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Two-neutrino double-beta (2νββ) decay has been used to constrain the neutron-proton part of effective
interactions, which in turn is used to compute the nuclear matrix elements for neutrinoless double-beta de-
cay, the observation of which would have important consequences for fundamental physics. We carefully
examine 2νββ matrix elements within the proton-neutron quasiparticle random-phase approximation with
nuclear energy density functionals. We work with functionals that are fit globally to single-beta-decay half-lives
and charge-exchange giant-resonance energies, but not to 2νββ half-lives themselves, to evaluate the 2νββ

nuclear matrix elements for all important nuclei, including those whose half-lives have not yet been measured.
Such a comprehensive evaluation in large model spaces without configuration truncation requires an efficient
computational scheme; we employ a double contour integration within the finite amplitude method. The results
generally reproduce the nuclear matrix element extracted from half-lives well, without the use of any of those
half-lives in the fitting procedure. We present predictions of the matrix elements in a total of 27 nuclei with
half-lives that are still unmeasured.
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I. INTRODUCTION

Experiments all over the world are attempting to observe
neutrinoless double-beta (0νββ) decay, which occurs only
if neutrinos are Majorana particles, at a rate that is related
to neutrino masses. To learn anything quantitative from an
observed decay rate, one must know a nuclear matrix ele-
ment that cannot be measured independently and so must be
computed [1–4]. Such computations, which must handle the
exchange of a virtual neutrino among nucleons and mesons,
are difficult, and so the matrix elements for isotopes used
in experiments are not known with high precision. A related
process, two-neutrino double-beta (2νββ) decay, has been
observed, however, and its rates are often a part of attempts
to reduce the uncertainty in 0νββ nuclear matrix elements.

The 2νββ nuclear matrix elements have been extracted
from measured half-lives in 11 nuclei at present [5]. To believe
the results of many-body computations of 0νββ decay, one
would like to see similar computations that reproduce these
2νββ matrix elements. Because the closure approximation—
replacing the energies of states in the decay’s intermediate
nucleus with an average—is accurate for 0νββ, some ap-
proaches rely on it and have a harder time with 2νββ decay,
for which the approximation is poor. Nuclear density func-
tional theory (DFT) in combination with the proton-neutron
quasiparticle–random phase approximation (pnQRPA) is not
one of these approaches, however; 0νββ and 2νββ matrix
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elements can be computed in similar ways. In many appli-
cations of the pnQRPA, in fact, the 2νββ matrix element
is used to constrain the strength of the piece of the density
functional associated with isoscalar proton-neutron pairing,
which suppresses both the 0νββ and 2νββ matrix elements
[6,7].

The pnQRPA can be used in conjunction with a phe-
nomenological Hamiltonian as well as in nuclear DFT. The
advantage of DFT is its large single-particle model space and
universality; a single energy-density functional (EDF) is taken
to describe all the isotopes in the nuclear chart. The authors
of Ref. [8] used a deformed-nucleus pnQRPA with a Skyrme
EDF, computing 2νββ and 0νββ matrix elements in several
experimentally important isotopes. They fit the strength of
the isoscalar pairing interaction, on which rates depend sensi-
tively, and it obtains the correct 2νββ matrix elements before
computing the 0νββ matrix elements.

Nuclear EDFs are commonly optimized to reproduce a
number of experimental observables from a wide range of nu-
clei [9–14]. The optimization is easiest when the observables
are ground-state expectation values in even-even isotopes.
The time-odd part of the EDF and the proton-neutron pairing
strength have no effect on even-even ground states, however,
and so cannot be fixed in the same way. Instead, they are
usually optimized globally through the use of single-β-decay
rates and Gamow-Teller and spin-dipole giant-resonance en-
ergies in nuclei all over the table of isotopes [15].

We would like to assess the ability of these globally deter-
mined EDFs to reproduce 2νββ matrix elements so that we
can further optimize them if necessary and then confidently
apply them to 0νββ decay. Standard pnQRPA calculations,
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however, require the construction of a QRPA matrix Hamilto-
nian, which within large single-particle spaces can consume
too much computational time and memory. We can turn
instead to the finite amplitude method (FAM) within time-
dependent DFT. The FAM, which is formally equivalent to
the QRPA [16,17], computes the linear response induced by
an external field with a complex frequency. One-body induced
fields and the response of quasiparticle states are calculated by
iteration, without the need to compute the two-body QRPA
matrix elements. The proton-neutron version of the FAM
(pnFAM) was developed and implemented in Ref. [18] in
order to calculate β-decay rates and Gamow-Teller strength
distributions [19,20]. Because of its efficiency, it was used in
Ref. [15] in an attempt to optimize the neutron-proton part of
a particular nuclear EDF.

In this paper we show how to use the pnFAM to efficiently
compute 2νββ nuclear matrix elements. Our procedure, a
preliminary version of which was reported on in Ref. [21],
employs a complex-plane integration technique [22,23] to
perform the summation over intermediate states. We compare
our 2νββ nuclear matrix elements in 76Ge, 130Te, 136Xe, and
150Nd to those obtained from matrix diagonalization with the
same EDF in Ref. [8]. Then we use the EDFs with time-odd
terms fit in Ref. [15] to compute the matrix elements for all 11
nuclei in which the 2νββ decay rate has been measured and
for 27 nuclei in which it has not.

The rest of this paper is organized as follows: Section II
briefly presents the definition of the 2νββ matrix element
and describes the pnQRPA. Section III formulates our scheme
for computing 2νββ nuclear matrix elements in the pnFAM.
Section IV compares the pnFAM 2νββ matrix elements with
those obtained by matrix diagonalization in the pnQRPA, and
Sec. V assesses the performance of globally fit functionals
and offers predictions for unmeasured rates. Section VI is a
conclusion.

II. 2νββ MATRIX ELEMENT AND THE QRPA

A. 2νββ matrix element

The nuclear matrix element governing the 2νββ decay of
the nucleus (N, Z ) to the ground state of the nucleus (N −
2, Z + 2) contributes to the half-life T 2ν

1/2 as follows:[
T 2ν

1/2

]−1 = G2ν (Qββ, Z )|M2ν |2, (1)

where G2ν is a phase space factor, and the 2νββ matrix ele-
ment is a sum of Fermi and Gamow-Teller parts [1],

M2ν = M2ν
GT − g2

V

g2
A

M2ν
F , (2)

M2ν
F =

∑
n

〈0+
f | ∑a τ−

a |n〉〈n| ∑b τ−
b |0+

i 〉
En − Mi+M f

2

, (3)

M2ν
GT =

∑
n

〈0+
f | ∑a σaτ

−
a |n〉 · 〈n| ∑b σbτ

−
b |0+

i 〉
En − Mi+M f

2

. (4)

Here τ−
a is the isospin-lowering operator for nucleon a, σa is

the corresponding spin operator, Mi and M f are the ground-
state energies of the initial and final states of the decay, and
|n〉, with energy En, is one of a complete set of intermediate
states in the nucleus (N − 1, Z + 1). The Fermi part of the
2νββ matrix element is very small because isospin is nearly
conserved [24], and we neglect it here.

B. The pnQRPA

The proton-neutron QRPA evaluates the transition matrix
elements between the initial or final state and the interme-
diate states that appear in the numerator of Eq. (4), taking
into account the effect of the proton-neutron residual interac-
tion beyond the mean-field approximation. In the pnQRPA,
both the initial and final states |0+

i/ f ,QRPA〉 are based on
Hartree-Fock-Bogoliubov (HFB) quasiparticle vacua, which
incorporate axially symmetric deformation in our work. The
intermediate states are related to the initial or final state by a
QRPA phonon operator,

|λ, K〉 = Q̂λ†
K |0+

QRPA〉
Q̂λ†

K =
∑

pn
jz,p+ jz,n=K

X λ
pn,K â†

pâ†
n − Y λ

pn,K ân̄âp̄, (5)

where âτ=n,p is a neutron or proton quasiparticle operator,
defined so that âτ |0+

HFB〉 = 0. Here, the indices p and n label
proton and neutron quasiparticles. jz,τ and K are the projec-
tions along the symmetry axis of the quasiparticle and phonon
angular momentum, and the index τ̄ labels the time-reversal
partner of the state τ ( jz,τ̄ = − jz,τ ). From now on, for the sake
of simplicity we omit the restriction jz,p + jz,n = K when
summing over the proton and neutron quasiparticle states.

The QRPA amplitudes X λ
pn,K and Y λ

pn,K are solutions of the
QRPA equations,

∑
p′n′

(
Apn,p′n′ Bpn,p′n′

B∗
pn,p′n′ A∗

pn,p′n′

)(
X λ

p′n′,K
Y λ

p′n′,K

)
= �λ

K

(
X λ

pn,K

−Y λ
pn,K

)
, (6)

where �λ
K is an excitation energy, measured from the QRPA

ground state of the initial/final state. The A and B matrices
contain residual interactions, computed from the second func-
tional derivative of the EDF. The 2νββ matrix element can
be calculated by combining the pnQRPA transition matrix
elements from the initial and final states of the decay to the
intermediate states. Because the procedure introduces two
sets of the intermediate states, an additional approximation
for matching them is necessary. We thus approximate the
Gamow-Teller matrix element in Eq. (4) by

M2ν
GT =

1∑
K=−1

(−1)K
∑
λi>0
λ f >0

〈0+
f ,QRPA|F̂ GT−

−K |λ f , K〉〈λ f , K|λi, K〉〈λi, K|F̂ GT−
K |0+

i,QRPA〉
�

λi
K +�

λ f
K

2

. (7)
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In the summation, the expression λ > 0 denotes the states
with �λ

K > 0.
The Gamow-Teller operator in the quasiparticle basis is

F̂ GT±
K =

∑
a

(σK )aτ
±
a

=
∑

pn

[
F GT±

20,K (pn)â†
pâ†

n + F GT±
02,K (pn)ân̄âp̄

]
+ (â†â−terms), (8)

and its transition amplitudes in Eq. (7) are given by

〈λi, K|F̂ GT−
K |0+

i,QRPA〉
=

∑
pn

[
F GT−

20,K (pn)X λi∗
pn,K +F GT−

02,K (pn)Y λi∗
pn,K

]
〈0+

f ,QRPA|F̂ GT−
−K |λ f , K〉

=
∑

pn

[
F GT−

02,K (pn)X λ f

pn,K +F GT−
20,−K (pn)Y λ f

pn,−K

]
. (9)

To compute the overlap of the two intermediate states
〈λ f , K|λi, K〉 we adapt expressions based on the QRPA [25]
and the quasiparticle Tamm-Dancoff approximation (QTDA)
[8]. The result is

〈λ f , K|λi, K〉 =
∑
pnp′n′

(
X

λ f ∗
p′n′,K X λi

pn,K − αY
λ f ∗
p′n′,KY λi

pn,K

)
× Opp′ (α)Onn′ (α)

=
∑

pn

(
X̄

λ f ∗
pn,K X̄ λi

pn,K − αȲ
λ f ∗
pn,KȲ λi

pn,K

)
, (10)

where α is a parameter that is 0 for the QTDA overlap and
1 for the QRPA overlap, and the Oττ ′ (α) are elements of
the matrix that connect the quasiparticles associated with the
initial and final states of the decay. Explicit expressions for
these elements, together with the derivation of Eq. (10), are in
Appendix A. X̄ and Ȳ are defined by

X̄ λi
pn,K =

∑
p′

OT
pp′ (α)X λi

p′n,K , (11a)

Ȳ λi
pn,K =

∑
p′

OT
pp′ (α)Y λi

p′n,K , (11b)

X̄
λ f

pn,K =
∑

n′
X

λ f

pn′,KOT
n′n(α), (11c)

Ȳ
λ f

pn,K =
∑

n′
Y

λ f

pn′,KOT
n′n(α). (11d)

III. THE FAM

A. pnFAM

The FAM is formally equivalent to the QRPA and enables
us to compute DFT response functions efficiently. A detailed
formulation of the like-particle FAM and the pnFAM in the
presence of the pairing correlations appear, respectively, in
Refs. [17] and [18].

In the pnFAM, one applies a time-dependent external field
of the form

F̂ T
K (t ) = η

(
F̂ T

K eiωt + F̂ T †
K e−iωt

)
, (12)

with F̂ T
K a one-body proton-neutron excitation operator and

ω a complex frequency. The excitation operator induces os-
cillations of quasiparticle annihilation operators (e.g., for
neutrons) of the form

δân(t ) = η
∑

p

â†
p

[
Xpn

(
ω, F̂ T

K

)
e−iωt + Y ∗

pn

(
ω, F̂ T

K

)
eiωt

]
. (13)

Solving the time-dependent DFT equations results in the FAM
amplitudes Xpn(ω, F̂ T

K ) and Ypn(ω, F̂ T
K ), which are related to

the QRPA amplitudes X λ
pn,K and Y λ

pn,K through [22]

Xpn
(
ω, F̂ T

K

) = −
∑
λ>0

{
X λ

pn,K 〈λ, K|F̂ T
K |0+〉

�λ
K − ω

+ Y λ∗
pn,K 〈0+|F̂ T

K |λ,−K〉
�λ

K + ω

}
, (14)

Ypn
(
ω, F̂ T

K

) = −
∑
λ>0

{
Y λ

pn,K 〈λ, K|F̂ T
K |0+〉

�λ
K − ω

+ X λ∗
pn,K 〈0+|F̂ T

K |λ,−K〉
�λ

K + ω

}
. (15)

B. 2νββ matrix elements in the pnFAM

To calculate the QRPA 2νββ nuclear matrix element in
Eq. (7), we separately solve the pnFAM computations in the
initial and final nuclei, distinguishing quantities from the two
nuclei with the superscripts (i) and ( f ). We then compute
a quantity that is a combination of the two sets of pnFAM
amplitudes

T
(
α; ωi, F̂ Ti

Ki
; ω f , F̂

Tf

Kf

) ≡
∑

pn

[
Ȳ ( f )

pn

(
ω f , F̂

Tf

Kf

)
X̄ (i)

pn

(
ωi, F̂ Ti

Ki

)

−αX̄ ( f )
pn

(
ω f , F̂

Tf

Kf

)
Ȳ (i)

pn

(
ωi, F̂ Ti

Ki

)]
,

(16)

where X̄ (i/ f ) and Ȳ (i/ f ) are the amplitudes in Eqs. (14) and
(15), labeled in the same way as the QRPA amplitudes in
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Eq. (11). By substituting Eqs. (14) and (15) into Eq. (16), we obtain an expression for T in terms of the QRPA amplitudes:

T
(
α; ωi, F̂ Ti

Ki
; ω f , F̂

Tf

Kf

) =
∑

pn

∑
λi>0
λ f >0

[(
X̄

λ f ∗
pn,Kf

X̄ λi
pn,Ki

− αȲ
λ f ∗
pn,Kf

Ȳ λi
pn,Ki

)〈0+
f |F̂ Tf

Kf
|λ f ,−Kf 〉〈λi, Ki|F̂ Ti

Ki
|0+

i 〉(
�

λ f

Kf
+ ω f

)(
�

λi
Ki

− ωi
)

+
(
Ȳ

λ f ∗
pn,Kf

X̄ λi
pn,Ki

− αX̄
λ f ∗
pn,Kf

Ȳ λi
pn,Ki

)〈λ f , Kf |F̂ Tf

Kf
|0+

f 〉〈λi, Ki|F̂ Ti
Ki

|0+
i 〉(

�
λ f

Kf
− ω f

)(
�

λi
Ki

− ωi
)

+
(
X̄

λ f ∗
pn,Kf

Ȳ λi
pn,Ki

− αȲ
λ f ∗
pn,Kf

X̄ λi
pn,Ki

)〈0+
f |F̂ Tf

Kf
|λ f ,−Kf 〉〈0+

i |F̂ Ti
Ki

|λi,−Ki〉(
�

λ f

Kf
+ ω f

)(
�

λi
Ki

+ ωi
)

+
(
Ȳ

λ f ∗
pn,Kf

Ȳ λi
pn,Ki

− αX̄
λ f ∗
pn,Kf

X̄ λi
pn,Ki

)〈λ f , Kf |F̂ Tf

Kf
|0+

f 〉〈0+
i |F̂ Ti

Ki
|λi,−Ki〉(

�
λ f

Kf
− ω f

)(
�

λi
Ki

+ ωi
)

]
. (17)

T has first-order poles at ωi = ±�
λi
Ki

and ω f = ±�
λ f

Kf
. We

choose a counterclockwise contour Ci (Cf ) for ωi (ω f ) that
includes positive-energy (negative-energy) poles and excludes
all the negative-energy (positive-energy) poles, as in Fig. 1, to
extract the residues from the first term on the right side of
Eq. (17).

Integrating T together with an arbitrary regular complex
function of ωi and ω f over those frequencies, we obtain an
expression that can be used for two-body matrix elements:

M
(
α; F̂ Ti

Ki
, F̂

Tf

Kf
; f (ωi, ω f )

)

= − 1

4π2

∮
Ci

dωi

∮
Cf

dω f T
(
α; ωi, F̂ Ti

Ki
; ω f , F̂

Tf

Kf

)
f (ωi, ω f )

=
∑
λi>0
λ f >0

∑
pn

(
X̄

λ f ∗
pn,Kf

X̄ λi
pn,Ki

− αȲ
λ f ∗
pn,Kf

Ȳ λi
pn,Ki

)

× f
(
�

λi
Ki

,−�
λ f

−Kf

)〈0+
f |F̂ Tf

Kf
|λ f ,−Kf 〉〈λi, Ki|F̂ Ti

Ki
|0+

i 〉.
(18)

FIG. 1. Contours Ci and Cf .

The Fermi and Gamow-Teller 2νββ decay nuclear matrix
elements are then given by

M2ν
F = M

(
α; F̂ F−, F̂ F−; f = 2

ωi − ω f

)
, (19)

M2ν
GT =

1∑
K=−1

(−1)KM
(

α; F̂ GT−
K , F̂ GT−

−K ; f = 2

ωi − ω f

)
,

(20)

under the assumptions that X
λ f

−K = X
λ f

K , Y
λ f

−K = Y
λ f

K , and

�
λ f

−Kf
= �

λ f

Kf
. Even when starting from the final state we use

the external operator σ−Kτ− that changes neutrons into pro-
tons to properly include the backward amplitudes in Eqs. (14)
and (15).

By setting f = 1, α = 1, and taking the same HFB vacuum
for the initial and final states in Eq. (18), we can use that
equation to compute the unweighted summed strengths:

Mi= f (1; F̂ F∓, F̂ F±; 1) =
∑
λ>0

|〈λ, 0|F̂ F∓|0+〉|2, (21)

Mi= f
(
1; F̂ GT∓

K , F̂ GT±
−K ; 1

) = (−1)K

×
∑
λ>0

|〈λ, K|F̂ GT∓
K |0+〉|2. (22)

Sum rules can be used to check the routines that compute
matrix elements.

IV. RESULTS WITH SkM* AND COMPARISON
WITH PRIOR WORK

Our calculation of 2νββ nuclear matrix elements uses an
extension of the pnFAM code developed in Ref. [18], which
is in turn based on the nuclear DFT solver HFBTHO [26–28].
That last code uses the harmonic oscillator basis in a cylin-
drical coordinate system and allows axial deformation. In this
section we provide details of our calculations with the SkM*
functional and compare our 2νββ matrix elements for 76Ge,
130Te, 136Xe, and 150Nd with those obtained in Ref. [8] by
diagonalizing the pnQRPA matrix.
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TABLE I. Experimental values of ̃(3)
n and ̃(3)

p (in MeV) and the
volume pairing strengths Vn and Vp fit to those values (in MeV fm3).
The averages of the strengths in the initial and final nuclei used in the
pairing EDF. Experimental binding energies are taken from Ref. [29].
Data in parentheses are not used to fit the pairing strengths.

̃(3)
n ̃(3)

p Vn Vp

76Ge 1.393 1.114 −182.70 −194.49
76Se 1.551 1.392 −185.40 −202.22
Average −184.05 −198.36
130Te 1.114 (0.801) −166.21 N/A
130Xe 1.170 1.016 −173.80 −194.00
Average −170.01 −194.00
136Xe (0.841) 0.751 N/A −148.66
136Ba 0.960 1.005 −184.16 −172.54
Average −184.16 −160.60
150Nd 1.070 0.918 −181.64 −202.31
150Sm 1.194 1.196 −184.84 −195.24
Average −183.24 −198.78

A. Parameter values

To integrate in cylindrical coordinates, we use Gauss-
Hermite quadrature with NGH = 40 points for the z direction
and Gauss-Laguerre quadrature with NGL = 40 points for the
r direction. To compute the direct Coulomb mean field, we use
the prescription described in Ref. [27] with length parameter
L = 50 fm and NLeg = 80 Gauss-Legendre points.

We include Nsh = 20 harmonic-oscillator major shells to
describe the HFB wave functions. This corresponds to 1771
single-particle states for neutrons and protons (with axial and
time-reversal symmetry taken into account), and, in the pn-
FAM, to 257 686 K = 0 two-quasiparticle states and 256 025
K = ±1 two-quasiparticle states. We include all such states,
with no additional model-space truncation, in the pnFAM
calculations. The dimension of the pnQRPA matrix corre-
sponding to our pnFAM calculations is about 500 000 for each
K quantum number.

We employ the same Skyrme SkM* functional [30]
and volume-type pairing with 60-MeV energy cutoff (with
h̄2/2m = 20.73 MeV fm2 and the one-body center-of-mass
correction included in the kinetic term) as that in Ref. [8]. The
HFB solver cited in that paper, however, works in a cylindrical
box with rmax = zmax = 20 fm and a coordinate spacing of 0.7
fm, and is thus different from ours.

We adjust the volume pairing strengths to reproduce exper-
imental odd-even staggering (OES) with the density-averaged
pairing gap. To reduce fluctuations [10], we take as the experi-
mental data an average of the results of the three-point formula
evaluated at the two even-odd or odd-even systems:

̃(3)
n (N, Z ) = (3)

n (N − 1, Z ) + (3)
n (N + 1, Z )

2
,

̃(3)
p (N, Z ) = (3)

p (N, Z − 1) + (3)
p (N, Z + 1)

2
, (23)

where 
(3)
n/p is the result of the three-point formula [31].

Table I lists the experimental values for this quantity and

TABLE II. Properties of HFB ground states with the SkM* +
volume pairing (with average pairing strengths) EDF. The table
shows pairing gaps (in MeV), quadrupole deformation, and total
HFB energies (in MeV) and compares the quadrupole deformation
to the value in Ref. [8].

n p β E HFB β (Ref. [8])

76Ge 1.609 1.473 −0.021 −661.804 −0.025
1.435 1.205 0.185 −662.274 0.184
1.612 1.475 0. −661.802

76Se 1.589 1.648 0. −659.315 −0.018
1.508 1.257 −0.194 −659.594

130Te 1.178 1.028 0. −1096.839 0.01
130Xe 1.078 1.009 0.141 −1093.423 0.13

1.107 1.113 −0.124 −1093.152
1.359 1.351 0. −1092.393

136Xe 0. 0.878 0. −1143.253 0.004
136Ba 1.025 0.931 −0.047 −1139.268 −0.021

0.928 0.735 0.094 −1139.538
1.057 0.985 0. −1139.231

150Nd 1.129 0.764 0.292 −1235.794 0.27
1.375 1.358 −0.177 −1232.563
1.422 1.688 0. −1231.080

150Sm 1.131 1.307 0.223 −1234.675 0.22
1.294 1.707 0. −1232.436
1.305 1.534 −0.137 −1233.068

the neutron and proton volume pairing strengths that best
reproduce them. In order to use the same EDF for both nuclei
in the decay, we take the average of the pairing strengths fit
in the initial and final nuclei. We note that the experimental


(3)
n/p values do not provide useful information if the series of

isotopes used to calculate them includes closed-shell nuclei.
(3)

p in 130Te (Z = 50 included) and (3)
n in 136Xe and 136Ba

(N = 82 included) are such cases if the average of the results
of two odd-even mass formulas is used. We avoid using the
pairing gap ̃(3)

p of 130Te to fit the proton pairing strength,
fitting the pairing strength instead to the proton gap in 130Xe.
We do adopt the neutron ̃(3) of 136Ba, however, to determine
the neutron pairing strength, because the strengths fit to (3)

n
and ̃(3)

n are quite similar in that nucleus. The globally fit
EDFs described in Sec. V are free from these problems.

Table II shows the results of the DFT calculations for the
initial and final nuclei. The quadrupole deformations of the
HFB states are quite close to those in Ref. [8]. We choose
the HFB solution in the top line for each nucleus in which
several HFB solutions coexist.

Table III shows ββ Q values. Our calculation does not per-
fectly reproduce the values in Ref. [8], which were obtained
from the same SkM* EDF but a different HFB code. We
suspect that the differences are due to the different represen-
tations of the oscillator basis states and treatments of pairing.

Table IV lists the values of the HFB overlap included in the
matrix O. Our values agree with those of previous calculations
with similar nuclear deformation. The overlap becomes small
when the deformation of the initial and final states are differ-
ent. That situation arises in 130Te and 136Xe, where the initial
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TABLE III. Q values for each double-beta decay in units of MeV.
Experimental Q values are obtained from atomic masses [29].

This paper SkM* (Ref. [8]) Exp.

76Ge → 76Se 4.05 4.84 2.04
130Te → 130Xe 4.98 4.22 2.53
136Xe → 136Ba 5.55 5.60 2.46
150Nd → 150Sm 2.68 2.35 3.37

states are spherical while the final states are prolate and oblate,
respectively. The overlap also becomes small when the initial
or final state has no pairing gap. That is the case for neutrons
in 136Xe.

B. Contour

To use the expression in Eq. (18), we must choose the
contours Ci and Cf . We take each to be centered on the real
axis and circular, with the circle specified by the two energies
ωL and ωR at they cross the real axis. The radius r and
the center of the contour ω0 are then given by r = (ωR −
ωL)/2 and ω0 = (ωL + ωR)/2, and every point on the con-
tour can be written in the form ω = ω0 + reiθ . We use ωL =
0.1 MeV and ωR = 120 MeV for Ci and ωL = −120 MeV and
ωR = −0.1 MeV for Cf to include all the unperturbed two-
quasiparticle states within the quasiparticle-energy cutoff.

Figure 2 shows the integrands for the summed GT strength
and the 2νββ matrix element in 76Ge as a function of the
angle θ for the contour Ci. The main contribution to each
comes from the peak at θ = π , the point at ω = ωL where
the two contours are closest. While the integrand of the sum
is distributed broadly along the whole contour Ci, the energy
denominator 2/(ωi − ω f ) concentrates the 2νββ contribution
at θ = π . To take this contribution into account precisely
and efficiently, we introduce a parameter γ to control the
distribution of the discretized points near the origin, i.e., we
discretize the angle θ as follows:

θk = (
m + xγ

k

)
π, (24)

xk = −1 + 2
k − 1

nr − 1
(k = 1, 2, . . . , nr ), (25)

where γ is an odd number, and m is 1 for Ci and 0 for Cf . The
parameter θk runs from 0 to 2π for Ci and −π to π for Cf .
We use nr = 202 and omit the contribution from (ωi, ω f ) =
(ωR,−ωL), because those points are on the real axis and can
be very close to the QRPA poles, although their contribution

TABLE IV. Neutron and proton parts of the HFB overlap
〈0+

f ,HFB|0+
i,HFB〉 between the initial and the final states compared with

values from previous QRPA calculations.

Neutron Proton Total Ref. [8] Ref. [32] Ref. [33]

76Ge 0.907 0.886 0.803 0.81 0.72, 0.73
130Te 0.329 0.403 0.133 0.73, 0.73
136Xe 0.480 0.787 0.378 0.47 0.43, 0.39
150Nd 0.679 0.589 0.400 0.52 0.51, 0.52
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FIG. 2. Integrand in computation of summed Gamow-Teller
strength and 2νββ matrix element for 76Ge as a function of the angle
θ for the contour Ci. The integrand is normalized to 1 at θ = π .

to the nuclear matrix element should be small because of the
factor 2/(ωi − ω f ).

Table V shows the dependence of the summed strengths
and the 2νββ matrix element in 76Ge on the parameter γ . The
matrix element converges by γ = 5, which is the value we
use.

C. Summed strengths

Table VI shows the unweighted summed Fermi and
Gamow-Teller strengths obtained from the double contour
integration for selected nuclei of interest to experimentalists.
Integration up to 120 MeV reproduces more than 99.9% of the
Ikeda sum rule in all these nuclei.

D. 2νββ matrix element

We calculate the 2νββ matrix elements for 76Ge, 130Te,
136Xe, and 150Nd, setting the neutron-proton isovector pairing
strength to the average of the neutron and proton like-particle
pairing strengths [V1 = (Vn + Vp)/2] and varying the isoscalar
pairing strength V0 from 0 to −300 MeV fm3. We use the
QTDA (α = 0) to compute the overlap among intermedi-
ate states. Figure 3 displays the dependence of the 2νββ

TABLE V. Dependence on the discretization param-
eter γ in 76Ge of summed Fermi and Gamow-Teller
strengths m(F±) = ∑

λ>0 |〈λ, 0|F̂ F±|0+〉|2 and m(GT±) =∑
K (−1)K

∑
λ>0 |〈λ, K|F̂ GT±

K |0+〉|2 and of the dimensionless
Gamow-Teller 2νββ nuclear matrix element. We use volume
like-particle pairing and no isoscalar pairing.

γ 1 3 5 7

m(F−) 12.0213 12.0209 12.0201 12.0189
m(F+) 0.0252 0.0255 0.0260 0.0269
m(F−) − m(F+) 11.9961 11.9954 11.9940 11.9920

m(GT−) 37.5860 37.5837 37.5811 37.5774
m(GT+) 1.6065 1.6070 1.6085 1.6109
m(GT−) − m(GT+) 35.9795 35.9767 35.9726 35.9664

M2νmec2 0.1802 0.1574 0.1574 0.1575
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TABLE VI. Summed Fermi and Gamow-Teller transitions, from
double contour integration (ωL = 0.1 MeV and ωR = 120 MeV,
nr = 202, and γ = 5), as percentages of the corresponding sum
rules.

m(F−)−m(F+)
N−Z

m(GT−)−m(GT+)
3(N−Z )

76Ge 0.9995 0.9992
76Se 0.9994 0.9992
130Te 0.9996 0.9993
130Xe 0.9996 0.9993
136Xe 0.9998 0.9997
136Ba 0.9996 0.9994
150Nd 0.9996 0.9994
150Sm 0.9996 0.9995

Gamow-Teller nuclear matrix elements on the isoscalar pair-
ing strength. Like the authors of that paper, we use two values
of gA: one “unquenched” (gA = 1.25, though the currently
accepted value is greater than 1.27) and one quenched (gA =
1.0), and compare results for the EDF SkM* with and without
a modified proton-neutron piece [Cs

1 = 100 MeV fm3, CT
1 =

C∇s
1 = 0, see Eq. (26)]. Our matrix elements agree reasonably

well with those of Ref. [8] in 130Te, 136Xe, and 150Nd, while
they are about twice as large in 76Ge.

V. GLOBAL EDF

A. Performance of global EDFs

As Fig. 3 shows, the 2νββ and 0νββ nuclear matrix el-
ements are suppressed by isoscalar proton-neutron pairing
correlations that cannot be constrained from the ground-state
properties of even-even nuclei. The usual QRPA approach
uses 2νββ decay rates to determine the strength of isoscalar
pairing separately in each decaying nucleus. The philosophy

0
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0.7

76Geg A
2
M
2ν
(M
eV

-1
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SkM* gA=1.0

0
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0.04

0.06

-200-1000

130Teg A
2
M
2ν
(M
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-1
)

V0 (MeV fm3)

0
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0.1
0.15
0.2
0.25

136Xe

modified gA=1.25
modified gA=1.0

-200-1000
-0.05

0
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0.15

0.2

150Nd
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FIG. 3. Dependence on the isoscalar pairing strength of the 2νββ

Gamow-Teller nuclear matrix element (in units of MeV−1) for 76Ge,
130Te, 136Xe, and 150Nd, with the SkM* + volume pairing EDF. Red
curves indicate the results with the time-odd functional derived from
the SkM* interaction and blue curves the results with the modified
time-odd functional. The thick solid and dotted curves correspond
to gA = 1.25, and the dashed and thin solid curves to the quenched
value gA = 1.0.

of nuclear DFT, however, is that one EDF parameter set
should, if possible, describe all the ββ-decaying nuclei in the
nuclear chart. In this section we assess the ability of globally
fit EDFs to describe 2νββ decay, without using that observ-
able at all in the fitting. We use Skyrme-type EDFs, with the
isovector time-odd and isoscalar pairing parts globally fit to
single-β decay rates and to Gamow-Teller and spin-dipole
resonances. Reference [15], which deals with single-β decay
in many isotopes, undertakes the global fitting and proposes
ten parameter sets, called 1A, 1B, 1C, 1D, 1E, 2, 3A, 3B,
4, and 5, each corresponding to a different EDF. The time-
even parts for all the sets except set 2 are taken from the
functional SkO′ [34]; that of parameter set 2 comes from
the functional SV-min [14] (though tensor-density terms are
neglected, and the neutron and proton have different masses).
In both cases, center-of-mass corrections to the mean field are
neglected. The paper uses mixed volume-surface like-particle
isovector pairing terms, fit to reproduce odd-even staggering
in ten isotopes with 50 � A � 250; the strengths are Vn =
−253.75 MeV fm3, Vp = −274.68 MeV fm3 for SkO′ and
Vn = −244.06 MeV fm3, Vp = −257.90 MeV fm3 for SV-
min [35].

The isovector time-odd part of any Skyrme-type EDF is
given by

χodd
1 (r) = Cs

1[ρ0]s2
1 + Cs

1 s1 · s1 + C j
1 j2

1

+ CT
1 s1 · T 1 + C∇ j

1 s1 · ∇ × j1

+ CF
1 s1 · F1 + C∇s

1 (∇ · s1)2, (26)

where s1, j1, T 1, and F1 are the isovector spin, current,
spin-kinetic, and tensor-kinetic densities, respectively. The
isoscalar pairing functional in all these parametrizations has
the mixed density dependence

χ̃0(r) = V0

4

[
1 − 1

2

ρ0(r)

ρc

]
|s̃0(r)|2, (27)

where s̃0 is the isoscalar pair density, ρc = 0.16 fm−3, and ρ0

is the usual isoscalar density. In the parameter sets 1A, 1B, 1C,
1D, 1E, only Cs

1 (with no density dependence) and V0 are fit.
In sets 3A and 3B CT

1 and CF
1 are fit as well. In the parameter

set 4, C j
1 ,C∇ j

1 , and C∇s
1 are adjusted, while other parameters

are the same as in set 3A. In set 5, V0, Cs
1, and C j

1 are fit.
Table VII lists the pairing gaps and quadrupole deforma-

tion of the HFB states used to compute 2νββ nuclear matrix
elements. Neutron pairing collapses only in 136Xe and proton
pairing collapses in 48Ca and 116Sn. SkO′ and SV-min cause
different amounts of deformation. 96Zr, 100Mo, and 100Ru are
oblate, oblate, and prolate (respectively) with SkO′, while they
are all spherical with SV-min. 116Cd is spherical with SkO′,
but is prolate with SV-min.

Table VIII contains the overlaps of the initial and final HFB
vacua. Significant differences in deformation and pairing be-
tween the two HFB states lead to small overlaps, and because
the two EDFs can produce different levels of deformation and
pairing in any nucleus, the overlaps depend significantly on
the EDF. In 96Zr and 100Mo, the HFB overlaps with SkO′

are extremely small because the initial state is oblate and the
final state spherical or prolate. In 116Cd, the HFB overlap with
SV-min is smaller for a similar reason. The QRPA may not be
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TABLE VII. The neutron and proton pairing gaps (in MeV) and
quadrupole deformation for the lowest-energy HFB solutions in the
initial and final nuclei of the decay, computed with the SkO′ and
SV-min EDFs, together with a mixed pairing EDF. Solutions with
parentheses are not the lowest-energy ones, but we use them in
addition when calculating matrix elements.

SkO′ SV-min

n p β n p β

48Ca 0.771 0.000 0.000 0.793 0.000 0.000
48Ti 1.270 1.386 0.000 1.275 1.309 0.000
76Ge 1.063 1.189 0.136 1.123 1.094 0.131
76Se 1.134 1.532 0.000 1.165 1.352 0.000
82Se 0.619 1.106 0.152 0.689 1.124 0.134
82Kr 1.014 1.353 0.112 1.041 1.230 0.101
96Zr 1.153 1.133 −0.173 1.041 0.986 0.000

(1.354 1.129 0.000)
96Mo 1.202 1.174 0.000 0.991 1.090 0.000
100Mo 1.200 1.089 −0.192 1.299 1.078 0.000

(1.123 1.246 0.214)
100Ru 0.994 1.092 0.186 1.189 1.137 0.000
116Cd 1.430 0.854 0.000 1.463 0.492 0.120
116Sn 1.406 0.000 0.000 1.553 0.000 0.000
128Te 1.139 0.970 0.000 1.209 0.907 0.000
128Xe 1.136 0.912 0.142 1.152 0.841 0.156

(1.147 1.064 −0.112) (1.179 0.986 −0.122)
130Te 1.013 0.971 0.000 1.043 0.902 0.000
130Xe 1.051 1.001 0.111 1.077 0.947 0.118
136Xe 0.000 1.180 0.000 0.000 1.143 0.000
136Ba 0.767 1.349 0.000 0.775 1.296 0.000
150Nd 0.962 0.686 0.311 0.886 0.830 0.266
150Sm 0.901 1.074 0.238 0.823 1.101 0.203
238U 0.863 0.735 0.265 0.763 0.596 0.269
238Pu 0.828 0.640 0.269 0.745 0.572 0.272

TABLE VIII. The HFB overlap 〈0+
f ,HFB|0+

HFB,i〉 between the ini-
tial and the final states of the double-beta decay, computed with SkO′

and SV-min EDFs. The numbers in parentheses denote powers of 10.

SkO′ SV-min

Neutron Proton Total Neutron Proton Total

48Ca 0.764 0.513 0.392 0.776 0.512 0.398
76Ge 0.577 0.559 0.323 0.586 0.587 0.344
82Se 0.729 0.829 0.604 0.772 0.862 0.665
96Zr 0.283 0.306 0.087 0.882 0.877 0.774
(sph.→ sph.) 0.915 0.893 0.818
100Mo 1.8(−3) 1.4(−2) 2.6(−5) 0.914 0.905 0.828
(pro.→ pro.) 0.864 0.875 0.755
116Cd 0.932 0.521 0.485 0.507 0.293 0.148
128Te 0.342 0.388 0.133 0.294 0.343 0.101
(obl.128Xe) 0.440 0.533 0.235 0.403 0.487 0.197
130Te 0.489 0.523 0.256 0.464 0.509 0.236
136Xe 0.517 0.921 0.476 0.522 0.931 0.486
150Nd 0.624 0.601 0.375 0.711 0.683 0.485
238U 0.912 0.882 0.805 0.902 0.873 0.787
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FIG. 4. Comparison of dimensionless 2νββ nuclear matrix el-
ements obtained from global EDFs with experimental values. The
matrix elements computed with the lowest-energy HFB solutions are
marked with crosses, while those elements computed with the other
HFB solutions are marked with triangles. Orange symbols come
from computations with the QTDA overlap and blue symbols from
computations with the QRPA overlap. The EDFs that give rise to
each particular point appear in Table IX in Appendix B.

adequate when the overlaps, like those with SkO′ in 100Mo,
are very small. Our treatment omits both projection onto states
with good angular momentum, which involves the mixing of
states with different orientations, and the fluctuation in shape
and pairing captured, e.g., by the generator coordinate method
[36,37]. The effects of the physics we have neglected can be
significant when the matrix elements are small at the HFB or
QRPA levels.

In Fig. 4 we compare the Gamow-Teller 2νββ nuclear
matrix element, scaled by g2

Amec2 to be dimensionless, that
results from calculations with the ten different SkO′- and
SV-min-based EDFs discussed just above. We also show the
experimental matrix elements, extracted from the half-lives in
Ref. [5]. We use a quenched axial-vector coupling constant
gA = 1.0 to match the value from Ref. [15], which determines
the EDF parameters. Despite the differences among the EDFs
in the pieces of the functional that were fit and in the data
chosen to fit them, the 2νββ matrix elements that they pro-
duce are quite close to one another in some of the heavier
nuclei. This fact means that the parts of the EDF that affect
the 2νββ matrix element are determined almost fully by the β

decay rates and giant-resonance energies used in fitting them.
In some lighter isotopes such as 48Ca, 96Zr, and 100Mo, on the
other hand, the values of the nuclear matrix element, like those
of the overlap, depend significantly on the EDF. Although
such matrix elements may provide an additional constraint
on the pnEDF, the disagreement also suggests, as we noted
earlier, that correlations that escape the QRPA are important
[38,39]. Table IX in Appendix B contains more detail than
Fig. 4, in particular the values for each individual EDF of all
the matrix elements.

In some nuclei, such as 76Ge, the EDFs all produce
comparable values for the matrix element, but those values
are quite different from the experimental one. The reason
for the discrepancy, again, is the quite different degrees of
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FIG. 5. Dimensionless 2νββ nuclear matrix elements calculated with the global EDFs. The matrix elements from parameter set 4 are
excluded.

deformation in the initial and final nuclei, a difference that in
reality is probably made less significant by shape fluctuations.
In other nuclei, 96Zr, 100Mo, and 128Te (and especially the first
two), the values span a wide range. The reason is that two
local minima appear in the initial isotopes, and the value of
the 2νββ matrix element depends strongly on which mini-
mum is used. In these two cases, the HFB overlaps associated
with the lowest minima for SkO′ are very small (0.087 and
2.6 × 10−5 in 96Zr and 100Mo), and the 2νββ matrix elements
from the lowest minimum are consequently smaller than the
experimental values, while the matrix elements associated
with the other HFB solutions are larger than or comparable to
the experimental values. Correlations that admix states near
those other minima, if they were taken into account, would
probably increase the 2νββ matrix elements produced by the
lowest minima. Such admixtures are beyond what the QRPA
includes, however, and seeing their effects would require an
approximation such as the generator-coordinate method.

Figure 4 also shows that overlaps computed with the
QTDA prescription result in larger matrix elements than those
computed with the QRPA prescription.

B. Predictions

Using the same global EDFs as in the previous section, we
compute the 2νββ matrix elements for all the nuclei in which
that decay might conceivably be observed: 46Ca, 70Zn, 80Se,
86Kr, 94Zr, 98Mo, 104Ru, 110Pd, 114Cd, 122Sn, 124Sn, 134Xe,
142Ce, 146Nd, 148Nd, 154Sm, 160Gd, 170Er, 176Yb, 186W, 192Os,
198Pt, 204Hg, 226Ra, 232Th, 244Pu, and 248Cm. Figure 5 sum-
marizes the results, while Table X in Appendix B indicates
the individual EDFs responsible for each symbol in the figure.
We emphasize that we are able to make these predictions
only because we use EDFs that are fit globally and without
considering 2νββ half-lives. In typical QRPA calculations, by
contrast, the strength of isoscalar pairing is adjusted in each
nucleus individually to reproduce the 2νββ half-life.

As we mentioned in the previous section, the QRPA
nuclear matrix elements may not be reliable if the defor-
mations of the initial and final states of the decay are
different. The deformation parameters differ by more than
0.1 for the following decays: 70Zn → 70Ge, 80Se → 80Kr,
134Xe → 134Ba, and 146Nd → 146Sm with SkO′, and 80Se →
80Kr, 114Cd → 114Sn, 122Sn → 122Te, 134Xe → 134Ba, and
146Nd → 146Sm with SV-min. We also saw earlier that the

QRPA can go awry if shape mixing is important. A full
treatment of shape mixing requires something like the gen-
erator coordinate method [40,41], but we can get a good
idea of when it will be significant by examining potential
energy curves. These turn out to be broad near the minimum
for the nuclei 46Ti, 70Ge, 94Zr (only SkO′), 98Mo, 104Ru,
110Pd, 114Cd, 122Te, 124Te, 134Ba, 142Ce, 198Pt, and 198Hg.
Unfortunately, the generator coordinate method, while it has
been applied to 0νββ decay [37,38,42–52], is difficult to ap-
ply to 2νββ decay because the closure approximation is poor
there and a complete set of intermediate states is required.

With the parameter set 4, the pnFAM converges more
slowly than with the other parameter sets, and the resulting
matrix elements are often quite different from those produced
by the other sets. Thus we exclude set 4 from the distribution
of the nuclear matrix elements shown in Fig. 5. We see better
agreement among the other EDFs in heavier isotopes as a
general rule, and the QTDA prescription for the overlap again
leads to larger numbers than does QRPA prescription.

VI. CONCLUSIONS

We have presented a computationally efficient framework
for calculating the matrix elements for two-neutrino double-
beta decay within nuclear density functional theory. We
employ the finite amplitude method to compute the QRPA
approximation to the matrix elements. Our approach allows
large single-particle model spaces and the use of a single
nuclear EDF for all nuclei. It also eliminates the need to
truncate two-quasiparticle spaces.

We first used harmonic-oscillator-based HFB and FAM
codes together with familiar EDFs to compute the 2νββ ma-
trix elements in a few important nuclei, comparing the results
with those obtained previously by diagonalizing the QRPA
matrix. Using EDFs that had been fit globally to single-β
decay rates and giant-resonance energies, we then computed
the 2νββ matrix elements in all nuclei in which double-beta
decay has or could be observed. Agreement with the matrix
elements extracted from already measured half-lives is good
in general, and we offered predictions for those nuclei that
have unmeasured half-lives.

Although we focus on 2νββ decay in this paper, we can
also compute double-electron capture matrix elements in the
same way. The most interesting extension of our work is to
neutrinoless double-beta decay. The presence of a neutrino
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propagator in that matrix element, however, will make that
process more challenging to treat than 2νββ decay.
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APPENDIX A: OVERLAP

1. QRPA overlap

We follow the discussion in Ref. [25] to evaluate the
overlap 〈λ f , K|λi, K〉 of two intermediate states. The QRPA
phonon operators that excite the initial HFB state are related
to the those that excite the final state by

Q̂λi†
K =

∑
λ f

(
aλiλ f Q̂

λ f †
K + bλiλ f

ˆ̃Qλ f

K

)
, (A1)

where ˆ̃Qλ
K = Q̂λ

−K . This relation is based on the fact that both
operators span the complete set of two-quasiparticle states
with angular momentum projection K . The overlap of the
intermediate state can be written in terms of the phonon oper-
ators as

〈λ f , K|λi, K〉 = 〈0+
f ,QRPA|Q̂λ f

K Q̂λi†
K |0+

i,QRPA〉

=
∑
λ′

f

(
〈0+

f ,QRPA|Q̂λ f

K Q̂λ′
f †

K |0+
i,QRPA〉aλiλ

′
f

+ 〈0+
f ,QRPA|Q̂λ f

K Q̂λ′
f

−K |0+
i,QRPA〉bλiλ

′
f

)
≈ aλiλ f 〈0+

f ,HFB|0+
i,HFB〉, (A2)

where we neglect the term proportional to bλiλ
′
f
, because it

involves a two-phonon state, and approximate the overlap
between the two QRPA correlated ground states.

We have two sets of the quasiparticles, one defined for the
initial HFB state and the other for the final state:

â(i)
μ |0+

i,HFB〉 = 0, â( f )
μ |0+

f ,HFB〉 = 0, (A3)

with μ a proton or neutron single-particle state with positive
angular momentum jz along the symmetry axis. We write the
transformation between the two sets of the quasiparticles in
the form

â(i)†
μ =

∑
ν∈τ

′(
Rμν â( f )†

ν + Sμν̄ â( f )
ν̄

)
, (A4)

â(i)†
μ̄ =

∑
ν∈τ

′(
Rμ̄ν̄ â( f )†

ν̄ + Sμ̄ν â( f )
ν

)
, (A5)

where
∑′ means that the summation is only over states with

jz > 0, and the notation ν ∈ τ means that index ν corresponds
to the same kind of particle (proton or neutron) as does the
index μ on the left side of the equation.

The relation
RTR∗ + S†S = I, (A6)

RTS∗ + S†R = 0, (A7)

follows from the unitarity of the transformation.
This transformation is defined in the full quasiparticle

model space; any quasiparticle cutoff thus breaks unitarity.
Because the matrix composed of R and S is also unitary, the
inverse transformation is given by

â( f )†
μ =

∑
ν∈τ

′(
Sν̄μâ(i)

ν̄ + R∗
νμâ(i)†

ν

)
, (A8)

â( f )†
μ̄ =

∑
ν∈τ

′(
Sνμ̄â(i)

ν + R∗
ν̄μ̄â(i)†

ν̄

)
. (A9)

Using the Bogoliubov transformation,

â(i/ f )†
μ =

∑
k∈τ

′
V (i/ f )

k̄μ
ĉk̄ + U (i/ f )

kμ
ĉ†

k , (A10)

â(i/ f )†
μ̄ =

∑
k∈τ

′
V (i/ f )

kμ̄
ĉk + U (i/ f )

k̄μ̄
ĉ†

k̄
, (A11)

we can write the matrix elements of R and S in the form

Rμν =
∑
k∈τ

′
V (i)

k̄μ
V ( f )∗

k̄ν
+ U (i)

kμ
U ( f )∗

kν
, (A12)

Rμ̄ν̄ =
∑
k∈τ

′
V (i)

kμ̄
V ( f )∗

kν̄
+ U (i)

k̄μ̄
U ( f )∗

k̄ν̄
, (A13)

Sμν̄ =
∑
k∈τ

′
V (i)

k̄μ
U ( f )

k̄ν̄
+ U (i)

kμ
V ( f )

kν̄
, (A14)

Sμ̄ν =
∑
k∈τ

′
V (i)

kμ̄
U ( f )

kν
+ U (i)

k̄μ̄
V ( f )

k̄ν
. (A15)

Defining the proton-neutron two-quasiparticle creation and
annihilation operators

A(i)†(pn, K ) ≡ â(i)†
p â(i)†

n , A(i)†( p̄n̄, K ) ≡ â(i)†
p̄ â(i)†

n̄ , (A16)

we can relate the two-quasiparticle operators defined with
respect to the initial and final HFB states in the following way:

A(i)†(pn, K ) =
∑
p′n′

′[
Rpp′Rnn′A( f )†(p′n′, K )

−Spp̄′Snn̄′A( f )( p̄′n̄′, K )
] + (â†â−terms),

(A17)

A(i)( p̄n̄, K ) =
∑
p′n′

′[
R∗

p̄p̄′R∗
n̄n̄′A( f )( p̄′n̄′, K )

−S∗
p̄p′S∗

n̄n′A( f )†(p′n′, K )
]+(â†â−terms).

(A18)

The QRPA phonon operator is a combination of two-
quasiparticle creation and annihilation operators:

Q̂λi†
K =

∑
pn

′[
X λi

pn,K A(i)†(pn, K ) − Y λi
pn,K A(i)( p̄n̄, K )

]
, (A19)
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TABLE IX. Dimensionless Gamow-Teller 2νββ nuclear matrix element mec2M2ν
GT computed with the SkO′- and SV-min-based EDFs, with

globally fitted proton-neutron parts [15]. The value of the matrix element is compared with experimental values extracted from Ref. [5]. The
overlap of the intermediate states is evaluated both with QTDA (α = 0, Ref. [8]) and QRPA (α = 1, Ref. [25]) prescriptions. The numbers in
parentheses denote powers of 10.

α 1A 1B 1C 1D 1E 2 3A 3B 4 5 Exp.

48Ca 0 0.0759 0.0734 0.0763 0.0722 0.0934 0.0698 0.0729 0.0879 0.0706 0.118 0.035 ± 0.003
1 0.0399 0.0386 0.0401 0.0382 0.0489 0.0372 0.0386 0.0463 0.0385 0.0588

76Ge 0 0.0496 0.0477 0.0496 0.0441 0.062 0.0469 0.0462 0.0588 0.0502 0.0426 0.106 ± 0.004
1 0.0343 0.033 0.0344 0.0304 0.0431 0.0331 0.0319 0.0409 0.0355 0.0293

82Se 0 0.0572 0.0547 0.0572 0.05 0.0736 0.0543 0.0528 0.0693 0.0567 0.061 0.085 ± 0.001
1 0.0464 0.0444 0.0464 0.0404 0.0599 0.0463 0.0428 0.0564 0.0474 0.0485

96Zr 0 0.0265 0.0257 0.0267 0.026 0.0321 0.123 0.0267 0.032 0.0296 0.0228 0.080 ± 0.004
1 0.0133 0.0129 0.0134 0.013 0.0164 0.108 0.0134 0.0164 0.015 0.0113

(96Zr sph.) 0 0.202 0.197 0.204 0.202 0.243 0.123 0.207 0.244 0.232 0.173
1 0.18 0.175 0.181 0.178 0.219 0.108 0.183 0.22 0.206 0.152

100Mo 0 1.71(−5) 1.67(−5) 1.72(−5) 1.69(−5) 2.02(−5) 0.234 1.73(−5) 2.01(−5) 1.7(−5) 1.53(−5) 0.151 ± 0.005
1 2.67(−6) 2.58(−6) 2.68(−6) 2.57(−6) 3.25(−6) 0.2 2.67(−6) 3.24(−6) 3.16 (−6) 2.32(−6)

(100Mo pro.) 0 0.166 0.161 0.167 0.162 0.201 0.234 0.166 0.199 0.179 0.147
1 0.142 0.138 0.143 0.137 0.175 0.2 0.142 0.173 0.16 0.125

116Cd 0 0.11 0.107 0.111 0.108 0.131 0.0606 0.11 0.13 0.082 0.0997 0.108 ± 0.003
1 0.0728 0.0708 0.0732 0.0707 0.0865 0.0132 0.0725 0.086 0.0541 0.0655

128Te 0 0.0161 0.0153 0.0161 0.0137 0.0215 0.0124 0.0149 0.0207 0.00873 0.0131 0.043 ± 0.003
1 0.00993 0.00944 0.00994 0.00848 0.0134 0.00695 0.00923 0.0129 0.00626 0.00808

(128Xe obl.) 0 0.0306 0.0291 0.0306 0.0263 0.0407 0.0263 0.0285 0.0393 0.0155 0.0251
1 0.0195 0.0185 0.0195 0.0165 0.0264 0.0154 0.018 0.0253 0.0106 0.0159

130Te 0 0.0227 0.0215 0.0227 0.0189 0.0308 0.0215 0.0208 0.0295 0.0149 0.0185 0.0293 ± 0.0009
1 0.0168 0.0159 0.0168 0.0141 0.0229 0.0151 0.0154 0.0219 0.0118 0.0138

136Xe 0 0.0222 0.0208 0.0221 0.0173 0.0318 0.0238 0.0194 0.0296 0.0184 0.0232 0.0181 ± 0.0006
1 0.018 0.0169 0.018 0.0139 0.0261 0.0201 0.0156 0.0243 0.0136 0.0175

150Nd 0 0.0413 0.0395 0.0414 0.0369 0.0541 0.0552 0.0399 0.0536 0.0511 0.0341 0.044 ± 0.005
1 0.0345 0.0329 0.0346 0.0308 0.0455 0.0463 0.0334 0.0451 0.0425 0.0284

238U 0 0.0462 0.044 0.0462 0.039 0.0616 0.048 0.0434 0.0609 0.0717 0.0374 0.13+0.09
−0.07

1 0.0428 0.0407 0.0428 0.0359 0.0573 0.0431 0.04 0.0566 0.0597 0.0345

ˆ̃Qλi
K =

∑
pn

′[
X λi

pn,K A(i)( p̄n̄, K ) − Y λi
pn,K A(i)†(pn, K )

]
. (A20)

Inverting this yields the relation

A( f )†(pn, K ) =
∑
λ f

[
X

λ f ∗
pn,KQ̂

λ f †
K + Y

λ f ∗
pn,K

ˆ̃Qλ f

K

]
, (A21)

A( f )( p̄n̄, K ) =
∑
λ f

[
X

λ f ∗
pn,K

ˆ̃Qλ f

K + Y
λ f ∗
pn,KQ̂

λ f †
K

]
, (A22)

which leads to an expression for the a matrix in Eq. (A2):

aλiλ f =
∑
pnp′n′

′[
X

λ f ∗
p′n′,KRpp′Rnn′X λi

pn,K

− Y
λ f ∗
p′n′,KR∗

p̄p̄′R∗
n̄n̄′Y λi

pn,K + X
λ f ∗
p′n′,KS∗

p̄p′S∗
n̄n′Y λi

pn,K

− Y
λ f ∗
p′n′,KSpp̄′Snn̄′X λi

pn,K

]
. (A23)

In Ref. [25], the contribution from S in Eq. (A23) is neglected.
The overlap between the HFB states is given by the Onishi

formula, e.g., in Eq. (E.49) of Ref. [40]:

N−1 = 〈0+
f ,HFB|0+

i,HFB〉 = 〈0+
i,HFB|0+

f ,HFB〉
= (det RT )

1
2 = [det(1 + D†D)]−

1
4 , (A24)

where D is a skew-symmetric matrix that determines the rela-
tion between the initial and final HFB states through

|0+
i,HFB〉 = N−1 exp

(∑
τ

∑
μν∈τ

Dμν â( f )†
μ â( f )†

ν

)
|0+

f ,HFB〉,

(A25)

and satisfies the relation

D = S†(R†)−1 = −(R−1S )∗ = −DT . (A26)

Thus we end up with

〈λ f , K|λi, K〉 = (det R)
1
2

∑
pnp′n′

′
Rpp′Rnn′

× (
X

λ f ∗
p′n′,K X λi

pn,K − Y
λ f ∗
p′n′,KY λi

pn,K

)
. (A27)

2. QTDA overlap

Reference [8] uses the QTDA to evaluate the overlap
among intermediate states, which are given by

|λi/ f , K〉 =
∑

pn

X
λi/ f

μν,K â(i/ f )†
p â(i/ f )†

n |0+
i/ f ,HFB〉. (A28)
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TABLE X. Dimensionless Gamow-Teller 2νββ nuclear matrix element mec2M2ν
GT for nuclei whose half-lives have not been measured yet.

The column and row labels are the same as in Table IX.

α 1A 1B 1C 1D 1E 2 3A 3B 4 5

46Ca 0 0.0868 0.0849 0.0874 0.0874 0.1 0.00611 0.0867 0.097 0.0831 0.117
1 0.0529 0.0518 0.0534 0.0532 0.0616 0.00332 0.0529 0.0595 0.0534 0.07

70Zn 0 0.0848 0.0823 0.0854 0.0823 0.102 0.189 0.0831 0.0992 0.0982 0.0807
1 0.0263 0.0254 0.0265 0.0248 0.0326 0.138 0.0252 0.0312 0.0306 0.0246

80Se 0 0.0673 0.0646 0.0674 0.0599 0.0849 0.0343 0.0626 0.0802 0.0657 0.0677
1 0.0505 0.0485 0.0505 0.0446 0.0638 0.0228 0.0468 0.0603 0.0507 0.0495

86Kr 0 0.0308 0.0293 0.0308 0.0256 0.0411 0.0267 0.0274 0.0379 0.0276 0.0433
1 0.0228 0.0217 0.0227 0.0187 0.0303 0.0208 0.0201 0.028 0.0206 0.0294

94Zr 0 0.166 0.162 0.168 0.169 0.195 0.0959 0.171 0.196 0.195 0.146
1 0.147 0.143 0.148 0.148 0.175 0.0841 0.151 0.175 0.172 0.127

98Mo 0 0.186 0.181 0.188 0.186 0.223 0.171 0.189 0.222 0.208 0.169
1 0.149 0.144 0.15 0.146 0.181 0.148 0.149 0.18 0.168 0.133

104Ru 0 0.18 0.175 0.181 0.177 0.217 0.198 0.181 0.216 −0.718 0.162
1 0.155 0.15 0.156 0.15 0.189 0.16 0.155 0.188 −0.149 0.137

110Pd 0 0.179 0.173 0.18 0.175 0.215 0.187 0.18 0.214 0.279 0.16
1 0.127 0.123 0.128 0.123 0.154 0.111 0.127 0.153 0.134 0.113

114Cd 0 0.126 0.123 0.127 0.126 0.149 0.0506 0.128 0.148 0.102 0.115
1 0.0771 0.0751 0.0776 0.0762 0.0911 0.00702 0.0775 0.0908 0.0623 0.0699

122Sn 0 0.0279 0.0265 0.028 0.0239 0.0377 0.0193 0.026 0.0364 0.0645 0.0226
1 0.0171 0.0162 0.0172 0.0145 0.0234 0.00955 0.0159 0.0225 0.0285 0.0137

124Sn 0 0.0488 0.0462 0.0489 0.041 0.0676 0.0263 0.0451 0.065 0.055 0.0391
1 0.0382 0.0361 0.0382 0.0319 0.053 0.0157 0.0351 0.0508 0.0386 0.0303

134Xe 0 0.0203 0.0192 0.0202 0.017 0.0274 0.0218 0.0185 0.0261 0.0142 0.0176
1 0.015 0.0142 0.015 0.0126 0.0204 0.016 0.0138 0.0195 0.0114 0.0131

142Ce 0 0.0289 0.0281 0.029 0.0277 0.0339 0.0168 0.0291 0.0343 0.0322 0.025
1 0.0224 0.0218 0.0225 0.0215 0.0264 0.013 0.0226 0.0266 0.026 0.0194

146Nd 0 0.0117 0.0113 0.0117 0.0109 0.0145 0.0135 0.0116 0.0145 0.0145 0.00979
1 0.00512 0.00491 0.00514 0.0047 0.00655 0.00832 0.00505 0.00654 0.00663 0.00419

148Nd 0 0.116 0.112 0.117 0.109 0.149 0.109 0.116 0.149 0.137 0.0979
1 0.0937 0.0898 0.0942 0.0869 0.121 0.0826 0.0928 0.121 0.112 0.0782

154Sm 0 0.0725 0.0694 0.0728 0.0652 0.0944 0.0639 0.0701 0.0933 0.0958 0.0603
1 0.0658 0.0629 0.066 0.0589 0.0862 0.0571 0.0635 0.0852 0.083 0.0545

160Gd 0 0.0847 0.081 0.085 0.0759 0.11 0.0807 0.0819 0.109 0.097 0.0704
1 0.0766 0.0732 0.0768 0.0682 0.1 0.0724 0.0737 0.0994 0.0914 0.0633

170Er 0 0.0753 0.0722 0.0756 0.0677 0.0974 0.0844 0.0729 0.0965 −0.0389 0.0627
1 0.0651 0.0622 0.0652 0.0578 0.0847 0.0612 0.0626 0.0837 0.025 0.0538

176Yb 0 0.0657 0.0627 0.0659 0.0585 0.087 0.0391 0.0635 0.0862 −0.0577 0.0542
1 0.0557 0.0531 0.0558 0.0493 0.074 0.026 0.0536 0.0733 0.0181 0.0457

186W 0 0.0966 0.0923 0.0969 0.0853 0.127 0.0637 0.0923 0.125 −0.07 0.0799
1 0.0892 0.0851 0.0894 0.0781 0.118 0.0512 0.0848 0.116 0.00665 0.0733

192Os 0 0.0672 0.0642 0.0673 0.0579 0.0881 0.0927 0.0631 0.0863 −0.0446 0.0553
1 0.0618 0.0589 0.0618 0.0529 0.0814 0.083 0.0578 0.0797 −0.0295 0.0506

198Pt 0 0.0272 0.0262 0.0272 0.0238 0.0341 0.0478 0.0255 0.0333 0.396 0.0229
1 0.0167 0.016 0.0167 0.0144 0.0209 0.0279 0.0155 0.0204 −0.0265 0.014

204Hg 0 0.0133 0.0127 0.0132 0.0107 0.0167 0.0195 0.0117 0.016 −0.023 0.0109
1 0.0108 0.0104 0.0107 0.0087 0.0136 0.0161 0.00954 0.013 0.0178 0.00885

226Ra 0 0.0739 0.0703 0.074 0.064 0.0987 0.0706 0.0708 0.0986 0.343 0.06
1 0.068 0.0646 0.068 0.0585 0.0913 0.061 0.0649 0.091 0.172 0.0549

232Th 0 0.0509 0.0485 0.0509 0.0434 0.0678 0.0531 0.0481 0.0672 0.171 0.0414
1 0.0465 0.0443 0.0465 0.0394 0.0623 0.0433 0.0438 0.0617 0.0894 0.0376

244Pu 0 0.0431 0.0409 0.043 0.0359 0.0576 0.0454 0.0401 0.0568 0.0265 0.0347
1 0.0399 0.0379 0.0399 0.0331 0.0536 0.0404 0.037 0.0528 0.0384 0.0321

248Cm 0 0.0415 0.0394 0.0414 0.0346 0.0552 0.0435 0.0387 0.0545 −0.00664 0.0335
1 0.0389 0.0369 0.0388 0.0322 0.052 0.0391 0.0361 0.0512 0.0184 0.0313
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From Eqs. (A25) and (A28), we find that

〈λ f , K|λi, K〉 = (det R)
1
2

∑
pnp′n′

′
X

λ f ∗
p′n′,K X λi

pn,K

×
(
Rpp′ + 2

∑
p′′

Spp′′Dp′′ p′

)

×
(
Rnn′ + 2

∑
n′′

Snn′′Dn′′n′

)
. (A29)

The two QRPA and QTDA overlaps in Eqs. (A27) and (A29)
can be written in the same form as

〈λ f , K|λi, K〉 =
∑
pnp′n′

′(
X

λ f ∗
p′n′,K X λi

pn,K − αY
λ f ∗
p′n′,KY λi

pn,K

)
× Opp′ (α)Onn′ (α), (A30)

where O is a matrix that does not depend on the QRPA and
includes the HFB overlap and the transformation relating the

initial and final quasiparticle states:

Oρρ ′ (α) = [
det R(τ )

] 1
2

[
Rρρ ′ + 2(1 − α)

∑
ρ ′′∈τ

′
Sρρ ′′Dρ ′′ρ ′

]
.

(A31)

Here ρ, ρ ′ are both proton or both neutron states, and R(τ )

is the neutron or proton part of the matrix R. The QRPA
expression in Ref. [25] corresponds α = 1 and the QTDA
expression in Ref. [8] to α = 0.

APPENDIX B: NUMERICAL RESULTS FOR MATRIX
ELEMENTS IN INDIVIDUAL NUCLEI

Table IX below provides details related to Fig. 4. Table X
does the same for Fig. 5.
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