

2022 CCS-KISTI Workshop CCS, Univ. Tsukuba Feb. 22, 2022

# **Development and applications of SALMON**

## - First-principles computations in optical science -

Kazuhiro YABANA

Center for Computational Sciences University of Tsukuba





# $\label{eq:scalable} Scalable \ Ab \ initio \ Light-Matter \ simulator \ for \ Optics \ and \ Nanoscience$

**Open-Source Software project:** 

https://salmon-tddft.jp



Computation of light-matter interaction from atomic scale using first-principles computational method in materials science

# Contents

- (Self-) Interdisciplinary aspect in developing SALMON
- Light propagation from first-principles: hierarchy linkage in SALMON
- **Co-design** in developing SALMON and large-scale computation

# Contents

- (Self-) Interdisciplinary aspect in developing SALMON
- Light propagation from first-principles: hierarchy linkage in SALMON
- Co-design in developing SALMON and large-scale computation

# How did SALMON start? (Self-) Interdisciplinary Computational Science



University of Tsukuba

Center for Computational Sciences 筑波大学 計算科学研究センター

- Multidisciplinary Computational Science
- Co-Design by computational and computer scientists

**Division and Group** 



I am affiliated to two application-divisions:

- Quantum Condensed Matter Physics
- Nuclear Physics



Common theories are useful: (Time-Dependent) Density Functional Theory

In electronic systems, Density Functional Theory (DFT) has been quite successful (Novel prize awarded). But only for static problem.

$$\varepsilon_i \phi_i(r) = \left[\frac{1}{2m}p^2 + V_{ion}(r) + V_H(r) + V_{xc}(r)\right] \phi_i(r)$$

Static (eigenvalue) problem, Kohn-Sham equation

W. Kohn Initiate DFT in electronic systems 1998 Nobel prize in chemistry

Extension to dynamics: Time-Dependent Density Functional Theory (TDDFT)

$$i\hbar\frac{\partial}{\partial t}\psi_i(r,t) = \left[\frac{1}{2m}p^2 + V_{ion}(r) + V_H(r,t) + V_{xc}(r,t) + V_{ext}(r,t)\right]\psi_i(r,t)$$

Popular method in nuclear physics, from 70's.

#### **TDDFT simulation for nucleus-nucleus collisions**

Before I entered graduate course in 1982.

H. Flocard, S.E. Koonin, M.S. Weiss, Phys. Rev. 17(1978)1682.

17 THREE-DIMENSIONAL TIME-DEPENDENT HARTREE-FOCK...



FIG. 2. Contour lines of the density integrated over the coordinate normal to the scattering plane for an  ${}^{16}O + {}^{16}O$  collision at  $E_{1ab} = 105$  MeV and incident angular momentum  $L = 13\hbar$ . The times t are given in units of  $10^{-22}$  sec.

<sup>16</sup>O-<sup>16</sup>O collision

# Time evolution of proton and neutron orbitals.

$$i\hbar \frac{\partial}{\partial t} \psi_i(\vec{r}, t) = h[n(\vec{r}, t)] \psi_i(\vec{r}, t)$$
$$n(\vec{r}, t) = \sum_i |\psi_i(\vec{r}, t)|^2$$
$$\psi(\vec{r}_1, \vec{r}_2, \cdots, \vec{r}_N, t) = A \{\psi_1(\vec{r}_1, t) \psi_2(\vec{r}_2, t) \cdots \psi_N(\vec{r}_N, t)\}$$



Spatial grid 30x28x16, time step 4x10<sup>2</sup> using CRAY-1 (80MFLOPS)

## Synthesis of superheavy elements



#### **TDDFT** simulation to produce Z=120 element

K. Sekizawa, K. Yabana, Phys. Rev. C93, 054616 (2016)

 $^{238}$ U +  $^{64}$ Ni (proton number: 92 + 28 = 120)



In electronic systems, Density Functional Theory (DFT) has been quite successful (Novel prize awarded). But only for static problem.

$$\varepsilon_i \phi_i(r) = \left[\frac{1}{2m}p^2 + V_{ion}(r) + V_H(r) + V_{xc}(r)\right] \phi_i(r)$$

Static (eigenvalue) problem, Kohn-Sham equation

W. Kohn Initiate DFT in electronic systems 1998 Nobel prize in chemistry

Extension to dynamics: Time-Dependent Density Functional Theory (TDDFT)

$$i\hbar\frac{\partial}{\partial t}\psi_i(r,t) = \left[\frac{1}{2m}p^2 + V_{ion}(r) + V_H(r,t) + V_{xc}(r,t) + V_{ext}(r,t)\right]\psi_i(r,t)$$

Popular method in nuclear physics, from 70's.

We extended static DFT in material science to electronic dynamics using nuclear-theory method.

# Quantum electronic dynamics in a unit cell of silicon crystal



First-principles DFT Band calculation





# Contents

- (Self-) Interdisciplinary aspect in developing SALMON
- Light propagation from first-principles: hierarchy linkage in SALMON
- Co-design in developing SALMON and large-scale computation

# Traditional computational methods in optical science



They are not sufficient in current optics frontier.

#### One of directions in current optics:

#### Generate and Utilize Intense and Ultrashort Laser Pulse

#### **Nobel Prize in Physics 2018**



© Johan Jarnestad / The Royal Swedish Academy of Sciences

# In SALMON, we combine Maxwell and TDDFT



#### Two frameworks connecting two descriptions

Microscopic (single-grid) vs Macroscopic (multi-grid)

## Microscopic (Single-scale) vs. Macroscopic (Multi-scale)

## Microscopic Maxwell+TDDFT



**Single-scale** approach using a **common** spatial grid

S. Yamada et al, PRB 98, 245147 (2018).



### Nonlinear light propagation: multiscale Maxwell-TDDFT simulation

$$\left(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial Z^2}\right)\mathbf{A}_Z(t) = \frac{4\pi}{c}\mathbf{J}_Z(t)$$

Grid points for light propagation



#### Nonlinear light propagation: multiscale Maxwell-TDDFT simulation

$$\left(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial Z^2}\right)\mathbf{A}_Z(t) = \frac{4\pi}{c}\mathbf{J}_Z(t)$$

Grid points for light propagation



K. Yabana, T. Sugiyama, Y. Shinohara, T. Otobe, G.F. Bertsch, "Time-dependent density functional theory of strong electromagnetic fields in crystalline solids", Phys. Rev. B85, 045134 (2012).

## Macroscopic (multi-scale) Maxwell-TDDFT: pulsed light on Si nano-film



z (µm)

## Macroscopic (multi-scale) Maxwell-TDDFT: pulsed light on Si nano-film



z (µm)

#### High harmonic generation in reflection/transmission waves



S. Yamada et.al, Phys. Rev. B107, 035132 (2023)

# Contents

- (Self-) Interdisciplinary aspect in developing SALMON
- Light propagation from first-principles: hierarchy linkage in SALMON
- Co-design in developing SALMON and large-scale computation

# Development of SALMON Co-Design



University of Tsukuba

Center for Computational Sciences 筑波大学 計算科学研究センター - Multidisciplinary Computational Science

- Co-Design by computational and computer scientists

#### **Division and Group**



Code development:

- Physics researchers in Quantum Condensed Matter Physics
- Computer researchers in High Performance Computing Systems

In-house collaboration between computational and computer scientists.



Dr. Yuta Hirokawa

**Compile options** in SALMON

2014.04-2018.09 Univ. Tsukuba, Grad. Student, Department of Computer Science supervised by Prof. Boku.

#### Ph.D thesis

**"Co-design for first-principles electronic dynamics simulation** in cutting-edge high performance computing systems"

2018.10-2020.10 Researcher, CCS, University of Tsukuba

2020.11-Private company

> \$ python ../configure.py --arch=ARCHITECTURE --prefix=../ \$ make \$ make install

In executing the python script, you need to specify **ARCHITECTURE** that indicates the architecture of the CPU in your computer system such as intel-avx. The options of the ARCHITECUTRE are as follows:

| arch               | Detail                                  | Compiler            | Numerical Library |
|--------------------|-----------------------------------------|---------------------|-------------------|
| intel-knl          | Intel Knights Landing                   | Intel Compiler      | Intel MKI         |
| intel-knc          | Intel Knights Corner                    | Intel Compiler      | Intel MKL         |
| intel-avx          | Intel Processer (Ivy-, Sandy-Bridge)    | Intel Compiler      | Intel MKI         |
| intel-avx2         | Intel Processer (Haswell, Broadwell)    | Intel Compiler      | Intel MKL         |
| intel-avx512       | Intel Processer (Skylake-SP)            | Intel Compiler      | Intel MKI         |
| fujitsu-fx100      | FX100 Supercomputer                     | Fujitsu Compiler    | SSL-II            |
| fujitsu-a64fx-ea   | A64FX processor (Fugaku, FX1000, FX700) | Fujitsu Compiler    | SSL-II            |
| nvhpc-openmp       | NVHPC OpenMP (CPU)                      | Nvidia HPC Compiler | Nvidia HPC SDK    |
| nvhpc-openacc      | NVHPC OpenACC (GPU)                     | Nvidia HPC Compiler | Nvidia HPC SDK    |
| nvhpc-openacc-cuda | NVHPC OpenACC+CUDA (GPU)                | Nvidia HPC Compiler | Nvidia HPC SDK    |

# Large-scale computing using Fugaku Microscopic (single-scale) Maxwell + TDDFT + MD

Fugaku Supercomputer



Top 500 1<sup>st</sup> (2020.6) 415 Pflops 158,976 A64FX (48 core) Dynamics of light EM fields, electrons, and ions of more than 10,000 atoms



27,648 nodes, about 1/6 of full system

# **Performance** (Weak Scaling)



Achieved ~1s/iter up to 10,000 atoms.

Hamiltonian operation (Stencil, nonlocal PS) costs about half of total time.

60 – 70 % communications (halo, sum, etc).

#### FFT is bottleneck in view of weak scaling.

# **SALMON in GPU machine**

- Code mostly written in fortran90
- To get performance, need to carry out all calculations in GPU
- Code frequently developed and modified by physics researchers



**OpenACC** + **Unified Memory** 

# **Performance comparison: CPU vs GPU**

Electron dynamics calculation in 512 atom unit cell of silicon



GPU > CPU using OpenACC+Unified Memory

# Weak scaling performance

Electron dynamics calculation in 512 atom unit cell of silicon



4 x V100 32 x V100 (8 nodes)

Almost perfect scaling performance

# **Summary**

https://salmon-tddft.jp



We develop SALMON, first-principles calculation for optics and nano-sciences.

It describes electronic dynamics induced by light. Unique feature: light-propagation calculation from first-principles.

In the development,

- (self-) interdisciplinary computational physics (nuclear method meets first-principles calculation).
- In-house co-design was successful.
- Large-scale computing, efficient use of GPU.

## Acknowledgement

#### Young collaborators (SALMON project)



Atsushi Yamada <sub>RIST</sub>



Shunsuke Yamada Kansai Photon Sci. Inst



Takashi Takeuchi RIKEN



Arqum Hashmi Kansai Photon Sci. Int.







Q-LEAP



Mitsuharu Uemoto Kobe Univ.



Yuta Hirokawa Private company



Shunsuke Sato U. Tsukuba

