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Introduction: entity matching

e Entity Matching: is the task of discovering matching entries among
disperate data sources.

Table A Table B

category brand  model no. price category brand model no. price

garden - general dlink  des-1100  99.82 footrests 3m# fr530cb# 67.34
furniture 3m £r530ch 67.88:>< file folder labels avery 5029 142
stationery & office machinery brother k2113 64.88 S

urveillance cameras  d-link ~ des-1100  99.82
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Introduction: entity matching

e Entity Matching: is the task of discovering matching entries among

disperate data sources.

@ The goal is to then link these entries with a high-match quality

@ However, the process meets quadratic complexity problem w.r.t

dataset size

Table A Table B
category brand  model no. price category brand model no. price
garden - general dlink  des-1100  99.82 footrests 3m# fr530cb# 67.34
furniture 3m  r530ch 67,53><” file folder labels avery 5029 14.2
stationery & office machinery brother k2113 64.88 surveillance cameras  d-link ~ dcs-1100  99.82

Figure: An example of matching tuples
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Introduction: blocking

@ "“Blocking” is introduced for efficient execution of entity matching

blocking
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Introduction: blocking

@ "“Blocking” is introduced for efficient execution of entity matching

@ The naive pairwise comparison (right figure) requires exorbitant
computation due to a massive search space in contrast to a
partitioned search space due to “blocking” (left figure)
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Figure: Types of blocking frameworks
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Introduction: blocking techqgniues

@ “Blocking” techniques can be categorized into 3 types;

Rule-based Learning-based Cluster-based

Figure: Types of blocking frameworks

@ Rule-based methods require handcrafted features, domain knowledge
& are labour intensive

@ Learning-based methods have high accuracy but require labelled data
(labels are not always available)

@ Cluster-based methods circumvent the need of labels & handcrafted
features
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Introduction: motivation for cluster blocking

@ Existing solutions capture database interactions via traditional word
embeddings.
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Introduction: motivation for cluster blocking

Existing solutions capture database interactions via traditional word
embeddings.

That means they assign the same vector to a word irrespective of
context.

E.g., The bank is located near the river bank.

In contrast, context embeddings assign vectors dynamically thereby
incorporating rich semantics.
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Introduction: leveraging contrastive learning for cluster
blocking.

@ Existing contextual embeddings suffer from anisotropy.

Isotropy Anisotropy

Figure: leveraging contrastive learning.
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Problem definition

@ Traditional clustering techniques suffer long execution times when
dealing with large databases
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Problem definition

@ Traditional clustering techniques suffer long execution times when
dealing with large databases

@ As a consequence, improving the efficiency of cluster-based blocking
while maintaining accuracy is a major challenge

@ To this end, our work exploits pre-trained language models for feature
extraction, a k-nearest neighbour graph and graph clustering
algorithms

@ We wish to execute “blocking” in an effiecient way while maintaining
accuracy
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Thesis objective and contributions

@ We propose a graph-based blocking technique predicated on the
k-nearest neighbour (k-NN) graph algorithm for EM.
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Thesis objective and contributions

@ We propose a graph-based blocking technique predicated on the
k-nearest neighbour (k-NN) graph algorithm for EM.

@ We leverage readily available context-aware sentence embeddings
from four pre-trained language models for our blocking scheme

@ We show that our k-NN graph blocking transcends the existing deep
learning-based cluster blocking solution in terms of time and accuracy.
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Related works

o Earlier attempts adopted rule-based solutions, e.g., standard blocking,
sorted neighbourhood blocking, Q-gram blocking, suffix blocking, &
canopy blocking
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Related works

o Earlier attempts adopted rule-based solutions, e.g., standard blocking,
sorted neighbourhood blocking, Q-gram blocking, suffix blocking, &
canopy blocking

e Normally, a special function (BKV) is used to map tuples to their
blocks

e However, limitations arise when dealing with long, dirty, noisy text or
missing values

e Some methods, e.g., sorted neighbourhood blocking are sensitive to
parameters (the sliding window)
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Related works

o Later the paper of Azzalini! develops a system for “blocking” based
on the RNN architecture.

LF Azzalini, et al. 2020. Blocking Techniques for Entity Linkage: A Semantics-Based
Approach.
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Related works

o Later the paper of Azzalini! develops a system for “blocking” based
on the RNN architecture.
e However, clustering large data sets proves to be resource-intensive
e Morever, vectors have to be down-sampled via the t-SNE algorithm, in
their work, which scales poorly on big data sets
e The RNN architecture relies on simple word embeddings that neglect
context

LF Azzalini, et al. 2020. Blocking Techniques for Entity Linkage: A Semantics-Based
Approach.
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Proposed approach: system overview

An overview of the system is as follows;
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Figure: Our blocking system
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Proposed approach: pipeline step 1

First, attributes of data sets to be integrated are

Figure: Textual representation from table A or B
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name age city

bill gates Seattle

Mark Elliot. | New
z york

v

(..Bill gates Seattle..)
(-.Mark Elliot Z New york..)
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Proposed approach:pipeline step 2

Next, each tuple is then input to a pre-trained transformer language model

producing context embeddings

(..Bill gates Seattle..)
(.Mark Elliot Z New york..)
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Figure: Feature extraction (generating embeddings)
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Proposed approach:pipeline step 3

Projection of embeddings to lower dimension is possible via UMAP or
CVAE

Or
UMAP CVAE

Lower
dimension

Figure: elaborating the vector processing in case of dimensionality reduction
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Proposed approach: pipeline step 4

Next, we apply knn graph algorithm on embedding vectors to construct a
graph followed by unsupervised community detection algorithms

Embeddlng space

p -~
~ " KNN
“_  greph /—n—
\ anrhhm -
-

Matched tuples /
Blacks

Figure: KNN-graph based blocking
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Experimental work: data sets

@ Each data set has the format of Table A-Table B

Table 5: Dataset statistics.

Data Domain | #Tuples | #Matches | Attr | Size (M)
DBLP-Scholar, citation | 2616-64263 5347 4 168
iTunes-Amazon music | 6907-55923 132 8 386
Walmart-Amazon electronics | 2554-22074 962 5 56
GoogleScholar-DBLP citation | 2616-64263 5347 4 168
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Experimental work: data sets

@ Each data set has the format of Table A-Table B

@ Each pair has more than 6 million record comparisons

Table 5: Dataset statistics.

Data Domain | #Tuples | #Matches | Attr | Size (M)
DBLP-Scholar, citation | 2616-64263 5347 4 168
iTunes-Amazon music | 6907-55923 132 8 386
Walmart-Amazon electronics | 2554-22074 962 5 56
GoogleScholar-DBLP citation | 2616-64263 5347 4 168

Figure: Experimental datasets for entity matching
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Experimental work: computing environment & key
parameters

@ For the transformer based models, we choose the attention spans to
be 200 tokens
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Experimental work: computing environment & key
parameters

@ For the transformer based models, we choose the attention spans to
be 200 tokens

@ Batch size is chosen to be 32 & mean-pooling for summarising input
tokens

o A single workstation equipped with Intel(R) Core(TM) i7-4820K
quad-core CPU encompassing 48 GB RAM running Ubuntu 18.04

e We use pre-trained models based on Hugging-face 2 & all programs
are executed in python version 3.7.6

2T. Wolf et al. 2020. HuggingFace's Transformers: State-of-the-art Natural
Language Processing. arXiv:cs.CL/1910.03771
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Results: blocking time

Table 5: iTunes-Amazon.

method algopest emb’sec  bksee totalsee F1

R-BERT I'vian 91.8 461.8 553.6 85.2
DeBERTa  I'vian 311.2 557.2 868.4 89.2
RoBERTa  I'vian 253.6 58.1  311.7 89.7
BART I'vian 324.0 433.6 757.6 91.7
RNN birch 2329.8  dnf dnf dnf
SimCSE Ivian 64.5 160.9 225.4 92.8
R-BERT4 I’'den 127.7 328.2 455.9 56.2
DeBERTa; I’den 470.0 607.8 1077.8 56.4
RoBERTaq I'vian 391.5 368.2 759.7 64.0
BART, I’den 642.9 347.5 990.4 68.0
SimCSEq  I'den 1258  164.4 2902  89.7

Figure: Performance on iTunes-Amazon(62,830 tuples)
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Results:blocking time

Table 4: GoogleScholar-DBLP-1.

method algopest €mb’sec  bksec totalgee F1

R-BERT I’'vian 111.4 203.8 315.2 93.5
DeBERTa  I'vian 439.0 215.3 654.3 89.5
RoBERTa  I'vian 370.9 226.2 597.0 90.7
BART I’vian 451.2 189.0 640.2 92.4
RNN birch 2563.0 dnf dnf dnf
SimCSE I'vian 1104 156.8 267.2 97.8
R-BERT, I'vian 131.6 210.3 342.0 86.8
DeBERTa; [I'vian 463.2 211.0 674.2 80.2
RoBERTa; [I'vain 380.6 463.7 844.3 73.8
BART, I’'vian 501.0 194.5 695.4 83.5
SimCSE, I’vian 90.8 245.5 336.3 93.8

Note: R-BERT is a short form for ReviewBERT, 1'vian for

Figure: Performance on DBLP-Scholar(66,879 tuples)

(University of Tsukuba)
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Results:blocking time

Table 7: GoogleScholar-DBLP-2.

method algopest €mb’sec  bksec totalgee F1
R-BERT  I’vian 108.0 283.0 391.0 91.6
DeBERTa I’vian 293.0 283.3 576.3 89.1
RoBERTa [I’vian 328.6 229.8 558.4 89.6
BART I’vian 289.8 261.4 551.2 91.4
RNN birch 2787.1 dnf dnf dnf
SimCSE Louvain 127.8 173.4 301.2 95.6

Figure: Performance on GoogleScholar-DBLP(66,879 tuples)
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Results:blocking time

Table 6: Walmart-Amazon.

method algopest emb’sec  bksee totalsec F1

R-BERT I’vian 39.1 58.9  98.0 91.6
DeBERTa  l’den 134.5 47.3  181.9 90.1
RoBERTa  I'vian 111.3 58.2 168.6 89.7
BART I’vian 132.1 48s 180.1 90.2
RNN birch 835.9 12.6 848.4 90.1
SimCSE I’vian 42.1 36.46 78.5 92.5
R-BERT . I’vian 52.9 456  98.51 90.3
DeBERTay [I’vian 162.2 48.08 210.2 90.5
RoBERTa; !’den 283.2 56.28 339.4 87.6
BART, I'vian 160.5 304 190.9 89.4
SimCSEq4 I'vian 47.3 32.98 80.3 92.5

Figure: Performance on Walmart-Amazon (22,628 tuples)
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Comparison of embeddings as a function of parameter k
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Comparison of embeddings as a function of parameter k
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Comparison
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of embeddings as a function of parameter k
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Comparison of embeddings as a function of parameter k

Wal-Amazon
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Conclusion

@ As future work, we plan to improve representation learning using task
domain data as well combining our approach with a supervised system
for Entity Matching.
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The End
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