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Cities are
Important

drivers of economy,
culture, creativity,
branding,...



Cities while epitomizing
technological advances and
opportunities can also represent

what can potentially go wrong
if technology is not effectively utilized



Urban problems: sprawl




Urban problems: pollution




Urban problems:
weather, flooding




Growing Cities and
Urbanization is a dominant

global change

underway.

Urbanization s
causing significant, and
detectable, Changes 1n

regional climate through
temperature and rainfall

http://webpages.scu.edu/ftp/jready/family_urbanizationand

mOdification modernization.html



Research Premise

*Improved Scientific Knowledge,
Computational Tools and Models if blended

with community needs can help develop
tools that can help with predicting and
managing climate extremes; help

develop cIimate-ready cities through
design and infrastructure planning.



Conceptual diagram of major Urban Climate Issues
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How do Clties

affect weather/
climate?




Urbanization and land use change leads to regional temperature changes
(warming= Urban Heat Island)

Average Temperatures in
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Change in Temperature
and Moisture

Greater trapping of
Infrared radiation

Warmer air holds more

moisture)

Increased Convective
Energy, Stronger thermals,
Modified regional
convergence

Modified location,

intensity, duration of
Rainfall




Urbanization Impacts Scale Beyond the Surface
(temperature)




The enhanced weather model predicted radar reflectivity convection and

rainfall is simulated only when urban — rural gradients boundary exists
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Meta-analysis of urbanization impact on rainfall modification
Jie Liu & Dev Niyogi ; Scientific Reports, 9,
Article number: 7301 (2019) https://www.nature.com/articles/s41598-019-42494-2

Overall 2 e Urbanization modifies rainfall,
= such that mean precipitation is
enhanced by

2% * 18% downwind of the city,
e * 16% over the city,
™ b * 2% on the left and 4% on the
o T Els right with respect to the storm
- direction.
— i) | * The rainfall enhancement
, Nk " :
I il AL occurred approximately 20—
P . W i o 50 km from the city center.
%
w B \};.) * Rainfall increases not only

downwind of the city but also
over the city.


https://www.nature.com/articles/s41598-019-42494-2
https://www.nature.com/articles/s41598-019-42494-2
https://www.nature.com/articles/s41598-019-42494-2

Can the urban impact scale up to affect regional climate?

Inéiéglg)monsoon rainfall is becoming more extreme (Science,
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Reassessment...
Heavy rainfall trend only noted for urban grids
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Cities affect
climate..




Can we design
cities to get the
‘desired” climate?

(e.g. cooling...Where should it rain)



Or use City Knowledge
to improve prediction
of urban extremes?



How can we make smart

cities to be resilient cities?

(How to use technology effectively
in making cities more liveable?)



How can we get information
on cities and blend them into
weather models to improve
city-level forecasts?



CHICAGO’S e
URBAN INTEGRATED

FIELD LABORATORY
. 24CROCUS _

ides courtesy Dr. Cristina
Negri, Chicago IFL PI




Community Driven Science

Existing community OVERARCHING
planning documents SCIENCE QUESTIONS

! !

Community Select questions Refined, specific
meetings and tailor for inclusivity science question
and pertinence J/
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Vision
The next five years

We will deliver a reliable
representation of the
complex urban Chicago
Metro environment and
its feedbacks with climate.

* A systems-based approach for
integrating, physical, biological
and human dimensions

* A framework to simulate, evaluate
and project the impacts and
feedbacks between climate and
urban systems
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Work with communities to

develop, deploy and use a diverse
measurement and observational
infrastructure to reveal

microclimates in urban areas and
their dynamics in the

heterogeneous urban fabric. ’

Model these microclimates in the
urban environment and the

interaction of physical climate .
factors with human and economic
factors and decisions. J]

Use this integrated canvas
to reveal the environmental
drivers that exacerbate
environmental injustice and
social polarization in urban
communities and enable the co-
design, with impacted
communities, of resilience and
adaptation strategies.

Apply this approach to focus on
specific neighborhoods by testing
various climate change mitigation
actions and develop decision
support tools based on individual
and community-scale decision
making.

Use the science program in its
mission to train and educate the
next generation of climate work
force in the region with hands on
experiences and innovative
curricula.

AAAAAAAAAAAAAAAAAA



Sensing and modeling to understand urban climate

challenges

The Chicago region provides an
excellent focal point for understanding
urban to regional climate science and
how to implement solutions that are
equitable to communities.
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Slide from Ben Zaitchik, JHU, BSEC Pl



The BSEC Approach

Project Goal: produce the urban climate science needed to inform
community-guided potential equitable pathways for climate action.

Guiding premise: equitable adaptation is a product of place-based co-
creation of knowledge. The IFL, then, has to be designed collaboratively,
with measurement objectives guided by community priorities.

Implication: the IFL is iterative, with observation and modeling
components designed to be both robust and flexible to collaborative
learning throughout the life of the project.

Indicators of success (example): integration of IFL analyses and
participatory design methods to Baltimore City’s forthcoming Climate
Action Plan and Disaster Preparedness and Planning Project (DP3) and
subsequent implementation activities.



Ove Farc h | N g q U est | ons Department of Energy Urban Field Labs

UT Austin SETx: Southeast Texas

1a Water ~ 1b Ax

P N * Which processes and variables need to be

= captured in regional scale hydrological and
atmospheric models so that they are
representative of the conditions
experienced by local communities and help
inform adaptation strategies?

* How can we understand the linkages

betmeeniooss & between and within natural, built, and

social systems in urbanized regions to
better support natural and human
resilience?

KNOWLEDGE MANAGEMENT PLATFORN _
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Slide from Prof. Paola
Passalacqua, SETx IFL PI



Input: Heterogeneous Data

LandScan Data (Population)

JAXA SRTM Data (Elevation)

Segmented Satellite of
Target Area
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WUDAPT for

weather models

Gosge Lty ™
- ko

Google Earth, Open Street Maps and Landsat Imagery based
reclassification of Cities, with Local Survey and Verification, and
Rendering. Map released to broader community.
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Control WUDAPT

WRF Domain Configuration
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Figure 1: (a) Domain configuration of WRF (b) Land use/ land cover for control (MODIS) and including LCZ classes (WUDAPT) Black line represents the study
area.
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Impact of Urban Parameterization
on Simulation of Hurricane Rainfall

* Key Points:

* The WRF model quantitative precipitation forecast over the urban domain was
sensitive to urban physics for an intense, large-scale event such as a hurricane.

* The consideration of detailed urban physics in the WRF model simulation reduced
the simulated rainfall error over the urban region by 16.5%.

* The improved model rainfall appears to be in response to accurate simulation of
mesoscale surface gradients.
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Struggle between Simplicity and Complexity

Often Process

Understanding
and DATA is a

missing feature

Complexity Simplicity

More Processes More Applications

Examples of data that you don't have in complex models: Building height



First challenge or opportunity for Digital Twins

- Creating synthetic data from DT/ simple models for use in process/
complex models
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* TensorFlow

Presented at IAUC 2022

Harsh Kamath, Manmeet Singh, Lori Magruder, Zong-
Liang Yang and Dev Niyogi https://arxiv.org/ftp/arxiv/papers/2205/2205.12224.pdf



https://arxiv.org/ftp/arxiv/papers/2205/2205.12224.pdf

GLOBUS to WRF (G2W) Framework

GLOBUS derived urban parameters

Used by Urban Canopy Model (UCM)
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Building surface to plan area ratio

Single-layer (Kusaka et al., 2001) and Multi-
layer (Martilli et al., 2002)
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= Mid
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GLOBUS normalized

Histogram of building heights

Multi-layer

Digital Surface Model

Mean building heights

Standard deviation of building heights

Frontal area index

Land cover derived from
ESA worldcover or Local

Single-layer
climate zones (LCZs)

Presented at IAUC 2022

Harsh Kamath, Manmeet Singh, Lori Magruder, Zong-
Liang Yang and Dev Niyogi

https://arxiv.org/ftp/arxiv/papers/2205/2205.12224.pdf



https://arxiv.org/ftp/arxiv/papers/2205/2205.12224.pdf

NOAA NIHHIS Austin Heat Island Study with G2W (Globus to WRF)
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https://arxiv.org/ftp/arxiv/papers/2205/2205.12224.pdf

Interfacing Video Gaming Visualization with Urban
Weather Models




User draws Laind Use Urtan PM

Procedural
modeling of
coupled
urban land
atmospheric
Interaction

Temp: 33.0C
0%Park W | | 0% Park;
Weather 0% White roofs '8 61% White.roof

Designing
Temp: 32.0C ' Tenif' 31.8C

Weather
; ; Renderer
Simulation
31% Park, |777% Parke
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Hyderabad, Ind
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Gathering Information on Typical Dwellings
USA

© realtor.com



http://www.realtor.com/

Second opportunity for DT*

Speed of computation

Urban science to Urban planning

—  Changesin
Greenscapes,
: R 3 : temperature and
urban Greening 7 | itv's cli
urban WRF Computer visualization
Model initial conditions to WREF: Seconds to minutes

hours to days

https://www.linkedin.com/feed/update/urn:li:activity:68990156

NODDIDYANONTT— /



Output: Procedural 3D Model

New Orleans: Procedural Model

New Orleans: Aerial Image

53



Output: Procedural 3D Model

Dublin — 3D Urban Procedural Model

Dublin — 3D Google Earth

54



Content Design Example
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Inverse Urban Weather

Input Data

Population

s

« ~-~;—:—-Bu1'~ldiﬁgs--—-----—~--

Terrain

[Aliaga et al. 2013] 56



Inverse Urban Weather

Modified Result

i Road Net ' 0
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Inverse Urban Weather:
Trees

Temperature Humidity Rainfall

ST

-20mm +20mm

~

“Cool city”

Southeast greening



Inverse Urban Weather:
Trees

Temperature Humidity Rainfall

-1°C -20mm  +20mm

Indianapolis

L]

Circular
greening

L] L]

“Warm and... ...humid city””

Distributed greening
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How would you design
the traffic of a city? _

60



Results: Traffic Improvement

Initial Simulation

Travel Time: 60min
CO: 1012 gr

The user wants to optimize the
city to 50, 40, and 30 min as
maximum Travel Time




Results: Traffic Improvement

Solutions:

Travel Time: 50 min Travel Time: 40 min Travel Time: 30 min
CO: 980gr CO: 622gr CO: 484gr
52 Lanes 16% Jobs 29% Jobs
31% People 44% People

34 Lanes 61 Lanes



Third opportunity for Urban Digital Twins

Scalability

Application: Model coupling

Hydrologic What do we do
al System here?

Coastal
Surge
System




Goal: Development of Digital Twin capabilities to understand

the complex interplay between data and models. We will explore new
multiphysics model couplings, scientific Machine Learning, data
assimilation, data interoperability, etc, building from the E3SM modeling
framework. The DT framework will be tested on applications in the Gulf

Coast land/coastal interface.
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Super resolution downscaling for urban
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Manmeet Singh, Nachiketa Acharya, Sajad Jamshidi, Junfeng Jiao, Zong-Liang Yang, Marc Coudert,
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Inverse Urban Flooding

od widh Parks ratio
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Looking forward

« Continued opportunity for simpler input conditions, development
of ensembles, decision specific output
« Challenges and precautions

Framing (what is DT, what it is not)
- Important to support physics based models not replace them
Recognize meteorological science is exceptionally challenging

Cities can be the solution for climate change — not the problem!



Happy to discuss more

Email: happy1@utexas.edu

dev.niyogi@jsg.utexas.edu
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