
Designing for Expert Use
Sarah Poon

Lawrence Berkeley National Lab
sspoon@lbl.gov

Why UX in the sciences?

• Not a sequential, well defined process

• Supporting artifacts and contexts of use
are not always captured by software

• Collaborations might have existing
complex software stacks that need to be
considered

UX research can help uncover these
considerations and UX design ensures that
software that take these factors into
account.

Courtesy: Paramvir Dehal, KBase team

Experimental
Data

Simulation
Parameters

Simulation
Output

Results &
Summary

Figures

Software &
Scripts

Analysis &
Filtering

???!
!

Other
Results

?

??

??
??

Source: Ameriflux project Adapted from slide courtesy of Lavanya Ramakrishnan

The realities of scientific work

We work as interdisciplinary teams to develop scientific software

● We work closely with application
scientist to develop methods and
tools to manage the data and
workflows

● We use UX methods to understand
user needs and convert that into
concrete and actionable outputs

Courtesy of Lavanya Ramakrishnan

Developing the “right thing” is important for user adoption of new software, and the UX research
and design process is essential to achieve this.

UX Design Process

Learning about how the users work, context of use, limitations of
current tools

Design the experience of how the user will use the software to do their
work

Evaluate the design through usability studies and follow-up interviews

Takeaways for Expert Use Design

Understand Work Processes and Goals

• Interviews and observations can reveal underlying workflows.
• Pay attention to “shadow systems” such as notebooks and files.

SNFactory originally used a search interface as their primary data system.
What they actually needed was a tracking system.

The original search style interface didn’t capture the need to track the currently active candidate supernovae.

Understand User Motivations and Values

“If I’m going to go to all the trouble of coding my
own plugin, why would I bother using your
framework?”

• There can be a tension between the time and
effort needed to write code and the value you get
being able to run that code at scale.

• We decided to create a visual plugin builder. This
helps support exploratory work needed to
understand data change and also eases some of
the coding burden of developing plugins. The
output script can run at scale.

Deduce helps users understand data change across
datasets. This visual plugin builder helps users define and
explore data change.

Design for User Control

• Expert users often want to be able to
override automations and tweak
outputs from algorithms

• If possible, consider human in the loop
scenarios before writing the algorithm

The scheduling algorithm didn’t take into account the
desire to be able to tweak the schedule afterward.

Design for Transparency

“You had no way of telling that if I try to open
this file, whether it will open in a fraction of a
second or whether it will take five minutes,
because it is running off to tape and doing this
thing for me.”

Algorithms and abstractions are useful but can’t
be black boxes. Expert users want to know what
to expect.

Accessing data from archival storage takes
longer than data on disk. The design shouldn’t
abstract away this type of information.

Design for Efficiency

• Scientific users want to be able to do
their jobs efficiently and without errors.

• Efficiency looks different depending on
the purpose and goals at hand

• UI level takeaways for the data overview
pattern:

• Design for data density. Minimize what
needs to be held in working memory to
make a decision.

• Don’t display more data than is needed.
Improve signal to noise by hiding ancillary
information in secondary layers. Example of a data overview pattern

STRUDEL: Scientific software Research for
User experience, Design, Engagement, and
Learning

Towards developing a comprehensive UX framework for the sciences.

Motivation: user interfaces across the sciences have many common parts

Scenario Selection Select Input Dashboard Summary History

How can we empower scientific users to develop their own UIs while leveraging our learnings of how
to create good scientific UIs?

STRUDEL: Develop a design system for scientific software

Users
Science
Domain

Software
Intent

Software
Lifespan

Software
Team

Software
Stack

Main
Scenarios /
Workflows

Data Types

Components

Layouts

UI Flows

Science Project Artifacts Science Software Characteristics Design System

Design System Guidelines &
Implementation

A collection of reusable components
that can be assembled to build a UI

Towards Generalized Page Layout Templates

Generalized Data Portal Layout

Towards Generalized UI Flow Patterns

Generalized Optimization UI Flow

Scientific Software Dimensions

Subset of the dimensions and projects we are exploring

Project Users Domain
Main

Scenarios
Software
Lifespan

Software Team Technical Stack

< 1000, internal
collaborators

astrophysics
real time data

taking
finite, the length

of the survey

domain science
developers (staff,

postdocs, students)

>200,000, the
general material

science community
material science

exploring
material info

ongoing
domain science

developers (staff,
postdocs, students)

The decision to use “low code” technical stacks for both projects was based on the software team makeup

Towards A Design System Implementation

Investigate composing layouts and UI flows in python with a “low code” implementation of the
design system.

Acknowledgements

This work was supported by the U.S. Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research (ASCR).

Thanks to Deb Agarwal, Lavanya Ramakrishnan, Dan Gunter, Drew Paine, Stephen Bailey,
Rollin Thomas, Cecilia Aragon, Devarshi Ghoshal, Ludovico Bianchi, Nan-Chen Chen,
Rajshree Deshmukh, Cody O’Donnell

Questions? Contact me at sspoon@lbl.gov

