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Climate is always changing

Global Climate, Human Evolution and Civilization
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Image by John Garrett (Skepticalscience.com).

Global surface temperature has increased by
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More than coincidence?

©NewsScientist

The decline and fall of many civilisations coincided with periods of climate change, and there are also correlations between climate change, population size and

the frequency of wars, as data from Europe shows (right)
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Climate change: The great civilization destroyer? (Michael Marshall, Newscientist)

SOURCE: ZHANG 2007



Credit to Overpeck et al. (Science, 2011) ‘ '

AENe SN Global climate is shifting
88 to a new normal.

What are implications
for regional climates,
ecosystem, bio- and social
environment?
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Urban effects on regional climate
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Climate’s “old-norma
based knowledge will be
the same in the future?
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Credit to Qian et al., 2022, Advances in Atmos Sci



Urban precipitation, why it does matter?

* Urban Flooding BTG 0
How does Climate Change affect rainfall intensity globally?

* Water supply
* Water quality
 Climate change

Natural Climate Future Climate
(without human influence) (with warmer air)

For every 1°C more that
the air warms, it can hold
about 7% more water...

...and then falls as rain.




Climate change at the urban scale
A tale of two cities



45°N |

« Tokyo and Singapore
 Pseudo global
warming with WRF
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Weather Research and Forecasting for Cities
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Pseudo-Global Warming Downscaling

To isolate the impact
of “primary mode” of
global warming

Six-hourly Global

Reanalysis Data: ¢,

Monthly-mean GCM Projection
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2) Future time: ¢y
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¢¢ , ¢y : monthly-mean values of
atmospheric variables during 10 — 30
years in current and future time,
respectively.

¢, = time_average(¢p,)
gb_f = time_average(¢y)

A¢=¢f_¢c

Ppew = Pa + AP

Credit to Doan & Kusaka (lJoC, 2018)
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Model performance
on insitu observation
and satelite product
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Local precipitation’s
climatic responses

to global warming
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Extreme gets more extreme (EGME)
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Weak convection is
suppressed for strong

ohe to grow

PW: precipitable water

CAPE: Convective available potential
energy

CIN: Convective inhibition

Wmax: maximum vertical velocity
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Urban footprint disappears ?

Baseline climate

Future climate
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Key points

* Importance of HPC in investigating how and why urban climate
changes under the “new normal” of the global climate system.

* Extreme gets more extreme (EGME).
* Weak convection is suppressed for a stronger one to grow.

* Urban footprint on extreme precipitation in the tropics will
disappear?

* Mid-latitude responds more sensitively to warming stimulations.
Mechanisms need to be discovered.



Thank you!

This research is supported by

« JSPS KAKENHI Grant Number 20K13258;

« JSPS KAKENHI Grant Number 19H01155;

 NASAIDS Grant # 8ONSSC20K1262;

« USDA NIFA Grants 2015-67003-23460;

« The advanced studies of climate change projection (SENTAN) Grant Number JPMXD0722678534

« Multidisciplinary Cooperative Research Program in Center for Computational Sciences, University of Tsukuba

Thank co-authors from U of Kyoto, MRI (Japan), NCAR, U of Texas at Austin (USA), U of Nanjing
(China) for great contributions to this study

Read more
JGR Atmospheres

RESEARCH ARTICLE
10.1029/20221D036810

Key Points:

o A paradigm of “extreme gets more
extreme” in city-scale hourly
precipitation under warming climates
is confirmed

o Extreme precipitation is more
intensified in midlatitude than that
reported for a tropical city

o Convective inhibition temporarily

suppresses weak convection to initiate,

and when the convection does trigger,
it becomes intense

Y Vod B B
AT, 5o science

P

Identifying a New Normal in Extreme Precipitation at a City
Scale Under Warmer Climate Regimes: A Case Study of the
Tokyo Metropolitan Area, Japan

Quang-Van Doan'? ( Fei Chen® (), Hiroyuki Kusaka!, Jie Wang*, Mizuo Kajino®¢ ), and
Tetsuya Takemi’

!Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan, *Research Application Laboratory, National
Center for Atmospheric Research, Scientific Visitor, Boulder, CO, USA, *Research Application Laboratory, National Center
for Atmospheric Research, Boulder, CO, USA, *School of Geography and Ocean Science, Nanjing University, Nanjing,
China, *Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan, ®Faculty of Life and Environmental
Sciences, University of Tsukuba, Tsukuba, Japan, "Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan

A ' l l ADVANCING
EARTHAND
ﬂuu SPACE SCIENCE

Earth’s Future &

RESEARCH ARTICLE
10.1029/2021EF002563

Key Points:

o New normal of “extreme events get
more extreme” in future city-scale
precipitation is revealed

* Global warming could modify and
even reduce the urban footprint on
extreme precipitation (EP) events

o The intensification of EP can
reach the maximum at the “super”
Clausius-Clapeyron (>+7% per K
warming) rate

Increased Risk of Extreme Precipitation Over an Urban
Agglomeration With Future Global Warming

Quang-Van Doan'? ‘), Fei Chen? ', Hiroyuki Kusaka', Anurag Dipankar®, Ansar Khan* -,
Rafiq Hamdi®, Matthias Roth®, and Dev Niyogi’

!Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan, *Research Applications Laboratory, National
Center for Atmospheric Research, Boulder, CO, USA, *Institute for Atmospheric and Climate Science, ETH, Zurich,
Switzerland, “Department of Geography, Lalbaba College, University of Calcutta, Kolkata, India, Royal Meteorological
Institute of Belgium, Brussels, Belgium, ‘Department of Geography, National University of Singapore, Singapore, Singapore,
TJackson School of Geosciences, and Cockrell School of Engineering, University of Texas at Austin, Austin, TX, USA




