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We present continuum extrapolated results of charmonium and bottomonium correlators in the vector
channel at several temperatures below and above Tc. The continuum extrapolation jointly performed with
the interpolations to have physical values of J=ψ and ϒ masses in the confined phase is based on
calculations on several large quenched isotropic lattices using clover-improved Wilson valence fermions
carrying different quark masses. The extrapolated lattice correlators are confronted with perturbation theory
results incorporating resummed thermal effects around the threshold from potential nonrelativistic QCD
(pNRQCD) and vacuum asymptotics above the threshold. An additional transport peak is modeled below
the threshold allowing for an estimate of the diffusion coefficients for charm and bottom quarks. We find
that charmonium correlators in the vector channel can be well reproduced by perturbative spectral functions
above Tc where no resonance peaks for J=ψ are needed at and above 1.1Tc, while for bottomonium
correlators a resonance peak forϒ is still needed up to 1.5Tc. By analyzing the transport contribution to the
correlators we find that the drag coefficient of a charm quark is larger than that of a bottom quark.
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I. INTRODUCTION

Heavy quark-antiquark bound states, quarkonia, have
been proposed as a thermometer of quark gluon plasma
in heavy ion collisions since they are formed at a very early
stage of the collisions and may survive in the deep
deconfined phase due to their hierarchically small sizes
and large binding energies [1,2]. The suppression of quar-
konia yields in AA collisions compared to those in the pp
collisions have been observed in RHIC and LHC energies
[3–12], however, its interpretation is still not very clear due
to the interplay between the cold and hot nuclear effects [13].
Due to their nonperturbative features it thus is important to
understand the fate of quarkonia in the hot medium from
lattice QCD computations.
In addition, it was observed that open heavy mesons show

an unexpectedly substantial elliptic flow that is comparable
to that of light-quark mesons at RHIC [14,15] and LHC [16].
Moreover, heavy quarks are found to lose a significant
amount of energy similar to light flavors at sufficiently high

transverse momentum, while with decreasing transverse
momentum an energy loss hierarchy is expected due to
the dead cone effect, in short, heavier quarks suffer less
energy loss. Experimentally the nuclear modification factor
of open flavor mesons seems to support such a picture
[17–19]. Phenomenological explanations of these phenom-
ena require a modeling of the heavy quark diffusion in a hot
and dense medium. This requires knowledge about the heavy
quark diffusion coefficients D [20–23] which can be
determined in lattice QCD calculations as they are encoded
in the correlation and spectral functions of quarkonia in the
vector channel.
In the heavy quark mass limit recent progress has been

made to estimate the heavy quark momentum diffusion
coefficient based on continuum extrapolated color-electric
field correlation functions [24–26]. The subleading quark
mass corrections to this transport coefficient are propor-
tional to a color-magnetic field correlator [27]. In the
current study we will utilize full relativistic vector meson
correlation functions to estimate the charm and bottom
diffusion coefficients.
The spectral functions of quarkonia in the vector channel

contain all information about the in-medium hadron proper-
ties like the dissociation temperatures of the corresponding
bound states and heavy quark diffusion coefficients.
However, the spectral function cannot be obtained directly
from lattice QCD and is only related to lattice QCD
computable Euclidean correlation functions. Investigations

*Present address: Institut für Theoretische Physik, Universität
Regensburg, D-93040 Regensburg, Germany.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 104, 114508 (2021)

2470-0010=2021=104(11)=114508(15) 114508-1 Published by the American Physical Society

https://orcid.org/0000-0003-0590-081X
https://orcid.org/0000-0002-6986-2341
https://orcid.org/0000-0003-1798-8222
https://orcid.org/0000-0001-7197-4281
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.114508&domain=pdf&date_stamp=2021-12-22
https://doi.org/10.1103/PhysRevD.104.114508
https://doi.org/10.1103/PhysRevD.104.114508
https://doi.org/10.1103/PhysRevD.104.114508
https://doi.org/10.1103/PhysRevD.104.114508
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


on quarkonium spectral functions extracted from two point
correlation functions were started about two decades ago
[28]. Since the lattice spacing has to be smaller than the
inverse of the heavy quark mass to control lattice cutoff
effects and the extraction of spectral function requires a large
number of data points in the temporal direction of lattices,
most studies in lattice QCD focus on charmonium spectral
functions and correlation functions, where continuum
extrapolated results only exist for those in the pseudoscalar
channel [29]. Due to the much larger mass, bottomonium
spectral functions in the relativistic formalism have only
been studied on highly anisotropic lattices [30,31]. Recently,
studies have been carried out using nonrelativistic heavy
quark formulations on anisotropic [32] and isotropic lattices
[33]. A review of current status of lattice studies on heavy
quarkonium in extreme conditions can be found in [34,35].
The main goal of this work is to compare lattice

correlators of both charmonium and bottomonium in
the vector channel with those integrated from the pertur-
bative spectral functions. The results will be used to
investigate the thermal modifications of J=ψ and ϒ and
the diffusion coefficients of charm and bottom quarks. For
this we will start with the construction of perturbative
spectral functions, given in Sec. II. In Sec. III we present
the lattice setup and describe how we perform the mass
interpolation and continuum extrapolation. Section IV is
devoted to comparing the lattice and perturbative results
in the bound state region of the vector spectral function.
In Sec. V we analyze the transport peak mainly based
on a Lorentzian ansatz. In the last section we draw the
conclusion. Parts of the study have been presented in
various conferences and workshops [36–42] and in the
Ph.D. thesis of Anna-Lena Lorenz [43].

II. SPECTRAL FUNCTIONS IN THE
VECTOR CHANNEL

The quarkonium spectral function cannot be obtained
directly on the lattice, and it is related to the Euclidean
mesonic two point correlation function via the integral
equation,

GHðτÞ≡
X
x⃗

hψ̄ΓHψðτ; x⃗Þ(ψ̄ΓHψð0; 0⃗Þ)†i

¼
Z∞

0

dω
π

ρHðωÞKðω; τÞ; ð1Þ

where Kðω; τÞ ¼ cosh (ωðτ− 1
2TÞ)

sinhð ω
2TÞ is a temperature (T) and

frequency (ω) dependent integration kernel. Specific to
the vector channel that we are considering in this work
ΓH ¼ γμ and thus GHðτÞ ¼ G00 þGiiðτÞ. G00 is the zeroth
component independent of the distance τ [44] and GiiðτÞ
the sum of spatial components (we use the Einstein
summation convention throughout this paper),

GiiðτÞ ¼
Z∞

0

dω
π

ρiiðωÞKðω; τÞ; i ¼ 1; 2; 3: ð2Þ

The spectral function well above the threshold and
around the threshold, on the other hand, can be obtained
from the perturbation theory. For frequencies well above
the threshold, the spectral function can be described by
ultraviolet asymptotics [44]:

ρvacV ¼ 3ω2

4π
Rcðω2Þ ð3Þ

with Rc, a polynomial in αs up to five-loop order

Rcðω2Þ ¼ r0;0 þ r1;0αs þ ðr2;0 þ r2;1lÞα2s
þ ðr3;0 þ r3;1lþ r3;2l2Þα3s
þ ðr4;0 þ r4;1lþ r4;2l2 þ r4;3l3Þα4s þOðα5sÞ;

ð4Þ

where l ¼ lnðμ̄2
ω2Þ and μ̄ is the renormalization scale, whose

range can be found in [44]. The coefficients rij for the
vector channel can also be found in [44]. The thermal
contributions arising around the threshold can be obtained
by applying pNRQCD calculations [45] as

ρpNRQCDV ðωÞ ¼ 1

2
ð1 − e−

ω
TÞ
Z∞

−∞

dteiωTC>ðt; 0⃗; 0⃗Þ: ð5Þ

The threshold mentioned above is a frequency at which the
free quark spectral function switches from vanishing to
nonvanishing value [46]. At zero momentum it locates at
2M with M the quark mass. C> is a Wightman function,
which is solvable for a real-time static potential from hard
thermal loop resummation [47].
The two energy regimes are matched by modifying

the pNRQCD result with a factor Amatch, so that it smoothly
connects to the vacuum asymptotics at a certain point
ωmatch. This matching procedure was successfully devel-
oped in the pseudoscalar channel in [29]. The resulting
spectral function is valid down to frequencies around
and above the threshold, and overestimates the

regime 2M − ω ≪ α2sM. An exponential cutoff ΦðωÞ ¼
θð2M − ωÞe−jω−2Mj

T is introduced to model the spectral
function for the low frequencies. The whole spectral
function then reads

ρpertV ðωÞ ¼ AmatchΦðωÞρpNRQCDV ðωÞθðωmatch − ωÞ
þ ρvacV ðωÞθðω − ωmatchÞ: ð6Þ

Note that the above perturbative calculations were carried
out in the Minkowski space with metric (þ − −−), where
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ρVðωÞ¼ρiiðωÞ−ρ00ðωÞ. Considering that ρ00ðωÞ∼ωδðωÞ
[44], there would be no difference between ρiiðωÞ and
ρVðωÞ around or above the threshold region. So in the
following analysis we will use Eq. (6) to model ρiiðωÞ in
this frequency region.
As for the very low frequency region, ρiiðωÞ is supposed

to have a transport peak. In the high temperature limit, the
transport peak has the following form [46,48,49]:

ρtransii ðωÞ ¼ 3πχq
T
M

ωδðωÞ; ð7Þ

where χq is the quark number susceptibility and M is the
quark mass. In the interacting case, the δ-peak can be
smeared into a Lorentzian peak with a finite width of η
(drag coefficient) as [49]

ρtransii ðωÞ ¼ 3χq
T
M

ωη

ω2 þ η2
: ð8Þ

According to [44] this expression overestimates the trans-
port contribution for larger frequencies, so we multiply
Eq. (8) with a cutoff function 1=coshð ω

2πTÞ which becomes
unity as ω → 0. Applying the Einstein relation

η ¼ T
MD

; ð9Þ

one arrives at the Kubo formula which relates the spectral
function and the heavy quark diffusion coefficient D as

D ¼ 1

3χq
lim
ω→0

ρtransii ðωÞ
ω

: ð10Þ

An estimation for the range of D is possible via its relation
to the heavy quark momentum diffusion coefficient κ̃ [50]:

D ¼ 2T2

κ̃
: ð11Þ

κ̃ has been determined from lattice calculations before [24]
and hints to a range of 2πTD ∈ ½3.71; 6.91� at 1.5Tc.
Recently a similar study in a much wider range of temper-
atures can be found in [51]. Figure 12 of [28,52] give
an overview of different results for 2πTD for different
temperatures.

III. LATTICE SETUP

The spectral function described in the previous section
will be compared to continuum extrapolated lattice corre-
lators of both charmonium and bottomonium in the vector
channel. To realize the large and fine lattices required
for our analysis, we choose the quenched approximation.
The configurations are generated with a separation of
500 sweeps each consisting of one heat bath and four

overrelaxation updates. For thermalization, 2000 to 5000
warm-up sweeps have been carried out. The quarkonium
correlators are measured with clover-improved Wilson
fermions for five different temperatures from 0.75 to
2.25Tc.

1 Correlators at each temperature have been com-
puted using four different β-values. The temporal lattice
extent Nτ varies from 48 to 96 at 0.75Tc and from 16 to 32
at the highest temperature, i.e., 2.25Tc. The aspect ratio is
fixed at a certain temperature, and changes from 2 to 6 from
the lowest temperature to the highest temperature. The
lattice sizes and the number of measured configurations are
listed in Table I. The lattice spacing is obtained using r0=a
and with r0 ¼ 0.472ð5Þ from [54]. As seen from Table I the
lattice spacings used in our simulation are sufficiently small
such that both bottom and charm quarks can be accom-
modated on the lattice. Since the tuning of hopping
parameters κ to have the physical masses of J=ψ and ϒ
is nontrivial, five to six different values of κ at each lattice
spacing have been used to compute the correlation func-
tions. Our lattice setup and computations thus make the
interpolation of correlators to the continuum limit and the
case with physical masses of J=ψ and ϒ possible.

TABLE I. The lattices with four different values of bare lattice
gauge couplings β used for the continuum extrapolation. The
lattice spacing a stems from Wilson-loop expectation values with
r0 ¼ 0.472ð5Þ fm [54]. With the relation r0Tc ¼ 0.7457ð45Þ
from [53], we obtain the temperature in units of Tc. On each
lattice, the correlators for five to six different κ-values have been
measured, see Table II.

β r0=a a [fm] (a−1 [GeV]) Nσ Nτ T=Tc No. of confs

7.192 26.6 0.018(11.19) 96 48 0.75 237
32 1.1 476
28 1.3 336
24 1.5 336
16 2.25 237

7.394 33.8 0.014(14.24) 120 60 0.75 171
40 1.1 141
30 1.5 247
20 2.25 226

7.544 40.4 0.012(17.01) 144 72 0.75 221
48 1.1 462
42 1.3 660
36 1.5 288
24 2.25 237

7.793 54.1 0.009(22.78) 192 96 0.75 224
64 1.1 291
56 1.3 291
48 1.5 348
32 2.25 235

1Tc ≈ 313 MeV as r0Tc ¼ 0.7457ð45Þ [53].
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To compare the correlators from different lattices, they
need to be renormalized. In the vector channel, there are
different options regarding the renormalization. In addition
to perturbative renormalization constants known up to two-
loop order [55,56], there are nonperturbatively determined
renormalization constants given in [57]. Another possibility
is to take the continuum limit of renormalization indepen-
dent ratios with the quark number susceptibility χq given
by the zeroth component of the vector correlator G00.
Although the renormalization constants computed from
[55,56] are comparable among each other, we decide on
using the renormalization independent ratio, e.g., Gðτ; TÞ
divided by the quark number susceptibility for the con-
tinuum extrapolation in this work. Here we chose the value
of quark number susceptibility at T 0 ¼ 2.25Tc (denoted as
χ0q) as a normalization, as the susceptibility is more precise
at higher temperatures. Using continuum extrapolated
results for χ0q=χq at T 0 ¼ 2.25Tc and the respective temper-
ature T we obtain the correct normalization in the con-
tinuum. We also remark here that the extracted heavy quark
diffusion coefficient [cf. Eq. (10)] is also renormalization
independent.
In the next step, we need to ensure that the masses and

temperatures on the different lattices match. At each lattice
spacing we compute the correlation functions for five to six
different values of hopping parameters κ related to the bare
quark mass. The screening masses obtained at 0.75Tc

2

shows that, due to the nontrivial quark mass tuning, the
different lattices do not have the same ground state vector
meson mass mV (see Table II and Fig. 1). To overcome this
problem, an interpolation in mV=T between the correlators
computed at different values of κ is required. We adopt the
ansatz

GiiðτT; mV
T ÞT 02

T3χq
¼ exp

�
p

�
mV

T

�
2

þ q
mV

T
þ r

�
; ð12Þ

where T 0 ¼ 2.25Tc and ðp; q; rÞ are fit parameters.
We can see that this ansatz describes the data well as

shown in the top plot of Fig. 2. Note that for the purpose of
guiding the eye, hereafter the correlators are normally
shown divided byGfreeðτTÞ, a correlator computed from the
vector spectral function in the noninteracting case [46,48].
They are calculated at quark mass of 1.5 GeVand 5.0 GeV
for charmonium and bottomonium respectively. Then we
insert physical J=ψ orϒmass to the fitted curve and obtain
the correlators at physical mass. As an example the
interpolated correlators at physical mass of J=ψ on the
1443 × 48 lattice are shown in the bottom plot of Fig. 2.
After the mass interpolation, we carry out a combined

spline fit via which we are able to interpolate the correlators

to the same points in τT and extrapolate them to the
continuum limit at the same time. We choose piecewise
polynomials as an ansatz for the spline fit to our correlators,

GiiðτTÞ ¼
Xd
i¼0

aiðτT − ðτTÞ0Þi þ
Xn
j¼0

cjðτT − tjÞdþ; ð13Þ

where

ðτT − tjÞþ ¼
�
0; τT − tj ≤ 0;

τT − tj; τT − tj > 0:
ð14Þ

Here d is the degree of the underlying polynomials, and
n is the number of knots which is chosen by hand for
different datasets. ðτTÞ0 is a reference point for τT and it

FIG. 1. The ground state vector meson masses mV obtained
using different values of κ. The dashed lines represent the
physical masses of J=ψ and ϒ. It can be seen that the obtained
mV from lattices are close to the physical masses, but do not
exactly match. To overcome this, we interpolate the correlators
between the different masses as shown in Fig. 2.

TABLE II. Hopping parameter κ and the corresponding ground
state vector meson mass mV for each lattice gauge coupling β.
The ground state massmV is determined using two-state fits to the
spatial correlators at 0.75Tc. From this table (also visualized in
Fig. 1) it can already be seen that the obtained mV are distributed
around the J=ψ and ϒ masses.

β κ mV [GeV] β κ mV [GeV]

7.192 0.13194 3.21(1) 7.394 0.132008 3.38(2)
0.1315 3.59(1) 0.1315 3.94(2)
0.131 4.01(1) 0.131 4.47(2)
0.13 4.81(1) 0.129 6.50(2)
0.128 6.34(1) 0.124772 10.04(1)
0.12257 10.11(1)

7.544 0.13236 3.06(2) 7.793 0.13221 3.37(1)
0.1322 3.28(1) 0.13209 3.59(1)
0.1318 3.82(2) 0.13181 4.11(1)
0.131 4.86(2) 0.13125 5.11(1)
0.1295 6.70(2) 0.13019 6.92(1)
0.12641 10.23(2) 0.12798 10.42(1)

2In the quenched case the screening mass obtained in the
confinement phase, i.e., at 0.75Tc is supposed to be close to the
pole mass of quarkonium.
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cannot be any of the knots, and tj denotes the position of
the knot. ai and cj are spline coefficients which can be
determined when fitted to the lattice data. To incorporate
lattice cutoff effects one replaces the coefficients ai with
certain functions, whose form depends on how the oper-
ators concerned are constructed on the lattice. As in this
work the OðaÞ-improved Wilson (clover) fermions are
used, one natural choice for the ansatz would be

ai ¼
b1
N2

τ
þ b2; ð15Þ

where b1 and b2 are fit parameters. To obtain the continuum
extrapolated values for the correlators one just needs to
take 1=N2

τ → 0.
To estimate the errors, the whole procedure is conducted

on bootstrap samples. We show the charmonium and
bottomonium correlators on each lattice and the con-
tinuum-extrapolated correlators at 1.5Tc in Fig. 3. One
can see that lattice cutoff effects are larger at smaller
distances. Using the forementioned method we obtain a
reliable continuum extrapolation down to τT ¼ 0.1. To be
more certain that no cutoff effects influence our analysis,
we decide to start our fits at τT ≈ 0.2.

The final continuum extrapolated correlators at 0.75, 1.1,
1.3, 1.5 and 2.2Tc for charmonium and bottomonium in the
vector channel are summarized in the left and right plots of
Fig. 4, respectively. We already can draw some conclusions
from the correlators without extracting the spectral func-
tions. We see that correlators at the short distance agree for
all temperatures, meaning that the region mostly influenced
by the vacuum asymptotic part of the spectral function
does not depend on the temperature much. At larger τ,
where the threshold region and the transport peak dominate
the behavior, the correlators split, indicating that at least
one of the two regimes is heavily temperature dependent.
We can also see that comparing with bottomonium corre-
lators, charmonium correlators have much stronger temper-
ature dependence, especially for those at long distances
which are relevant for the properties of resonance and
transport peaks. This is a clear sign that charmonium
suffers more thermal modifications than bottomonium.3

To obtain more quantitative results, in the following
section we analyze the lattice data using ansatz constructed
based on the perturbative spectral function described in
Sec. II. The fits are conducted on every bootstrap sample to
gain a correct error estimate. We then crosscheck the fit
results by maximum entropy method (MEM) analyses. For
the analyses in bootstrap a covariance matrixCk;l is needed.
Since the bootstrap compromises the covariance matrix
calculated from the continuum data, we instead use the
covariance matrix of the finest lattice and rescale it to the
continuum as

Ck;l ¼ Clat
k;l
δGcontðτkÞδGcontðτlÞ
δGlatðτkÞδGlatðτlÞ

; ð16Þ

where δGðτkÞ means the error of the correlators at distance
τk. Here the superscripts “cont” and “lat” stand for the
continuum extrapolated and lattice results, respectively.

IV. COMPARISON BETWEEN LATTICE AND
PERTURBATIVE RESULTS IN THE BOUND

STATE REGION

In [29], it was found that the perturbative spectral
function was well suited for describing the lattice corre-
lators in the pseudoscalar channel after introducing cor-
rections for systematic errors. However, the extraction of
the information on the fate of J=ψ and ϒ from the vector
correlators is more complicated since the transport peak
lying in the very low frequency region is not described by
the perturbative spectral function. In the following we thus
divide our analyses in the two different regimes. In this
section, we investigate the bound state region, i.e., the

FIG. 2. An example of the interpolation between correlators
obtained using different values of hopping parameters κ to obtain
the correlator at a physical J=ψ mass on 1443 × 48 lattices. From
the six measured κ values, we chose the four closest ones to the
charm quark mass. For every point in τT, we interpolated with the
ansatz Eq. (12) to the value at mV ¼ mJ=ψ . Note that the ground
state meson mass mV is obtained from two-state fits to the spatial
correlators at 0.75Tc and we use it for all temperatures in the mass
interpolation. The top plot shows this interpolation at three
example points, while the bottom plot shows the final result
of the mass interpolation.

3One also sees that the ratio for bottomonium is much larger
than that of charmonium. This is mostly due to the fact that the
quark number susceptibility χq of bottom quark is much smaller
than that of charm quark.
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intermediate and large frequency part of the spectral
function, where the perturbative spectral function is valid.
The small frequency part that contains the transport peak is
then evaluated in the next section. The complete spectral
function and the corresponding correlator are then given by

ρiiðωÞ ¼ ρtransii ðωÞ þ ρmod
ii ðωÞ;

GiiðτTÞ ¼ Gtrans
ii ðτTÞ þ Gmod

ii ðτTÞ; ð17Þ

respectively. Here ρmod
ii ðωÞ is the model spectral function

[29] of the form

ρmod
ii ðωÞ ¼ AρpertV ðω − BÞ: ð18Þ

The factors A and B correct for two sources of systematic
errors that account for some of the quantitative differences
in the comparison between the lattice data and perturbative
results. On the lattice side, the renormalization might be off.
This is taken care of by the overall normalization factor A.
On the perturbative side, the relation between the pole mass
and the MS mass is poorly determined which might lead to

a slightly smaller or larger threshold location. This is taken
care of by the mass shift B.
As the contribution from the transport peak to the

correlator, i.e., Gtrans
ii ðτÞ is nearly τ independent, one can

thus look into the differences of correlators at neighboring
points [58],

Gdiff
ii ðτ=aÞ ¼ Giiðτ=aþ 1Þ −Giiðτ=aÞ: ð19Þ

In Gdiff
ii ðτ=aÞ the contribution from the transport peak,

mostly influencing the correlator at τT ≈ 0.5, is suppressed.
In this way one can directly confront the perturbative
results with the lattice data of Gdiff

ii ðτÞ as was done in [29]
for correlators in the pseudoscalar channel.
Inserting the model spectral function Eq. (18) into

Eq. (2), we obtain an expression for the correlator that is
then fitted to the lattice data Gdiff

ii ðτÞ. The resulting
parameters A and B=T are listed in Table III, and the
comparison between the fits and lattice data is shown in the
top panel of Fig. 5. One can see that the lattice data is well
described by the ansatz Eq. (18). A is close to one and B is
small, indicating that the perturbative spectral function is a
suitable ansatz. The resulting spectral functions are shown

FIG. 4. The continuum extrapolated charmonium (left) and bottomonium (right) correlators divided by Gfree
ii ðτTÞχ0q=T 02 at different

temperatures in the vector channel.

FIG. 3. The continuum extrapolation for the charmonium correlators (left) and bottomonium correlators (right) in the vector channel
at 1.5Tc.
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in the top panel of Fig. 6 for charmonium (left) and
bottomonium (right). We find that there is no need for a
resonance peak to describe the charmonium data in the
current temperature window, while for bottomonium one
thermally broadened resonance peak represents the
data better at T ≤ 1.5Tc. The position of this peak almost
does not change with temperature. At 2.25Tc the peak
structure is gone. As a cross-check we perform MEM
analyses using the fit results as default models. The
results are shown in the bottom panel of Fig. 6. We can
see that for both charmonium and bottomonium at all
temperatures, output spectral functions almost overlap

with the inputs, which suggests the perturbative spectral
function a good ansatz to describe the lattice correlators.
We remark here that the MEM analyses serve only as a
consistency check, as the output spectral function from
the MEM analyses is known to have large default model
dependencies [59].

V. CHARM AND BOTTOM QUARK DIFFUSION
COEFFICIENTS

When comparing the fit results of Gdiff
ii to the original

lattice data (see the bottom panel of Fig. 5), we observe a
difference more obviously at higher temperatures. This
difference is a clear sign of a transport contribution.
Qualitatively, we can already draw some conclusions,
before analyzing the difference more closely in the follow-
ing section. As can be seen from the bottom right plot
in Fig. 5 the difference is very small for bottomonium.
This indicates that the correlator is almost dominated by
the bound state region. For charmonium as shown in the
bottom left plot of Fig. 5, the difference is much larger
compared to the case of bottomonium and it increases with
growing temperatures.

FIG. 5. Fits to the difference correlatorGdiff
ii [cf. Eq. (19)] for charmonium (top left) and bottomonium (top right) using ansatz Eq. (18).

In the bottom panel we show the original correlators (x ¼ lat) and the model correlators [x ¼ mod, see Eq. (17)] obtained from the above
fits. The correlators are normalized by Gfree;diff

ii χ0q=T 02 in all cases. Here, we observe a difference between the original and model
correlators that hints to a transport contribution. For bottomonium this difference is small, while it grows for charmonium at higher
temperatures.

TABLE III. Results from the fit of the model spectral function
Eq. (18) to the lattice data Gdiff

ii [Eq. (19)] in the vector channel.

Charmonium Bottomonium

T=Tc A B=T A B=T

1.1 1.09(2) 0.37(4) 1.03(2) 0.04(2)
1.3 1.07(2) 0.16(5) 1.01(1) −0.05ð2Þ
1.5 1.03(2) 0.01(6) 1.00(2) −0.12ð2Þ
2.25 0.99(3) −0.27ð9Þ 0.99(2) −0.23ð4Þ
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In the previous section we obtained an expression for
the spectral function in the bound state region which can
describe Gdiff

ii well. We now construct a correlator that
describes the contribution from the transport peak by the
subtraction

Gtrans
ii ðτTÞ ¼ GiiðτTÞ −Gmod

ii ðτTÞ: ð20Þ

The obtainedGtrans
ii ðτTÞ for both charmonia and bottomonia

at 1.1, 1.3, 1.5 and 2.25Tc are shown in the left and right
plot of Fig. 7, respectively.
As expected from the findings in [49], we observe a very

weak dependence of Gtrans
ii ðτTÞ on τT at all temperatures,

especially for the charm sector. The curvelessness of
Gtrans

ii ðτTÞ implies a slender hope to reconstruct the trans-
port peak without further information. This is verified when
we model the transport peak using a Lorentzian ansatz [see
Eq. (8)]. We vary the heavy quark diffusion coefficientD in
the range 2πTD ∈ ½0.2; 4� and make use of the Einstein
relation Eq. (9) to obtain the drag coefficient η. For the
values of quark masses we use Mc ¼ 1.28 GeV and Mb ¼
4.18 GeV [60]. However, it is found that all the choices can

describe the lattice data equally well within errors and
almost no differences among Gtrans

ii ðτTÞ=Gtrans
ii ðτT ¼ 0.5Þ

resulting from various values of 2πTD can be seen.

A. Relative magnitude of drag coefficients of charm
and bottom quarks

Even though 2πTD cannot be determined by analyzing
the curvature of Gtrans

ii ðτTÞ in τT, we can still draw some
conclusions on the relative magnitudes of the drag coef-
ficients of charm and bottom quark by comparing char-
monium and bottomonium correlators at the midpoint
(τT ¼ 0.5). The procedure to determine the relative mag-
nitude is illustrated as follows. For small ω=T, we expand
the kernel and the 1=coshðω=2πTÞ cutoff term that is
multiplied to Eq. (8) at the midpoint:

cosh (ωð1=2T − 1=2TÞ)
sinhð ω

2TÞ coshð ω
2πTÞ

≃
T
ω

Xk
i¼0

ð−1Þici
�
ω

T

�
2i
; ð21Þ

where c0 ¼ 2 and c1 ¼ 3þπ2

12π2
, for instance. With this and the

Lorentzian ansatz we obtain the midpoint correlator:

FIG. 6. Top: spectral functions of charmonium (left) and bottomonium (right) in the large ω region obtained from the fits to Gdiff
ii ðτÞ.

The dashed lines show the original perturbative spectral functions, while the solid lines show the modified spectral function
[cf. Eq. (18)]. Bottom: spectral functions for charmonium (left) and bottomonium (right) in the vector channel obtained from MEM
analyses using the fit results as default models. The dashed lines are the default models and the solid lines are the outputs of MEM. The
dashed lines are almost invisible as they overlap with the solid lines.
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Gtrans
ii

χqT
≃

3T
πM

�Xk
i¼0

di

�
η

T

�
2i
þ
Xk−1
i¼0

ei

�
η

T

�
2iþ1

�
;

di ¼ ci arctan

�
ωcut

η

�
;

ei ¼
Xk−i
j¼1

ð−1Þj
2j − 1

cjþi

�
ωcut

T

�
2j−1

: ð22Þ

It is clear that the first term 2 arctanðωcut
η Þ is the most

dominant term and higher orders are negligible for small
η=T. With these simplifications, the ratio of the midpoint
correlators for charmonium and bottomonium is given by

Gtrans
ii;c ðτT ¼ 0.5Þ=χcq

Gtrans
ii;b ðτT ¼ 0.5Þ=χbq

≈
Mb

Mc

arctanðωcut
ηc
Þ

arctanðωcut
ηb
Þ : ð23Þ

As the ratio of quark masses Mb=Mc is around 3 [60], and
according to the top plot in Fig. 8 the left-hand side of
Eq. (23) is even smaller than 2 at all temperatures, thus
arctanðωcut

ηc
Þ=arctanðωcut

ηb
Þ should be smaller than 1. Since

arctanð1=xÞ is a monotonically decreasing function of x for
x > 0, we thus have

ηc > ηb; ð24Þ

i.e., the drag coefficient of a charm quark is larger than
that of a bottom quark in the current temperature window.
As one can also observe from the top plot of Fig. 8 the ratio
Gtrans

ii;c ðτT¼0.5Þ=χcq
Gtrans

ii;b ðτT¼0.5Þ=χbq increases with increasing temperature. This

could indicate that the difference between ηc and ηb
becomes smaller at higher temperatures.
Since the curvature of Gtrans

ii ðτTÞ can hardly provide any
information on the heavy quark diffusion coefficient, in
the following sections we turn to other two quantities: the
midpoint correlator Gtrans

ii ðτT ¼ 0.5Þ and the thermal
moments [58,61,62] through which there is a hope that
the transport peak could be reconstructed.

B. Solving transport peak using midpoint correlators

In this section we consider the midpoint correlators
which are shown already in Fig. 8. At the midpoint, the
integration kernel simplifies to 1=sinhð ω

2TÞ. This allows us
to compare continuum extrapolated lattice data at the
midpoint to the midpoint correlator obtained in the same
way as in the above section from the model spectral
functions including the Lorentzian ansatz. The difference

FIG. 7. Gtrans
ii vs τT, normalized by the value at the midpoint for charmonium (left) and bottomonium (right). The points denote the

lattice data at four temperatures above Tc, while the curves represent the corresponding results obtained using the Lorentzian ansatz
[cf. Eqs. (8) and (9)] for the transport peak with five different values of 2πTD at each temperature. For visibility the lattice data points
and curves at T ¼ 1.3, 1.5 and 2.25Tc are shifted simultaneously upwards by 1, 2 and 3, respectively. It can be seen that the curvature of
the correlator with the current precision does not provide any additional information to determine 2πTD.
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is that here we use the full kernel function and insert
Mc ¼ 1.28 GeV andMb ¼ 4.18 GeV [60] for the required
masses and assume an error of about 10% that accounts
for the uncertainty in the definition of the mass in this
approach. As an example we show the estimation of the
drag coefficient of a bottom quark at 1.5Tc in Fig. 9 where
the middle point correlator is shown as a function of the
drag coefficient. The horizontal dashed line and the
surrounding green band represent the lattice data of
correlator divided by Tχq at the middle point τT ¼ 0.5,
while the solid curve denotes the result obtained using the
model spectral function of the Lorentzian form [cf. Eq. (8)]
and the surrounding purple band denotes the uncertainly
arising from the values of quark masses. The lower and
upper bound of this overlapping region between the “lattice
data” and “model” results shown in Fig. 9 can thus be
regarded as the range for the estimated values of η=T. With
the estimated range for η=T we are also able to determineD
via the Einstein relation Eq. (9). Following this procedure
η=T and 2πTD obtained for charm and bottom quarks at
different temperatures are listed in Table IV.

The estimate of η=T described above obviously
depends on the upper integration limit ωcut. Since the
transport contribution described by the Lorentzian ansatz
is only valid for small ω, we also investigated the effect of
four different upper limits (ωcut ¼ ∞;M; πT and T) for the
integration. For bottomonium, a plateau was reached,
where each integration limit gave roughly the same values
for η=T. Since the dependence on the integration limit
was mild, we choose infinity as the upper bound. As for
charmonium, the analysis is more complicated as the
transport peak seems to be not well separated from the
bound state or continuum region. Charm quark diffusion
coefficient 2πTD obtained via the current approach
decreases with increasing ωcut=T at all the temperatures
considered in the current study, and the second and third
largest values of 2πTD obtained using ωcut ¼ M and πT
are almost the same, but they are at most about 1.5 times
that obtained using ωcut ¼ ∞ at each temperature. This
might indicate that the transport peak in the charm sector
has a long tail stretching to the large ω region. We thus
only show the obtained values of 2πTD and η=T for the
charm quark obtained using ωcut=T ¼ ∞ in Table IV. The
results obtained for the charm quark thus suffer larger
uncertainties than those for the bottom quark. As seen
from Table IV the drag coefficient of a charm quark is
larger than that of a bottom quark at each temperature
(also hold for ωcut ≳ πT or M), which is consistent with
our estimate on the relative magnitude of ηc and ηb in the
previous subsection.

FIG. 8. Top:
Gtrans

ii;c =χcq
Gtrans

ii;b =χbq
for charmonium and bottomonium at the

middle point τT ¼ 0.5 as a function of temperature. Bottom: ratio
of the transport contribution to the correlator to the complete
correlator. As it is seen, the transport contribution only makes up
a small fraction of the correlator.

FIG. 9. Estimation of η=T for bottomonium at 1.5Tc by
comparing the lattice data and the integration of ansatz (upper
integration limit ωcut=T ¼ ∞) at midpoint. The dashed constant
line represents the mean value of the midpoint correlator Gtrans

ii
and the band for the statistical error. The solid curve shows the
integration results using a Lorentzian ansatz, and the error band
is obtained by varying the quark masses Mc ¼ 1.28 GeV and
Mb ¼ 4.18 GeV [60] by 10%. The intersection points (dotted)
are taken as upper and lower bound of η=T.
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C. Solving transport peak using thermal moments

From the above section we learn that even using the
midpoint correlators it is still difficult to obtain reliable
transport coefficient for charmonium. In this section we try
to tackle it from the so-called thermal moments which are
defined as the Taylor coefficients [58,61,62]

GðnÞ
H ¼ 1

n!

Z∞

0

dω
π

�
ω

T

�
n ρHðωÞ
sinhð ω

2TÞ
ð25Þ

when expanding the correlator around the midpoint,

GHðτTÞ ¼
Z∞

0

dω
π

ρHðωÞ
coshðωðτ − 1

2TÞÞ
sinhð ω

2TÞ

¼
Z∞

0

dω
π

ρHðωÞ
sinhð ω

2TÞ
�
1þ 1

2!

�
ω

T

�
2

ðτT − 0.5Þ2

þ 1

4!

�
ω

T

�
4

ðτT − 0.5Þ4 þ � � �
�

≈ Gð0Þ
H þGð2Þ

H ðτT − 0.5Þ2 þ Gð4Þ
H ðτT − 0.5Þ4;

ð26Þ
where we have neglected the high order contributions in the
last line. To get rid of renormalization we further build ratios

Rn;m
H ¼ GðnÞ

H

GðmÞ
H

ð27Þ

with which the expansion could be rewritten as

GHðτTÞ ¼ Gð0Þ
H

X∞
n¼0

R2n;0
H ðτT − 0.5Þ2n: ð28Þ

To obtain the moments we calculate the curvature from the
data

ΔHðτTÞ ¼
GHðτTÞ −GHðτT ¼ 0.5Þ

ðτT − 0.5Þ2 : ð29Þ

The curvature could also be expressed using the ratios

ΔHðτTÞ
GHðτT ¼ 0.5Þ ≈ R2;0

H

�
1þ

XN
n¼1

R2nþ2;2n
H ðτT − 0.5Þ2n

�
:

ð30Þ
Now we can get the ratios R2nþ2;2n

H by fits based on Eq. (30).
Note that the approximation is valid close to the midpoint, so
the fit can only be conducted on points close to τT ¼ 0.5. At
the same time, to have stable fits the fit intervals cannot be
too small. For this reason we vary the lower limit τminT of the
fit interval and keep the upper bound at τT ¼ 0.5. We will
see that after a first few values of τminT, a plateau can be
reached and we use the average over the plateau as our final
estimate for R2nþ2;2n. Also for stabilities, we choose n ¼ 1
for charmonium and n ¼ 2 for bottomonium in Eq. (30).
We show the first thermal ratios obtained from fits in

Fig. 10 as horizontal constant dashed lines. To extract the
information on the transport peak, we also calculate the
ratios using the spectral function Eq. (17) with varying η=T.
For R2;0 we have

R2;0ðA;B;ηÞ¼ Gð2Þ
modðA;BÞþGð2Þ

transðηÞ
Gmod

ii ðτT¼0.5ÞþGtrans
ii ðτT¼0.5Þ ð31Þ

with

Gð2Þ
modðA;BÞ ¼

1

2

Z∞

0

dω
π

�
ω

T

�
2

Aρpertii ðω − BÞ 1

sinhð ω
2TÞ

;

Gð2Þ
transðηÞ ¼

1

2

Z∞

0

dω
T

�
ω

T

�
2

3χq
T
M

ωη

ω2 þ η2

×
1

coshð ω
2πTÞ sinhð ω2TÞ

; ð32Þ

where we use A and B from Table III with statistical errors
taken into account. Similarly as in the previous subsection,
by searching for the intersections we manage to find a range
for η=T at some temperatures. With the Einstein relation
Eq. (9) a range for 2πTD could also be obtained accord-
ingly. We list the estimates of η=T and 2πTD for both
charm and bottom quarks in Table V. Our analyses using
this method show that for charmonium at 1.1Tc and
bottomonium at 1.1, 1.3 and 1.5Tc, no intersections can
be found, thus estimates for η=T or 2πTD are not available.

D. Combining the results on charm
and bottom quark diffusion coefficients

In previous subsections we have attempted to estimate
2πTD and η, by either analyzing the midpoint correlators
Gtrans

ii or the thermal moments based on Lorentzian ansatz
for the transport peak. It is found that when using midpoint
correlators we could obtain more reliable results for the
bottom quark while when using thermal moments η=T

TABLE IV. Estimated ranges for η=T and the corresponding
values for 2πTD according to the Einstein relation Eq. (9)
with a mass of Mc ¼ 1.28 × ð0.9–1.1Þ GeV and Mb ¼
4.18 × ð0.9–1.1Þ GeV.

Charm Bottom

T=Tc η=T 2πTD η=T 2πTD

1.1 7.37–21.38 0.08–0.24 <0.81 >0.66
1.3 7.75–20.28 0.10–0.26 0.30–2.76 0.22–2.04
1.5 7.93–17.08 0.14–0.29 1.40–4.02 0.18–0.51
2.25 4.98–10.45 0.33–0.70 0.62–3.20 0.33–1.73
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(and also 2πTD) for the charm quark is more accessible.
In general all the obtained results support that ηc > ηb
holds true in the current temperature window. In this section
we try to combine both results by taking only the most
trustworthy ones, namely

(i) In Table IV obtained by analyzing the correlator
only at the midpoint, results for bottom quark at
T ≥ 1.3Tc are chosen.

(ii) In Table Vobtained by analyzing the curvature of the
correlator via thermal moments, results for bottom
quark at 2.25Tc are chosen while those for charm
quark at T ≥ 1.5Tc are chosen.

We plot the selected results in Fig. 11, as a summary of
our analyses for the charm and bottom quark diffusion
coefficients. In Fig. 11 2πTD for charm quark are shown at
two temperatures, i.e., T ¼ 1.5 and 2.25Tc as red bands,
while 2πTD for bottom quark are shown at three highest
temperatures, i.e., T ¼ 1.3, 1.5 and 2.25Tc as blue bands.

At 2.25Tc we have combined the estimated range for 2πTD
of bottom quarks obtained in Tables IV and V. We remark
here that the vertical lines denote the possible ranges of the
diffusion coefficients arising from the uncertainty of the
heavy quark mass used in our analyses, and they do not
characterize the size of the statistical error. The charm and

FIG. 10. First thermal ratios R2;0 for charmonium (left) and bottomonium (right) obtained from lattice computations and model
spectral functions at four temperatures above Tc. The dashed horizontal lines are the mean values of Rð2;0Þ extracted from lattice data via
fits [cf. Eq. (30)] and the surrounding bands denote the statistical error. The solid curves are obtained by integrating the model spectral
function [cf. Eq. (31)] with various values of η=T and the surrounding bands represent the uncertainty arising from the variation of quark
masses by 10%. The vertical dotted lines drawn from the intersection points between lattice and model results indicate the estimated
ranges for η=T.

TABLE V. Estimated ranges for η=T using the thermal ratio
R2;0 and resultant 2πTD with a mass of Mc ¼ 1.28 GeV and
Mb ¼ 4.18 GeV. For some temperatures, the method did not
work out to yield a result.

Charm Bottom

T=Tc η=T 2πTD η=T 2πTD

1.1 – – – –
1.3 <0.27 >7.48 – –
1.5 0.85–2.78 0.84–2.73 – –
2.25 3.32–5.28 0.66–1.05 0.29–1.10 0.97–3.66

FIG. 11. Collection of the most reliable results for 2πTD from
different analyses based on continuum extrapolated lattice results
(this work). Note that the earlier results obtained by Francis et al.
2015 [24], Brambilla et al. 2020 [25] and Altenkort et al. 2021
[26] are for 2πTD of a static quark rather than relativistic charm
and bottom quarks considered in the current study. For compari-
son the results obtained from the next-leading-order (NLO)
perturbative QCD with αs ≈ 0.2 (pQCD) are also shown.
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bottom quark masses used in our analyses range from 90%
to 110% of their values listed by the Particle Data Group
(PDG), and if we amplify the range of heavy quark masses,
the estimated range of the diffusion coefficients would
become broader. For example, if we use the heavy quark
masses to be 80% to 120% of their PDG values, the
estimated range of 2πTD will become [0.14, 0.75] instead
of [0.18, 0.51] in Fig. 9.
As seen from Fig. 11 there is no significant temperature

dependence of 2πTD for both charm bottom quarks. The
results of 2πTD are much smaller than those obtained
in pQCD with αs ≈ 0.2. Results of 2πTD converted from
the static heavy quark momentum diffusion coefficient
[cf. Eq. (11)] obtained in [24–26] are also shown. These
results do not show much temperature dependence as well,
and are in general larger than 2πTD of both charm and
bottom quarks obtained in the current study.
We also noticed that in Refs. [63,64] a holographic

estimate gives 2πTD ¼ 1, but it is for R-charge diffusion.
The AdS=CFT calculations for heavy quark diffusion
suggest 2πTD¼4=

ffiffiffi
λ

p
, where λ ¼ g2YMNc [65,66]. These

estimates from AdS=CFT can be compatible with our
results in this study given certain values of g2YMNc.

VI. CONCLUSION

In this work we have computed charmonium and
bottomonium correlators in the vector channel at various
quark masses on four large and fine isotropic lattices in the
quenched approximation at temperatures ranging from
0.75Tc to 2.25Tc. With these data we are able to interpolate
the correlators to those with physical J=ψ and ϒ mass on
the lattice and perform extrapolation to the continuum limit.
From our analyses we see a qualitatively good agreement
between our continuum extrapolated lattice data and the
correlator obtained from perturbative spectral functions
constructed from matching pNRQCD calculations to vac-
uum asymptotics. We extended the analysis in [29] to the
vector channel, where we divide the spectral function into
the bound state region at larger ω and the transport region
at small frequencies. To compare perturbation theory

results and lattice data in the bound state region, we used
the differences of neighboring points in the correlator and
fitted a model spectral function accounting for systematic
uncertainties. With this, the high frequency part is well
described by the perturbative spectral function, as only
mild modifications are needed. We find that for charmo-
nium the perturbative spectral function without any
resonance peak is sufficient to describe the continuum
extrapolated lattice data. For bottomonium on the other
hand, a thermally broadened resonance peak is needed to
describe the lattice data for temperatures up to 1.5Tc. Our
results of spectral functions have been cross-checked
using the MEM and were found to be a good description
to the correlator.
For the transport contribution we analyzed the midpoint

correlators and the thermal moments based on Lorentzian
ansatz. We find that the drag coefficient of a charm quark is
larger than that of a bottom quark. We also managed to
constrain the charm and bottom quark diffusion coefficient
D to a possible range. Since different methods have their
own (dis)advantages we combine the results by taking only
the most reliable results from each method and summarize
in Table VI. We find that charm and bottom quark diffusion
coefficients, obtained at physical quark mass in this study,
are smaller than those converted from lattice calculations of
the heavy quark momentum diffusion coefficient [24–26].
The reason of such discrepancy can be that the heavy quark
momentum diffusion coefficient is calculated in the heavy
quark mass limit and also the studies [24–26] only consider
the leading term. Recently the subleading terms of heavy
quark momentum diffusion coefficient in T=M have been
worked out in [27] and one of them can be estimated from a
color-magnetic correlator. This correlator needs to be
studied in the future on the lattice and may bring the result
closer to our estimates here.

All data from our calculations, presented in the figures of
this paper, can be found in [67].
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TABLE VI. Combined ranges for η=T and 2πTD by taking the
most reliable results from each method presented in Sec. V.

Charm Bottom

T=Tc η=T 2πTD η=T 2πTD

1.1 � � � � � � � � � � � �
1.3 � � � � � � 0.30–2.76 0.22–2.04
1.5 0.85–2.78 0.84–2.73 1.40–4.02 0.18–0.51
2.25 3.32–5.28 0.66–1.05 0.29–3.20 0.33–3.66
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