# Integrating Machine Learning into Lattice QCD 

Akio Tomiya (IPUT Osaka)

## Akio Tomiya <br> Machine learning for theoretical physics



## What am I?

I am a particle physicist, working on lattice QCD.
I want to apply machine learning on it.
My papers hitps://scholargooogle.co.jp/citations?user=LKVay waAAAJ
Detection of phase transition via convolutional neural networks
A Tanaka, A Tomiya
Detecting phase transition
Journal of the Physical Society of Japan 86 (6), 063001
Digital quantum simulation of the schwinger model with topological term via adiabatic state preparation
B Chakraborty, M Honda, T Izubuchi, Y Kikuchi, A Tomiya Quantum computing arXiv preprint arXiv:2001.00485
for quantum field theory

## Biography

2006-2010 : University of Hyogo (Cond. mat.)
2015 : PhD in Osaka university (Particle phys) 2015-2018 : Postdoc in Wuhan (China) 2018-2021 : SPDR in Riken/BNL (US)
2021- : Assistant prof. in IPUT Osaka (ML/AI)

## Kakenhi and others

Leader of proj A01 Transformative Research Areas
MLPhYS $\underset{\text { Goundation of "Machine Learning Physics" }}{\text { Gid }}$

+quantum computer

## Others:

Organizing "Deep Learning and physics"
Supervision of Shin-Kamen Rider

## Outline of my talk

Message: I've been developing neural networks for lattice QCD

Machine learning?
Neural network?


## Lattice QCD?



How to calculate it Problem


3 methods with ML


What is machine learning/AI?

## What is machine learning?

E.g. Linear regression $\in$ Supervised learning

Data: $\quad D=\left\{\left(x^{(1)}, y^{(1)}\right),\left(x^{(2)}, y^{(2)}\right), \cdots\right\}$


## What is machine learning?

E.g. Linear regression $\in$ Supervised learning

Data: $\quad D=\left\{\left(x^{(1)}, y^{(1)}\right),\left(x^{(2)}, y^{(2)}\right), \cdots\right\}$


$$
f_{\{a, b, c\}}(x)=a x^{2}+b x+c \quad E=\frac{1}{2} \sum_{d}\left|f_{\{a, b, c\}}\left(x^{(d)}\right)-y^{(d)}\right|^{2}
$$

$a, b, c$, are determined by minimizing $E$
(training = fitting by data)

## What is machine learning?

E.g. Linear regression $\in$ Supervised learning

Data: $\quad D=\left\{\left(x^{(1)}, y^{(1)}\right),\left(x^{(2)}, y^{(2)}\right), \cdots\right\}$

$a, b, c$, are determined by minimizing $E$ (training = fitting by data)

## What is machine learning?

E.g. Linear regression $\in$ Supervised learning

Data: $\quad D=\left\{\left(x^{(1)}, y^{(1)}\right),\left(x^{(2)}, y^{(2)}\right), \cdots\right\}$


Now we can predict y value which not in the data
In physics language, variational method

## What is the neural networks?

## Neural network is a universal approximation function

Example: Recognition of hand-written numbers (0-9)

$\uparrow$ Probability


Output

How can we formulate this "Black box"? Ansatz?

## What is the neural networks?

## Neural network is a universal approximation function

## Example: Recognition of hand-written numbers (0-9)



Image recognition = Find a map between two vector spaces

# What is the neural networks? 

## Neural network is a universal approximation function

## Example: Recognition of hand-written numbers (0-9)



## What is the neural networks?

## Affine transformation + element-wise transformation

Layers of neural nets $l=2,3, \cdots, L, \vec{u}^{(1)}=\vec{x} \quad W^{l}, \vec{b}^{(l)}$ are fit parameters

$$
\begin{cases}\vec{z}^{(l)}=W^{(l)} \vec{u}^{(l-1)}+\vec{b}^{(l)} \quad \begin{array}{c}
\text { Affine transformation } \\
(\mathrm{b}=0 \text { called linear transformation) }
\end{array} \\
u_{i}^{(l)}=\sigma^{(l)}\left(z_{i}^{(l)}\right) & \text { Element-wise (local) non-linear. } \\
\text { hyperbolic tangent-ish function }\end{cases}
$$

## A fully connected neural net:

$$
\begin{gathered}
f_{\theta}(\vec{x})=\sigma^{(3)}\left(W^{(3)} \sigma^{(2)}\left(W^{(2)} \vec{x}+\vec{b}^{(2)}\right)+\overrightarrow{b^{(3)}}\right) \\
\theta \text { is a set of parameters: } w_{i j}^{(l)}, b_{i}^{(l)}, \cdots
\end{gathered}
$$

- Input \& output = vectors
- Neural net = a nested function with a lot of parameters (W, b)
- Parameters (W, b) are determined from data


## Neural network = map between vectors and vectors Physicists terminology: Variational ansatz

## What is the neural networks?

## Neural network is a universal approximation function

## Example: Recognition of hand-written numbers (0-9)



Image is a vector (6x6=36 dim)

## What is the neural networks? <br> Neural network have been good job

Protein Folding (AlphaFold2, John Jumper+, Nature, 2020+), Transformer neural net

Score:
${ }^{80}$ Higher is better



Neural network wave function for many body (Carleo Troyer, Science 355, 602 (2017) )



Neural net + "Expert knowledge" $\rightarrow$ Best performance

What is Lattice QCD?

## Introduction What is QCD?



QCD = Quantum Chromo-dynamics
= A fundamental theory for particles in nuclei
Quantum many body, relativistic, strongly correlated

## Introduction

## Lattice QCD = QCD on discretized spacetime = calculable

## QCD (Quantum Chromo-dynamics) in $3+1$ dimension

$$
\begin{gathered}
S=\int d^{4} x\left[-\frac{1}{2} \operatorname{tr} F_{\mu \nu} F^{\mu \nu}+\bar{\psi}(\mathrm{i} \not \partial+g A-m) \psi\right] \\
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}-\mathrm{i} g\left[A_{\mu}, A_{\nu}\right]
\end{gathered}
$$

Non-commutable version of (quantum) electro-magnetism


- This describes...
- inside of nuclei,\& mass of hadrons
- Equation of state of neutron stars, Heavy ion collisions, etc
- We want to evaluate expectation values with following integral,

$$
\langle O\rangle \sim \int \mathscr{D} A \mathscr{D} \bar{\psi} \mathscr{D} \psi e^{\mathrm{i} S}
$$

Lattice formulation enables us to do that

## Introduction

## What is our final goal for our research field?



In short, we simulate of elementary particles in nuclei
Using super computers + Lattice QCD, we can understand...

- melting of protons/neutrons etc. at high temperatures
$\rightarrow$ related to the history of the universe
- attractive/repulsive forces between atomic nuclei
$\rightarrow$ to understand how stars are born and die
- candidate properties of dark matter
etc.
We want to understand our universe from fundamental level!


## Motivation

## Monte-Carlo integration is available, but still expensive!

M. Creutz 1980
$\begin{gathered}\text { Target integration } \\ =\text { expectation value }\end{gathered}\langle\mathcal{O}\rangle=\frac{1}{Z} \int \mathscr{D} U e^{-S_{\text {eff }}[U]} \mathcal{O}(U) \quad S_{\text {eff }}[U]=S_{\text {gauge }}[U]-\log \operatorname{det}(\mathbb{D}[U]+m)$ Monte-Carlo: Generate field configurations with" $P[U]=\frac{1}{Z} e^{-S_{\text {eff }}[U] " \text {. It gives expectation value }}$

MarkovChain


$$
\langle\mathcal{O}\rangle \approx \frac{1}{N_{\text {sample }}} \sum_{k=1}^{N_{\text {sample }}} \mathcal{O}\left[U_{k}\right]
$$

## Numerically expensive (part) and how can we accelerate it? We use machine learning!

## Introduction

## Neural net can make human face images

Neural nets can generate realistic human faces (Style GAN2)



Realistic Images can be generated by machine learning! Configurations as well? (proposals ~ images?)

## ML for LQCD is needed

- Machine learning/ Neural networks
- data processing techniques for 2d/3d data in the real world (pictures)
- (Variational) Approximation ( $\sim$ fitting)
- Lattice QCD is more complicated than pictures
- 4 dimension/relativistic
- Non-abelian gauge symmetry (difficult)
- Fermions (anti-commuting/fully quantum)
- Exactness in MCMC is necessary!
- Q. How can we deal with?



## Introduction

Configuration generation with machine learning is developing

| Year | Group | ML | Dim. | Theory | Gauge sym | Exact? | Fermion? | Lattice2021/ref |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2017 | AT+ | $\begin{array}{r} \text { RBM } \\ +\quad \mathrm{HMC} \\ \hline \end{array}$ | 2d | Scalar | - | No | No | arXiv: 1712.03893 |
| 2018 | K. Zhou+ | GAN | 2d | Scalar | - | No | No | arXiv: 1810.12879 |
| 2018 | J. Pawlowski + | $\begin{gathered} \text { GAN } \\ +H M C \end{gathered}$ | 2d | Scalar | - | Yes? | No | arXiv: 1811.03533 |
| 2019 | MIT+ | Flow | 2d | Scalar | - | Yes | No | arXiv: 1904.12072 |
| 2020 | MIT+ | Flow | 2d | U(1) | Equivariant | Yes | No | arXiv: 2003.06413 |
| 2020 | MIT+ | Flow | 2d | SU(N) | Equivariant | Yes | No | arXiv: 2008.05456 |
| 2020 | AT+ | SLMC | 4d | SU(N) | Invariant | Yes | Partially | arXiv: 2010.11900 |
| 2021 | M. Medvidovic't | A-NICE | 2d | Scalar | - | No | No | arXiv: 2012.01442 |
| 2021 | S. Foreman | L2HMC | 2d | U(1) | Yes | Yes | No |  |
| 2021 | AT+ | SLHMC | 4d | QCD | Covariant | Yes | YES! |  |
| 2021 | $\begin{gathered} \text { L. Del } \\ \text { Debbio+ } \end{gathered}$ | Flow | 2d | Scalar, O(N) | - | Yes | No |  |
| 2021 | MIT+ | Flow | 2d | Yukawa | - | Yes | Yes |  |
| 2021 | $\begin{array}{\|c} \hline \text { S. Foreman, } \\ \text { AT }+ \end{array}$ | Flowed HMC | 2d | U(1) | Equivariant | Yes | No but compatible | arXiv: 2112.01586 |
| 2021 | XY Jing | Neural net | 2d | U(1) | Equivariant | Yes | No |  |
| 2022 | J. Finkenrath | Flow | 2d | U(1) | Equivariant | Yes | Yes (diagonalization) | arxiv: 2201.02216 |
| 2022 | MIT+ | Flow | 2d | U(1) | Equivariant | Yes | Yes (diagonalization) | arXiv:2202.11712 |

Three methods with machine learning $1 / 3$ : Flow based sampling

## Change of variables makes problem easy

$$
\int D \phi e^{-S[\phi]} O[\phi]=\int D z \underbrace{\left|\operatorname{det} \frac{\partial \phi}{\partial z}\right|}_{=\text {Jacobian }=J} e^{-S[\phi[z]]} O[\phi[z]]
$$

$$
S_{\mathrm{eff}}[z]=S[\phi[z]]-\log J[z]
$$

$$
=\int D z e_{\uparrow}^{-S_{\mathrm{eff}}[z]} O[\phi[z]]
$$

If this is easy to sample (or integrate), like flat measure/Gaussian, we are happy

## Flow based sampling algorithm

## Viewpoint: Change of variables makes problem easy

## Simplest example: Box Muller

$$
\left\{\begin{array}{l}
z=e^{-\frac{1}{2}\left(x^{2}+y^{2}\right)} \\
\tan \theta=y / x
\end{array}\right.
$$

Change
of variables

$$
\int_{-\infty}^{\infty} d x \int_{-\infty}^{\infty} d y e^{-\frac{1}{2} x^{2}-\frac{1}{2} y^{2}} \stackrel{\downarrow}{=} \frac{1}{2} \frac{\int_{0}^{2 \pi} d \theta \int_{0}^{1} d z}{\text { Easyet integral: hard }}
$$

Change of variables sometimes problem easier (this case, it makes the measure flat)

| RHS is flat measure | $\left\{\xi_{1} \sim(0,2 \pi)\right.$ |
| :---: | :---: |
| $\rightarrow$ We can sample like right ed | $\varepsilon_{1} \sim(0,2 \pi)$ |
|  | ( $\xi_{2} \sim(0,1)$ |

We can reconstruct a field config $x, y$ for original theory like right eq.

$$
\begin{cases}x=r \cos \theta & \theta=\xi_{1} \\ y=r \sin \theta & r=\sqrt{-2 \log \xi_{2}}\end{cases}
$$

## Flow based sampling algorithm <br> Trivializing map realized using neural network

Normalizing flow? = Change of variable with neural nets Tractable Jacobian is realized by checker-board technique

$$
f^{-1}(z)
$$


(a) Normalizing flow between prior and output distributions

$$
\prod_{i} \int d \varphi_{i} e^{-V\left(\varphi_{i}\right)} J[\varphi] O[F[\varphi]] \approx \int D \phi e^{-S[\phi]} O[\phi]
$$

Problem: Jacobian is difficult $=O\left(V^{\wedge} 3\right)$
-> Introduce checker-board decomposition

## Flow based sampling algorithm Flow based ML for QFT




## Flow based sampling algorithm We make new convolutional layer for QFT in d-dim

Three methods with machine learning 2/3: Gauge covariant NN + SLHMC

# Convolution respects symmetry Convolution layer = trainable filter 



If input is shifted, output is shifted= respects transnational symmetry

## Convolution layer



Fukushima, Kunihiko (1980)
Trainable filter


Zhang, Wei (1988) + a lot!

| 1 | Gaussian filter |  |  |
| :---: | :---: | :---: | :---: |
|  | 1 | 2 | 1 |
|  | 2 | 4 | 2 |
|  | 1 | 2 | 1 |

(Training and data determines what kind of filter is realized) Extract features

# Convolution respects symmetry Smearing = Smoothing of gauge fields 

Eg.

Coarse image


Smoothened image
Gaussian filter


We want to smoothen gauge field configurations with keeping gauge symmetry

APE-type smearing
Stout-type smearing
M. Albanese+ 1987
R. Hoffmann+ 2007
C. Morningster +2003

## Smearing ~ smoothing Smearing ~ neural network with fixed parameter!

General form of smearing (~smoothing, averaging in space)

$$
\begin{cases}z_{\mu}(n)=w_{1} U_{\mu}(n)+w_{2} \mathscr{G}[U] \quad \text { Summation with gauge sym } \\ U_{\mu}^{\mathrm{fat}}(n)=\mathcal{N}\left(z_{\mu}(n)\right) & \text { A local function } \\ \text { (Projecting on the gauge group) }\end{cases}
$$

It has similar structure with neural networks,

$$
\begin{cases}z_{i}^{(l)}=\sum_{j} w_{i j}^{(l)} u_{j}^{(l-1)}+b_{i}^{(l)} & \begin{array}{l}
\text { Matrix product } \\
\text { vector addition }
\end{array} \\
u_{i}^{(l)}=\sigma^{(l)}\left(z_{i}^{(l)}\right) & \text { element-wise (local) } \\
\text { Non-linear transf. } \\
\text { Typically } \sigma \sim \text { tanh shape }\end{cases}
$$

(Index in in the neural net corresponds to $\mathbf{n} \& \mu$ in smearing. Information processing with NN is evolution of scalar field)
Multi-level smearing = Deep learning (with given parameters) As same as the convolution, we can train weights.

## Application for the Full QCD in 4d

## Results are consistent with each other

AT Y. Nagai arXiv: 2103.11965




Three methods with machine learning
3/3: Transformer for physical system

## Transformer and Attention



Figure 1: The Transformer - model architecture.


Attention layer (in transformer model) has been introduced in a paper titled "Attention is all you need" (1706.03762) State of the art architecture of language processing.
Attention layer is essential.

# Transformer and Attention 

## Modifier in language can be non-local

Eg. I am Akio Tomiya living in Japan, who studies machine learning and physics In physics terminology, this is non local correlation. The attention layer enables us to treat non-local correlation with a neural net!

Schematic picture (in physics terminology)


## Self-learning Monte-Carlo <br> Physically equivariant Attention layer/Transformer

We can construct effective hamiltonian with output of our Attention layer because "output of Attention = smoothened fields with non-local correlation"


Averaged spins Rot. equivariant Trsl. equivariant trainable!

Averaged spins Rot. equivariant Trsl. equivariant trainable!

## Transformer and Attention

Acceptance rate ~ efficiency


Note: As far as we tested, CNN-type does not work in this case. No improvements with increase of layers.
(Global correlations of fermions from
Fermi-Dirac statistics make acceptance bad?)


## Physical values are consistent

 (as we expected)
## Transformer and Attention

## Loss function shows Power-type scaling law as LLM

Acceptance rate $=\exp (-\sqrt{\mathrm{MSE}})$
arXiv: 2306.11527 + update

num. of trainable parameters
(1 layer ~ 30 parameters)
fit $\sim(7.1 / x)^{\wedge}(1.1)$

- Machine learning is useful for natural science/physics/Lattice QCD
- Multi-dimensional integration is done by MCMC
- MCMC candidate can be made by Machine learning
- Flow-based sampling algorithm
- Self-learning HMC + Gauge covariant neural network
- Transformer for physical system (not gauge theory yet)
- Scaling law for a Transformer for physical system
- ML + expert knowledge of computational physics/LatticeQCD is important

