Integrating Machine Learning into Lattice QCD

Akio Tomiya (IPUT Osaka)

MLPhys Foundation of "Machine Learning Physics" Grant-in-Aid for Transformative Research Areas (A) Program for Promoting Researches on the Supercomputer Fugaku Large-scale lattice QCD simulation and development of AI technology

akio_at_yukawa.kyoto-u.ac.jp

Akio Tomiya Machine learning for theoretical physics

What am I?

I am a particle physicist, working on lattice QCD. I want to apply machine learning on it.

My papers https://scholar.google.co.jp/citations?user=LKVqy wAAAAJ

Detection of phase transition via convolutional neural networks A Tanaka, A Tomiya Detecting phase transition Journal of the Physical Society of Japan 86 (6), 063001

Digital quantum simulation of the schwinger model with topological term via adiabatic state preparation

B Chakraborty, M Honda, T Izubuchi, Y Kikuchi, A Tomiya arXiv preprint arXiv:2001.00485

Quantum computing for quantum field theory

Biography

- 2006-2010 : University of Hyogo (Cond. mat.)
- 2015 : PhD in Osaka university (Particle phys)
- 2015 2018 : Postdoc in Wuhan (China)
- 2018 2021 : SPDR in Riken/BNL (US)
- 2021 : Assistant prof. in IPUT Osaka (ML/AI)

Kakenhi and others

Leader of proj A01 Transformative Research Areas

MLPhys Foundation of "Machine Learning Physics" Grant-in-Aid for Transformative Research Areas (A) on the Supercomputer Fugaku Large-scale lattice QCD simulation and development of AI technology

+quantum computer

Others:

Organizing "Deep Learning and physics"

Supervision of Shin-Kamen Rider

Outline of my talk

Message: I've been developing neural networks for lattice QCD

How to calculate it Problem

3

E.g. Linear regression ∈ Supervised learning

Data: $D = \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \cdots \}$

E.g. Linear regression ∈ Supervised learning

Data: $D = \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \cdots \}$

a, b, c, are determined by minimizing E (training = fitting by data)

E.g. Linear regression ∈ Supervised learning

7

Data: $D = \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \cdots \}$

a, b, c, are determined by minimizing E (training = fitting by data)

E.g. Linear regression ∈ Supervised learning

Data: $D = \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \cdots \}$

Now we can predict y value which not in the data

In physics language, variational method

Example: Recognition of hand-written numbers (0-9)

How can we formulate this "Black box"? Ansatz?

Example: Recognition of hand-written numbers (0-9)

Image recognition = Find a map between two vector spaces

Example: Recognition of hand-written numbers (0-9)

What is the neural networks? Akio Tomiya Affine transformation + element-wise transformation

Layers of neural nets $l = 2, 3, \dots, L$, $\overrightarrow{u}^{(1)} = \overrightarrow{x}$ W^l , $\overrightarrow{b}^{(l)}$ are fit parameters

$$\begin{cases} \vec{z}^{(l)} = W^{(l)} \overrightarrow{u}^{(l-1)} + \overrightarrow{b}^{(l)} \\ u_i^{(l)} = \sigma^{(l)} (z_i^{(l)}) & \text{Eler} \\ \text{hyp} \end{cases}$$

Affine transformation (b=0 called linear transformation)

Element-wise (local) non-linear. hyperbolic tangent-ish function

A fully connected neural net:

$$f_{\theta}(\vec{x}) = \sigma^{(3)}(W^{(3)}\sigma^{(2)}(W^{(2)}\vec{x} + \vec{b}^{(2)}) + \vec{b}^{(3)})$$

 θ is a set of parameters: $w_{ii}^{(l)}, b_i^{(l)}, \cdots$

- Input & output = vectors
- Neural net = a nested function with a lot of parameters (W, b)
- Parameters (W, b) are determined from data

Neural network = map between vectors and vectors Physicists terminology: Variational ansatz

Example: Recognition of hand-written numbers (0-9)

What is the neural networks? Neural network have been good job

Protein Folding (AlphaFold2, John Jumper+, Nature, 2020+), Transformer neural net

Neural network wave function for many body (Carleo Troyer, Science 355, 602 (2017))

https://horomary.hatenablog.com/entry/2021/10/01/19482

What is Lattice QCD?

Introduction What is QCD?

*QCD = Quantum Chromo-dynamics = A fundamental theory for particles in nuclei Quantum many body, relativistic, strongly correlated

Akio Tomiya Lattice QCD = QCD on discretized spacetime = calculable

QCD (Quantum Chromo-dynamics) in 3 + 1 dimension

$$S = \int d^4x \left[-\frac{1}{2} \operatorname{tr} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} (\mathrm{i}\partial + gA - m) \psi \right]$$

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - ig[A_{\mu}, A_{\nu}]$$

Non-commutable version of (quantum) electro-magnetism

• This describes...

- inside of nuclei,& mass of hadrons
- Equation of state of neutron stars, Heavy ion collisions, etc
- We want to evaluate expectation values with following integral,

$$O\rangle \sim \left[\mathscr{D}A \mathscr{D}\bar{\psi} \mathscr{D}\psi e^{\mathrm{i}S} \right]$$

Lattice formulation enables us to do that

Introduction What is our final goal for our research field?

In short, we simulate of elementary particles in nuclei

Using super computers + Lattice QCD, we can understand... - melting of protons/neutrons etc. at high temperatures

 \rightarrow related to the history of the universe

- attractive/repulsive forces between atomic nuclei
 - → to understand how stars are born and die
- candidate properties of dark matter

etc.

Akio Tomiya

We want to understand our universe from fundamental level!

Motivation Monte-Carlo integration is available, but still expensive!

Markov-

Chain

M. Creutz 1980

Akio Tomiya

Target integration
= expectation value
$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D} U e^{-S_{\text{eff}}[U]} \mathcal{O}(U)$$

 $S_{\text{eff}}[U] = S_{\text{gauge}}[U] - \log \det(\mathcal{D}[U] + m)$

Monte-Carlo: Generate field configurations with " $P[U] = \frac{1}{Z}e^{-S_{eff}[U]}$ ". It gives expectation value

Numerically expensive (⁽⁾⁾ part) and how can we accelerate it? We use machine learning!

Introduction Neural net can make human face images

Neural nets can generate realistic human faces (Style GAN2)

Realistic Images can be generated by machine learning! Configurations as well? (proposals ~ images?)

ML for LQCD is needed

- Machine learning/ Neural networks
 - data processing techniques for 2d/3d data in the real world (pictures)
 - (Variational) Approximation (\sim fitting)
- Lattice QCD is more complicated than pictures
 - 4 dimension/relativistic
 - Non-abelian gauge symmetry (difficult)
 - Fermions (anti-commuting/fully quantum)
 - Exactness in MCMC is necessary!
- Q. How can we deal with?

http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/QCDvacuum/

Introduction

Configuration generation with machine learning is developing

Year	Group	ML	Dim.	Theory	Gauge sym	Exact?	Fermion?	Lattice2021/ref
2017	AT+	RBM + HMC	2d	Scalar	-	No	No	arXiv: 1712.03893
2018	K. Zhou+	GAN	2d	Scalar	-	No	No	arXiv: 1810.12879
2018	J. Pawlowski +	GAN +HMC	2d	Scalar	-	Yes?	No	arXiv: 1811.03533
2019	MIT+	Flow	2d	Scalar	-	Yes	No	arXiv: 1904.12072
2020	MIT+	Flow	2d	U(1)	Equivariant	Yes	No	arXiv: 2003.06413
2020	MIT+	Flow	2d	SU(N)	Equivariant	Yes	No	arXiv: 2008.05456
2020	AT+	SLMC	4d	SU(N)	Invariant	Yes	Partially	arXiv: 2010.11900
2021	M. Medvidovic´+	A-NICE	2d	Scalar	-	No	No	arXiv: 2012.01442
2021	S. Foreman	L2HMC	2d	U(1)	Yes	Yes	No	
2021	AT+	SLHMC	4d	QCD	Covariant	Yes	YES!	
2021	L. Del Debbio+	Flow	2d	Scalar, O(N)	-	Yes	No	
2021	MIT+	Flow	2d	Yukawa	-	Yes	Yes	
2021	S. Foreman, AT+	Flowed HMC	2d	U(1)	Equivariant	Yes	No but compatible	arXiv: 2112.01586
2021	XY Jing	Neural net	2d	U(1)	Equivariant	Yes	No	
2022	J. Finkenrath	Flow	2d	U(1)	Equivariant	Yes	Yes (diagonalization)	arxiv: 2201.02216
2022	MIT+	Flow	2d	U(1)	Equivariant	Yes	Yes (diagonalization)	arXiv:2202.11712

+...

22

Three methods with machine learning 1/3: Flow based sampling

Flow based sampling algorithm Change of variables makes problem easy

$$D\phi e^{-S[\phi]}O[\phi] = \int Dz \left| \det \frac{\partial \phi}{\partial z} \right| e^{-S[\phi[z]]}O[\phi[z]]$$

$$= Jacobian = J$$

$$S_{eff}[z] = S[\phi[z]] - \log J[z]$$

$$= \int Dz e^{-S_{eff}[z]}O[\phi[z]]$$
If this is easy to sample (or integrate), like flat measure/Gaussian, we are happy

arxiv 1904.12072, 2003.06413, 2008.05456 and more

Flow based sampling algorithm Akio Tomiya Viewpoint: Change of variables makes problem easy Example: Box Muller $\begin{cases}
z = e^{-\frac{1}{2}(x^2 + y^2)} & \text{Change} \\
\tan \theta = y/x & \text{of variables}
\end{cases}$ $\int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dy \ e^{-\frac{1}{2}x^2 - \frac{1}{2}y^2} = \frac{1}{2} \int_{0}^{2\pi} d\theta \int_{0}^{1} dz$ **Simplest example: Box Muller Easv** Target integral: hard

Change of variables sometimes problem easier (this case, it makes the measure flat)

$$\begin{array}{l} \text{RHS is flat measure} \\ \rightarrow \text{We can sample like right eq.} \\ (uniform) \end{array} \begin{cases} \xi_1 \sim (0, 2\pi) \\ \xi_2 \sim (0, 1) \\ \\ \xi_2 \sim (0, 1) \\ \\ \xi_2 \sim (0, 1) \\ \\ \\ \\ \xi_2 \sim (0, 1) \\ \\ \\ \\ \\ y = r \cos \theta \quad \theta = \xi_1 \\ \\ y = r \sin \theta \quad r = \sqrt{-2 \log \xi_2} \\ \end{array}$$

Flow based sampling algorithm Trivializing map realized using neural network

Normalizing flow? = Change of variable with **neural nets** Tractable Jacobian is realized by checker-board technique

(a) Normalizing flow between prior and output distributions

$$\prod_{i} \int d\varphi_{i} e^{-V(\varphi_{i})} J[\varphi] O[F[\varphi]] \approx \int D\phi e^{-S[\phi]} O[\phi]$$

Problem: Jacobian is difficult = O(V^3) -> Introduce checker-board decomposition

Flow based sampling algorithm Flow based ML for QFT MIT + Deepmind + ...

Flow based sampling algorithm We make new convolutional layer for QFT in d-dim

- •We implement CombiConv for flow-based sampling algorithm for d-dimensional scalar field theory on the lattice
- •3d convolution is available on GomalizingFlow.jl [1], open source implementation of flow-based sampling algorithm

$$\bullet nCk = \frac{n!}{k!(n-k)!}$$

- In 3d, the acceptance rate is improved for CombiConv compared with the conventional 3d convolution
- In 4d, it works well for any combination of lower dimensional convolution
- •This works in any number of dimensions.

Three methods with machine learning 2/3: Gauge covariant NN + SLHMC

Convolution respects symmetry Convolution layer = trainable filter

Filter on image

Laplacian filter

(Discretization of ∂^2)

Edge detection

Akio Tomiya

If input is shifted, output is shifted= respects transnational symmetry

Convolution layer

Convolution respects transnational symmetry as well

Convolution respects symmetry Smearing = Smoothing of gauge fields

Coarse image

Eg.

We want to smoothen *gauge* field configurations with keeping *gauge* symmetry

Two types:

APE-type smearing

Stout-type smearing

M. Albanese+ 1987 R. Hoffmann+ 2007 C. Morningster+ 2003

Smearing ~ smoothing Smearing \sim neural network with fixed parameter!

General form of smearing (~smoothing, averaging in space)

 $\begin{cases} z_{\mu}(n) = w_1 U_{\mu}(n) + w_2 \mathscr{G}[U] & \text{Summation with gauge sym} \\ U_{\mu}^{\text{fat}}(n) = \mathscr{N}(z_{\mu}(n)) & \text{A local function} \\ (\text{Projecting on the gauge group)} \end{cases}$

It has similar structure with neural networks,

 $\begin{cases} z_i^{(l)} = \sum_{j} w_{ij}^{(l)} u_j^{(l-1)} + b_i^{(l)} & \text{Matrix product vector addition} \\ u_i^{(l)} = \sigma^{(l)}(z_i^{(l)}) & \text{element-wise (Icomparison)} \end{cases}$ element-wise (local) Non-linear transf.

(Index i in the neural net corresponds to n & µ in smearing. Information processing with NN is evolution of scalar field)

Multi-level smearing = Deep learning (with given parameters)

As same as the convolution, we can train weights.

Typically $\sigma \sim \tanh \text{shape}$

Application for the Full QCD in 4d

Results are consistent with each other

AT Y. Nagai arXiv: 2103.11965

1.0

Three methods with machine learning 3/3: Transformer for physical system

Figure 1: The Transformer - model architecture.

Attention layer is essential.

Akio Tomiya ArXiv: 2306.11527 + update Application to O(3) spin model with fermions (Kondo model)

Note: As far as we tested, CNN-type does not work in this case. No improvements with increase of layers. (Global correlations of fermions from Fermi-Dirac statistics make acceptance bad?)

Physical values are consistent (as we expected)

- Machine learning is useful for natural science/physics/Lattice QCD
- Multi-dimensional integration is done by MCMC
- MCMC candidate can be made by Machine learning
 - Flow-based sampling algorithm
 - Self-learning HMC + Gauge covariant neural network
 - Transformer for physical system (not gauge theory yet)
 - Scaling law for a Transformer for physical system
- ML + expert knowledge of computational physics/LatticeQCD is important

Thanks!

