money, human, etc.) for data analysis is spent for data integration.
 - AI/ML models need high-quality training data.
 - Making high-quality training data requires huge costs.
- E.g.,
 - Real-life data base schema contains
 - Hundreds of tables with hundreds of attributes.

```
Customer (..., name, ..., name2, ..., name_new, ...)
```


Knowledge bases

- Large collections of knowledge about real-world entities.
 - Typically modeled as labeled directed graphs.
- Many companies maintain heterogeneous information using KBs.
 - IT companies, drug companies, ..

Entity as a clue for data integration

Entity-based document search [DEIM'21]

PREFIX : PREFIX aemail->PREFIX email->PREFIX email->http://www.v3.org/2000/10/swap/pim/email#>PREFIX email->http://www.v3.org/2000/10/swap/pim/email#> PREFIX ud--thtp://www.v3.org/2000/10/smap/pim/email#> PREFIX isrdi--http://www.v3.org/2005/11/lisrdf#> PREFIX isrdi--http://put.org/oliolia.ow/#> PREFIX nit--http://put.org/oliolia.ow/#>

PREFIX foal: <http://xmins.com/foal/0.1/> PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> PREFIX xsd: <http://www.w3.org/2002/07/owl#> PREFIX rdls: <http://www.w3.org/2002/07/owl#> PREFIX rdls: <http://www.w3.org/2002/07/owl#> PREFIX rdls: <http://www.w3.org/2002/07/owl#> PREFIX rdls: <htp://www.w3.org/2002/07/owl#> PREFIX rdls: <htp://www.w3.org/2002/07/owl#>

Querying multiple KBs and text [iiWAS'21]

Main Ideas

Distributed querying to multiple KBs using a **mediator/wrapper approach** to deal with heterogeneity in vocabulary and schema.

- The wrapper corresponding to each KBs reconstructs and performs SPARQL queries, and the mediator integrates the results of each wrapper.
 ↔ Traditional Federated queries require a user to specify the sources and vocabulary.
- We assume a single universal mediated schema.
 (DBpedia is used in this study.)

Proposed method | Framework

Evaluation | Overview

Purpose

Evaluate the improvement of coverage by rewriting to multiple KBs and text information resources.

KBs

- DBPedia
- GeoNames

Text Information Sources

 Reverb45K (With 36,000 sentences extracted from news text)

Evaluation | Queries

 Created 10 transversal queries to DBPedia and GeoNames based on Fed-bench, federated query benchmark.

(b) Federated SPARQL query

Evaluation | Number of results retrieved

Query results for each of the 20 queries

Allows users to perform federated queries without considering the heterogeneity of schemas between KBs.

A Graph-based Blocking Approach for Entity Matching Using Contrastively Learned Embeddings

Presenter: John Bosco Mugeni Supervisor: Toshiyuki Amagasa University of Tsukuba

Published in (ACM SIGAPP) Applied Computing Review, 2022 Computer Science

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Introduction: entity matching

- Entity Matching: is the task of discovering matching entries among disperate data sources.
- The goal is to then link these entries with a high-match quality
- However, the process meets quadratic complexity problem w.r.t dataset size

Figure: An example of matching tuples

< □ > < □ > < □ > < □ > < □ > < □ >

Introduction: blocking

- "Blocking" is introduced for efficient execution of entity matching
- The naive pairwise comparison (right figure) requires exorbitant computation due to a massive search space in contrast to a partitioned search space due to "blocking" (left figure)

Figure: Types of blocking frameworks

.

Introduction: blocking techqniues

• "Blocking" techniques can be categorized into 3 types;

Figure: Types of blocking frameworks

- Rule-based methods require handcrafted features, domain knowledge & are labour intensive
- Learning-based methods have high accuracy but require labelled data (labels are not always available)
- Cluster-based methods circumvent the need of labels & handcrafted features

Thesis objective and contributions

- We propose a graph-based blocking technique predicated on the k-nearest neighbour (k-NN) graph algorithm for EM.
- We leverage readily available context-aware sentence embeddings from four pre-trained language models for our blocking scheme
- We show that our k-NN graph blocking transcends the existing deep learning-based cluster blocking solution in terms of time and accuracy.

- Later the paper of Azzalini¹ develops a system for "blocking" based on the RNN architecture.
 - However, clustering large data sets proves to be resource-intensive
 - Morever, vectors have to be down-sampled via the t-SNE algorithm, in their work, which scales poorly on big data sets
 - The RNN architecture relies on simple word embeddings that neglect context

¹F Azzalini, et al. 2020. Blocking Techniques for Entity Linkage: A Semantics-Based Approach.

Proposed approach: system overview

An overview of the system is as follows;

Figure: Our blocking system

э

イロト イポト イヨト イヨト

Proposed approach: pipeline step 1

First, attributes of data sets to be integrated are concatenated into a string

Figure: Textual representation from table A or B

		_		
I serve a secondary		L au s		
University	0	I SH	K I I I	0.4
0111101010101	· · ·			

3

イロト イポト イヨト イヨト

Proposed approach:pipeline step 2

Next, each tuple is then input to a pre-trained transformer language model producing context embeddings

(University of Tsukuba)

э

Proposed approach:pipeline step 3

Projection of embeddings to lower dimension is possible via UMAP or $\ensuremath{\mathsf{CVAE}}$

Figure: elaborating the vector processing in case of dimensionality reduction

(日)

Proposed approach: pipeline step 4

Next, we apply knn graph algorithm on embedding vectors to construct a graph followed by unsupervised community detection algorithms

Figure: KNN-graph based blocking

• • = • • = •

Experimental work: data sets

- Each data set has the format of Table A-Table B
- Each pair has more than 6 million record comparisons

Table 5: Dataset stati

Data	Domain	#Tuples	#Matches	Attr	Size (M)
DBLP-Scholar,	citation	2616-64263	5347	4	168
iTunes-Amazon	music	6907-55923	132	8	386
Walmart-Amazon	electronics	2554-22074	962	5	56
GoogleScholar-DBLP	citation	2616-64263	5347	4	168

Figure: Experimental datasets for entity matching

< ロ > < 同 > < 回 > < 回 > < 回 > <

Experimental work: computing environment & key parameters

- For the transformer based models, we choose the attention spans to be 200 tokens
- Batch size is chosen to be 32 & mean-pooling for summarising input tokens
- A single workstation equipped with Intel(R) Core(TM) i7-4820K quad-core CPU encompassing 48 GB RAM running Ubuntu 18.04
- \bullet We use pre-trained models based on Hugging-face 2 & all programs are executed in python version 3.7.6

²T. Wolf et al. 2020. HuggingFace's Transformers: State-of-the-art Natural Language Processing. arXiv:cs.CL/1910.03771

Results: blocking time

Table 5: iTunes-Amazon.							
method	algo_{best}	$\mathrm{emb'}_{sec}$	bk_{sec}	total_{sec}	F1		
R-BERT	l'vian	91.8	461.8	553.6	85.2		
DeBERTa	l'vian	311.2	557.2	868.4	89.2		
RoBERTa	l'vian	253.6	58.1	311.7	89.7		
BART	l'vian	324.0	433.6	757.6	91.7		
RNN	birch	2329.8	dnf	dnf	dnf		
SimCSE	l'vian	64.5	160.9	225.4	92.8		
R-BERT _d	l'den	127.7	328.2	455.9	56.2		
$DeBERTa_d$	l'den	470.0	607.8	1077.8	56.4		
$RoBERTa_d$	l'vian	391.5	368.2	759.7	64.0		
BART_d	l'den	642.9	347.5	990.4	68.0		
SimCSE_d	l'den	125.8	164.4	290.2	89.7		

Figure: Performance on iTunes-Amazon(62,830 tuples)

æ

イロン イ理 とく ヨン イ ヨン

Comparison of embeddings as a function of parameter k

Comparison of embeddings as a function of parameter k

Conclusion

 As future work, we plan to improve representation learning using task domain data as well combining our approach with a supervised system for Entity Matching.

イロト イポト イヨト イヨト