A Graph-based Blocking Approach for Entity Matching Using Contrastively Learned Embeddings

Presenter: John Bosco Mugeni Supervisor: Toshiyuki Amagasa University of Tsukuba

Published in (ACM SIGAPP) Applied Computing Review, 2022 Computer Science

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Contents

Introduction

- 2 Problem definition
- 3 Related works
- Proposed approach
- 5 Experimental work

э

イロト イボト イヨト イヨト

Introduction: entity matching

- Entity Matching: is the task of discovering matching entries among disperate data sources.
- The goal is to then link these entries with a high-match quality
- However, the process meets quadratic complexity problem w.r.t dataset size

Table A				Table B			
category	brand	model no.	price	category	brand	model no.	price
garden - general	d-link	dcs-1100	99.82	► footrests	3m #	fr530cb #	67.34
furniture	3m	fr530cb	67.88	file folder labels	avery	5029	14.2
stationery & office machinery	brother	dk2113	64.88	surveillance camera	s d-link	dcs-1100	99.82

Figure: An example of matching tuples

< 日 > < 同 > < 回 > < 回 > .

Introduction: entity matching

- Entity Matching: is the task of discovering matching entries among disperate data sources.
- The goal is to then link these entries with a high-match quality
- However, the process meets quadratic complexity problem w.r.t dataset size

Table A				Table B			
category	brand	model no.	price	catego	y brand	model no.	price
garden - general	d-link	dcs-1100	99.82 🔫	footres	ts 3m #	fr530cb #	67.34
furniture	3m	fr530cb	67.88 ◄	file folder l	abels avery	5029	14.2
stationery & office machinery	brother	dk2113	64.88	surveillance	cameras d-link	dcs-1100	99.82

Figure: An example of matching tuples

イロト イポト イヨト イヨト

Introduction: entity matching

- Entity Matching: is the task of discovering matching entries among disperate data sources.
- The goal is to then link these entries with a high-match quality
- However, the process meets quadratic complexity problem w.r.t dataset size

Figure: An example of matching tuples

< □ > < □ > < □ > < □ > < □ > < □ >

Introduction: blocking

- "Blocking" is introduced for efficient execution of entity matching
- The naive pairwise comparison (right figure) requires exorbitant computation due to a massive search space in contrast to a partitioned search space due to "blocking" (left figure)

Figure: Types of blocking frameworks

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Introduction: blocking

- "Blocking" is introduced for efficient execution of entity matching
- The naive pairwise comparison (right figure) requires exorbitant computation due to a massive search space in contrast to a partitioned search space due to "blocking" (left figure)

Figure: Types of blocking frameworks

• • = • • = •

• "Blocking" techniques can be categorized into 3 types;

Figure: Types of blocking frameworks

- Rule-based methods require handcrafted features, domain knowledge & are labour intensive
- Learning-based methods have high accuracy but require labelled data (labels are not always available)
- Cluster-based methods circumvent the need of labels & handcrafted features

• "Blocking" techniques can be categorized into 3 types;

Figure: Types of blocking frameworks

- Rule-based methods require handcrafted features, domain knowledge & are labour intensive
- Learning-based methods have high accuracy but require labelled data (labels are not always available)
- Cluster-based methods circumvent the need of labels & handcrafted features

• "Blocking" techniques can be categorized into 3 types;

Figure: Types of blocking frameworks

- Rule-based methods require handcrafted features, domain knowledge & are labour intensive
- Learning-based methods have high accuracy but require labelled data (labels are not always available)
- Cluster-based methods circumvent the need of labels & handcrafted features

• "Blocking" techniques can be categorized into 3 types;

Figure: Types of blocking frameworks

- Rule-based methods require handcrafted features, domain knowledge & are labour intensive
- Learning-based methods have high accuracy but require labelled data (labels are not always available)
- Cluster-based methods circumvent the need of labels & handcrafted features

- Existing solutions capture database interactions via traditional word embeddings.
- That means they assign the same vector to a word irrespective of context.
- E.g., The bank is located near the river bank.
- In contrast, context embeddings assign vectors dynamically thereby incorporating rich semantics.

<日

<</p>

- Existing solutions capture database interactions via traditional word embeddings.
- That means they assign the same vector to a word irrespective of context.
- E.g., The bank is located near the river bank.
- In contrast, context embeddings assign vectors dynamically thereby incorporating rich semantics.

< 回 > < 回 > < 回 >

- Existing solutions capture database interactions via traditional word embeddings.
- That means they assign the same vector to a word irrespective of context.
- E.g., The bank is located near the river bank.
- In contrast, context embeddings assign vectors dynamically thereby incorporating rich semantics.

A (10) × (10)

- Existing solutions capture database interactions via traditional word embeddings.
- That means they assign the same vector to a word irrespective of context.
- E.g., The bank is located near the river bank.
- In contrast, context embeddings assign vectors dynamically thereby incorporating rich semantics.

< 回 > < 回 > < 回 >

Introduction: leveraging contrastive learning for cluster blocking.

• Existing contextual embeddings suffer from anisotropy.

Figure: leveraging contrastive learning.

• • = • • = •

Problem definition

- Traditional clustering techniques suffer long execution times when dealing with large databases
- As a consequence, improving the efficiency of cluster-based blocking while maintaining accuracy is a major challenge
- To this end, our work exploits pre-trained language models for feature extraction, a k-nearest neighbour graph and graph clustering algorithms
- We wish to execute "blocking" in an efficient way while maintaining accuracy

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

- Traditional clustering techniques suffer long execution times when dealing with large databases
- As a consequence, improving the efficiency of cluster-based blocking while maintaining accuracy is a major challenge
- To this end, our work exploits pre-trained language models for feature extraction, a k-nearest neighbour graph and graph clustering algorithms
- We wish to execute "blocking" in an efficient way while maintaining accuracy

イロト 不得 トイヨト イヨト

- Traditional clustering techniques suffer long execution times when dealing with large databases
- As a consequence, improving the efficiency of cluster-based blocking while maintaining accuracy is a major challenge
- To this end, our work exploits pre-trained language models for feature extraction, a k-nearest neighbour graph and graph clustering algorithms
- We wish to execute "blocking" in an efficcient way while maintaining accuracy

イロト 不得 トイヨト イヨト

- Traditional clustering techniques suffer long execution times when dealing with large databases
- As a consequence, improving the efficiency of cluster-based blocking while maintaining accuracy is a major challenge
- To this end, our work exploits pre-trained language models for feature extraction, a k-nearest neighbour graph and graph clustering algorithms
- We wish to execute "blocking" in an efficcient way while maintaining accuracy

Thesis objective and contributions

- We propose a graph-based blocking technique predicated on the k-nearest neighbour (k-NN) graph algorithm for EM.
- We leverage readily available context-aware sentence embeddings from four pre-trained language models for our blocking scheme
- We show that our k-NN graph blocking transcends the existing deep learning-based cluster blocking solution in terms of time and accuracy.

・ 同 ト ・ ヨ ト ・ ヨ ト

Thesis objective and contributions

- We propose a graph-based blocking technique predicated on the k-nearest neighbour (k-NN) graph algorithm for EM.
- We leverage readily available context-aware sentence embeddings from four pre-trained language models for our blocking scheme
- We show that our k-NN graph blocking transcends the existing deep learning-based cluster blocking solution in terms of time and accuracy.

・ 同 ト ・ ヨ ト ・ ヨ ト

Thesis objective and contributions

- We propose a graph-based blocking technique predicated on the k-nearest neighbour (k-NN) graph algorithm for EM.
- We leverage readily available context-aware sentence embeddings from four pre-trained language models for our blocking scheme
- We show that our k-NN graph blocking transcends the existing deep learning-based cluster blocking solution in terms of time and accuracy.

- Earlier attempts adopted rule-based solutions, e.g., standard blocking, sorted neighbourhood blocking, Q-gram blocking, suffix blocking, & canopy blocking
- Normally, a special function (BKV) is used to map tuples to their blocks
 - However, limitations arise when dealing with long, dirty, noisy text or missing values
 - Some methods, e.g., sorted neighbourhood blocking are sensitive to parameters (the sliding window)

- Earlier attempts adopted rule-based solutions, e.g., standard blocking, sorted neighbourhood blocking, Q-gram blocking, suffix blocking, & canopy blocking
- Normally, a special function (BKV) is used to map tuples to their blocks
 - However, limitations arise when dealing with long, dirty, noisy text or missing values
 - Some methods, e.g., sorted neighbourhood blocking are sensitive to parameters (the sliding window)

(日)

- Earlier attempts adopted rule-based solutions, e.g., standard blocking, sorted neighbourhood blocking, Q-gram blocking, suffix blocking, & canopy blocking
- Normally, a special function (BKV) is used to map tuples to their blocks
 - However, limitations arise when dealing with long, dirty, noisy text or missing values
 - Some methods, e.g., sorted neighbourhood blocking are sensitive to parameters (the sliding window)

イロト 不得 トイヨト イヨト

- Earlier attempts adopted rule-based solutions, e.g., standard blocking, sorted neighbourhood blocking, Q-gram blocking, suffix blocking, & canopy blocking
- Normally, a special function (BKV) is used to map tuples to their blocks
 - However, limitations arise when dealing with long, dirty, noisy text or missing values
 - Some methods, e.g., sorted neighbourhood blocking are sensitive to parameters (the sliding window)

イロト 不得 トイヨト イヨト

- Later the paper of Azzalini¹ develops a system for "blocking" based on the RNN architecture.
 - However, clustering large data sets proves to be resource-intensive
 - Morever, vectors have to be down-sampled via the t-SNE algorithm, in their work, which scales poorly on big data sets
 - The RNN architecture relies on simple word embeddings that neglect context

¹F Azzalini, et al. 2020. Blocking Techniques for Entity Linkage: A Semantics-Based Approach.

- Later the paper of Azzalini¹ develops a system for "blocking" based on the RNN architecture.
 - However, clustering large data sets proves to be resource-intensive
 - Morever, vectors have to be down-sampled via the t-SNE algorithm, in their work, which scales poorly on big data sets
 - The RNN architecture relies on simple word embeddings that neglect context

¹F Azzalini, et al. 2020. Blocking Techniques for Entity Linkage: A Semantics-Based Approach.

- Later the paper of Azzalini¹ develops a system for "blocking" based on the RNN architecture.
 - However, clustering large data sets proves to be resource-intensive
 - Morever, vectors have to be down-sampled via the t-SNE algorithm, in their work, which scales poorly on big data sets
 - The RNN architecture relies on simple word embeddings that neglect context

¹F Azzalini, et al. 2020. Blocking Techniques for Entity Linkage: A Semantics-Based Approach.

- Later the paper of Azzalini¹ develops a system for "blocking" based on the RNN architecture.
 - However, clustering large data sets proves to be resource-intensive
 - Morever, vectors have to be down-sampled via the t-SNE algorithm, in their work, which scales poorly on big data sets
 - The RNN architecture relies on simple word embeddings that neglect context

¹F Azzalini, et al. 2020. Blocking Techniques for Entity Linkage: A Semantics-Based Approach.

Proposed approach: system overview

An overview of the system is as follows;

Figure: Our blocking system

э

イロト イポト イヨト イヨト

Proposed approach: pipeline step 1

First, attributes of data sets to be integrated are concatenated into a string

Figure: Textual representation from table A or B

(University of Tsukuba)

3

イロト 不得 トイヨト イヨト

Proposed approach:pipeline step 2

Next, each tuple is then input to a pre-trained transformer language model producing context embeddings

э

Proposed approach:pipeline step 3

Projection of embeddings to lower dimension is possible via UMAP or $\ensuremath{\mathsf{CVAE}}$

Figure: elaborating the vector processing in case of dimensionality reduction

A D N A B N A B N A B N

Proposed approach: pipeline step 4

Next, we apply knn graph algorithm on embedding vectors to construct a graph followed by unsupervised community detection algorithms

Figure: KNN-graph based blocking

• • = • • = •

Experimental work: data sets

• Each data set has the format of Table A-Table B

• Each pair has more than 6 million record comparisons

Table 5: Dataset statistics.	
------------------------------	--

Data	Domain	#Tuples	#Matches	Attr	Size (M)
DBLP-Scholar,	citation	2616-64263	5347	4	168
iTunes-Amazon	music	6907-55923	132	8	386
Walmart-Amazon	electronics	2554-22074	962	5	56
GoogleScholar-DBLP	citation	2616-64263	5347	4	168

Figure: Experimental datasets for entity matching

イロト イボト イヨト イヨト

Experimental work: data sets

- Each data set has the format of Table A-Table B
- Each pair has more than 6 million record comparisons

Table 5: Dataset statisti

Data	Domain	#Tuples	#Matches	Attr	Size (M)
DBLP-Scholar,	citation	2616-64263	5347	4	168
iTunes-Amazon	music	6907-55923	132	8	386
Walmart-Amazon	electronics	2554-22074	962	5	56
GoogleScholar-DBLP	citation	2616-64263	5347	4	168

Figure: Experimental datasets for entity matching

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

- For the transformer based models, we choose the attention spans to be 200 tokens
- Batch size is chosen to be 32 & mean-pooling for summarising input tokens
- A single workstation equipped with Intel(R) Core(TM) i7-4820K quad-core CPU encompassing 48 GB RAM running Ubuntu 18.04
- \bullet We use pre-trained models based on Hugging-face 2 & all programs are executed in python version 3.7.6

²T. Wolf et al. 2020. HuggingFace's Transformers: State-of-the-art Natural anguage Processing. arXiv:cs.CL/1910.03771

- For the transformer based models, we choose the attention spans to be 200 tokens
- Batch size is chosen to be 32 & mean-pooling for summarising input tokens
- A single workstation equipped with Intel(R) Core(TM) i7-4820K quad-core CPU encompassing 48 GB RAM running Ubuntu 18.04
- \bullet We use pre-trained models based on Hugging-face 2 & all programs are executed in python version 3.7.6

²T. Wolf et al. 2020. HuggingFace's Transformers: State-of-the-art Natural .anguage Processing. arXiv:cs.CL/1910.03771

- For the transformer based models, we choose the attention spans to be 200 tokens
- Batch size is chosen to be 32 & mean-pooling for summarising input tokens
- A single workstation equipped with Intel(R) Core(TM) i7-4820K quad-core CPU encompassing 48 GB RAM running Ubuntu 18.04
- \bullet We use pre-trained models based on Hugging-face 2 & all programs are executed in python version 3.7.6

²T. Wolf et al. 2020. HuggingFace's Transformers: State-of-the-art Natural .anguage Processing. arXiv:cs.CL/1910.03771

- For the transformer based models, we choose the attention spans to be 200 tokens
- Batch size is chosen to be 32 & mean-pooling for summarising input tokens
- A single workstation equipped with Intel(R) Core(TM) i7-4820K quad-core CPU encompassing 48 GB RAM running Ubuntu 18.04
- \bullet We use pre-trained models based on Hugging-face 2 & all programs are executed in python version 3.7.6

²T. Wolf et al. 2020. HuggingFace's Transformers: State-of-the-art Natural Language Processing. arXiv:cs.CL/1910.03771

Table 5: iTunes-Amazon.							
method	algo_{best}	$\mathrm{emb'}_{sec}$	bk_{sec}	total_{sec}	F1		
R-BERT	l'vian	91.8	461.8	553.6	85.2		
DeBERTa	l'vian	311.2	557.2	868.4	89.2		
RoBERTa	l'vian	253.6	58.1	311.7	89.7		
BART	l'vian	324.0	433.6	757.6	91.7		
RNN	birch	2329.8	dnf	dnf	dnf		
SimCSE	l'vian	64.5	160.9	225.4	92.8		
R-BERT _d	l'den	127.7	328.2	455.9	56.2		
$DeBERTa_d$	l'den	470.0	607.8	1077.8	56.4		
$RoBERTa_d$	l'vian	391.5	368.2	759.7	64.0		
BART_d	l'den	642.9	347.5	990.4	68.0		
SimCSE_d	l'den	125.8	164.4	290.2	89.7		

Figure: Performance on iTunes-Amazon(62,830 tuples)

æ

method	algo_{best}	emb'sec	bk_{sec}	total_{sec}	F1
R-BERT	l'vian	111.4	203.8	315.2	93.5
DeBERTa	l'vian	439.0	215.3	654.3	89.5
RoBERTa	l'vian	370.9	226.2	597.0	90.7
BART	l'vian	451.2	189.0	640.2	92.4
RNN	birch	2563.0	dnf	dnf	dnf
SimCSE	l'vian	110.4	156.8	267.2	97.8
R-BERT _d	l'vian	131.6	210.3	342.0	86.8
$DeBERTa_d$	l'vian	463.2	211.0	674.2	80.2
$RoBERTa_d$	l'vain	380.6	463.7	844.3	73.8
BART_d	l'vian	501.0	194.5	695.4	83.5
SimCSE_d	l'vian	90.8	245.5	336.3	93.8

Table 4: GoogleScholar-DBLP-1.

Note: R-BERT is a short form for ReviewBERT, l'vian for louvian and l'den for leiden.

Figure: Performance on DBLP-Scholar(66,879 tuples)

3

method	algo_{best}	$\mathrm{emb'}_{sec}$	bk_{sec}	$total_{sec}$	F1	
R-BERT	l'vian	108.0	283.0	391.0	91.6	
DeBERTa	l'vian	293.0	283.3	576.3	89.1	
RoBERTa	l'vian	328.6	229.8	558.4	89.6	
BART	l'vian	289.8	261.4	551.2	91.4	
RNN	birch	2787.1	dnf	dnf	dnf	
SimCSE	Louvain	127.8	173.4	301.2	95.6	

Table 7: GoogleScholar-DBLP-2.

Figure: Performance on GoogleScholar-DBLP(66,879 tuples)

æ

Table 6: Walmart-Amazon.							
method	algo_{best}	$\mathrm{emb'}_{sec}$	bk_{sec}	total_{sec}	F1		
R-BERT	l'vian	39.1	58.9	98.0	91.6		
DeBERTa	l'den	134.5	47.3	181.9	90.1		
RoBERTa	l'vian	111.3	58.2	168.6	89.7		
BART	l'vian	132.1	48s	180.1	90.2		
RNN	birch	835.9	12.6	848.4	90.1		
SimCSE	l'vian	42.1	36.46	78.5	92.5		
R-BERT _d	l'vian	52.9	45.6	98.51	90.3		
$DeBERTa_d$	l'vian	162.2	48.08	210.2	90.5		
$RoBERTa_d$	l'den	283.2	56.28	339.4	87.6		
BART_d	l'vian	160.5	30.4	190.9	89.4		
SimCSE_d	l'vian	47.3	32.98	80.3	92.5		

Figure: Performance on Walmart-Amazon(22,628 tuples)

æ

• • = • • = •

Conclusion

• As future work, we plan to improve representation learning using task domain data as well combining our approach with a supervised system for Entity Matching.

イロト イポト イヨト イヨト

The End

3

イロト イヨト イヨト イヨト