Tsukuba University Exercises

Contents
AMD Accelerator Cloud (AAC) 2
Login Instructions e e 2
SSH-Key Generation o v i i ittt e e e e 2
Login with SSH-Key e 2
Login with password L e 2
Login Troubleshooting 3
Directories and Files oL e 3
Container Environment L e e 3
Explore Modules 4
Slurm Information L e e 5
Training Examples Repo o . e 5
Programming Model Exercises — Managed Memory and Single Address Space (APU) 5
CPU Code baseline e e e 6
Standard GPU Code example e 6
Managed Memory Code e 7
APU Code — Single Address Space in HIP 8
OpenMP APU or single address space o o0t e 8
RAJA Single Address Code e 8
Kokkos Unified Address Code e 9
Introduction to OpenMP Offloading 10
OpenMP C Build systems: make and cmake o 10
Make e 10
CMake e 11
OpenMP CXX Build systems: make and cmake o0 L. 12
Make e 12
CMake o e e 13
OpenMP Fortran Build systems: make and cmake 0L 13
Make o e 14
CMake o e 14
First OpenMP C offload: e 15
Part 1: Unified shared memory L e 15
Part 2: Impact of USM e 17
Part 3: Map clauses L 17
First Fortran OpenMP offload: Porting saxpy step by step and explore the discrete GPU and APU
programming models: L L e e e e 18
Part 1: Porting with unified shared memory enabled 19
Part 2: explore the impact of unified shared memory 20
Part 3: with map clauses L 20
Real World OpenMP Language Constructs 21

OpenMP Single Line Compute Constructs: e
CPU version 0 i e e e
OpenMP Single Line Compute Constructs:
CPU version 0 i
OpenMP complex compute constructs in C L
Full combined compute directive
Target directive L
Teams clause e e e e e
Split multi-level directive L
OpenMP complex compute constructs in Fortrano Lo

Porting exercise: reduction L

Part 2: Port with map clause
Porting exercise reduction of multiple scalars in one kernelo
Porting exercise reduction of multiple scalars in one kernel,
Porting exercise reduction into an arrayo
Porting exercise reduction of multiple scalars in one kernel
C Code — Porting device routine exercises
Part 1: Fortran with interface blocks
Part 2: Fortran with modules L
C++ member functiono e
C++ member function external Lo
C++ virtual methods e e
Exercise: mapping of different datatypes Lo
OpenMP Offloading for C4++ Codes that use Classes

The wusm Sub-directory. e

The explicit Sub-directory

Submodule test — does the Fortran compiler support the new submodules feature in the Fortran
2008 standard (extension in 2003)

Introduction to HIP Exercises

HIP /basic_examples Documentation L L

Table of Contents e e e e e
Find the error L e
Add the device-to-host data transfer L
Complete the square elements kernel L
Complete the matrix multiply kernel
Complete the matrix multiply kernel
hipify the CUDA pingpong code
Complete the matrix multiply with shared memory

Porting Applications to HIP

Hipify Examples e

Exercise 1: Manual code conversion from CUDA to HIP (10 min)

Exercise 2: Code conversion from CUDA to HIP using HIPify tools (10 min)
HIPifly Example: Vector Addition
Full OpenMP Application Code e
OpenMP Application Calling a HIP Kernel
APU Programming Model Version
HIP application calling an OpenMP Kernel
OpenMP and HIP Kernels in the Same Source File

Running a Fortran to HIP interop example

40
40
40
40
40
41
41
42
42
43

43
43
43
43
44
45
45
45
45
46

46

Explicit Memory Management
Unified Shared Memory

Kokkos examples

Stream Triad
Step 1: Build a separate Kokkos package
Step 2: Modify Build oo
Step 3: Add Kokkos views for memory allocation of arrays
Step 5: Add Kokkos timers L.
6. Run and measure performance with OpenMP
Portability Exercises Lo

C++ Standard Parallelism on AMD GPUs

hipstdpar_saxpy_ foreach example
hipstdpar__saxpy_ transform example
hipstdpar__saxpy_ transform_ reduce example
Traveling Salesperson Problem
hipstdpar_ shallowwater_orig.sh
hipstdpar_shallowwater_verl.sh
hipstdpar_ shallowwater_ver2.sh
hipstdpar_ shallowwater_stdpar.sh
Mix and Match

Advanced OpenMP presentation

Memory Pragmaso
One solution that miminizes data transfer
Unified Shared Memory
Unified Shared Memory with backwards compatibility
APU Code — Unified Address in OpenMP

Kernel Pragmas

Advanced HIP

Optimizing DAXPY HIP
Inputs
Build Code
Run exercises L
Things to ponder about
Notes o e e

Register Exercises Lo
Register Pressure - ROCm Blogs

Register pressure in AMD CDNA™2 GPUs

HIP Transpose Examples
Transpose Read Contiguous
Transpose Write Contiguous
Tiled Matrix Transpose
Transpose from the rocblas library

GPU Aware MPI

Point-to-point and collective L
OSU Benchmark e
Ghost Exchange example L o
RCCL Test o e e e

MPI Example: Ghost Exchange with OpenMP

Features of the various versions

47
47
47
48
48
49
49
49

50
20
50
50
50
ol
ol
51
51
52

52
52
o4
o4
o4
54
95

55
55
56
o6
o6
96
o7
57
o7
28
98
58
59
60
61

62
62
62
63
64

65

Overview of the implementation
Original version of Ghost Exchange
Version 1 — Adding OpenMP target offload to original CPU code

HIP-Python
Obtaining Device Properties e
Getting Device Attributes L
Accessing HIP Streams using HIP-Python
Calling hipBLAS from Python using HIP-Python
Using Unified Shared Memory for hipBLAS using HIP-Python
Calling hipFFT from Python using HIP-Python.
Unified Shared Memory version of calling hipFFT HIP-Python
Calling RCCL from Python using HIP-Python
Unified Shared Memory with RCCL using HIP-Python
Cython example L e e e
Compiling and Launching Kernels 0 0 o
Kernels with arguments L e
numba-HIP o

CuPy Examples
Simple introduction example to CuPy for AMD GPUs

MPI4Py examples
Exploring MPI communication with MPI4Py

AMD AI Assistant using retrieval augmented generation (RAG)
Ollama e e e
System with a limited number of users L
System with a large number of userso

ROCgdb
Saxpy Debugging L e e

Rocprofv3 Exercises for HIP
Jacobi . .. e
Setup environment L e e
Compile and run one case e e
Let’s profile HIP e
Let’s create statistics Lo

Create pftrace file for Perfetto and Visualize
Hardware Counters e e e e e e e
TIPS . o e e e

Rocprofv3 Exercises for OpenMP
Setup environment L. e
Buildand run oL e
Basic rocprov3 profiling
Available options L
First kernel information e
Create statistics L L e
Visualizing traces using Perfetto
Additional features L. e e
Hardware Counters e e e e e e e e e
Next steps o o e e e

67
67
68
69
70
71
72
73
73
74
76
7
78
80

81
81

82
82

83
83
83
85

86
36

ROCm™ Systems Profiler aka rocprof-sys

Environment setup L.
Buildandrun
rocprof-sys config.

Instrument application binary
Run instrumented binary
Visualizing traces using Perfetto
Additional features
Flat profiles
Hardware counters
Sampling
Profiling multiple MPI processes
Nextsteps.

Stream Overlap Example

Folder 0-Orig

Folder 1-split-copy-compute-hw-queues

Folder 2-pageable-mem
Self-guided tour of the Stream Overlap example

ROCprof-compute

Exercise 1: Launch Parameter Tuning

Resultson MI210

ROCprof-compute Command Line Comparison Feature:

More Kernel Filtering:
Solution Roofline
Roofline Comparison
Summary and Take-aways
Results on MI300A
Roofline Analysis:
Exercise Instructions:

ROCprof-compute Command Line Comparison Feature:

More Kernel Filtering:

Exercise 2: LDS Occupancy Limiter

Results on MI210
Initial Roofline Analysis
Exercise Instructions:
Solution Roofline
Roofline Comparison
Summary and Take-aways

Results on MI300A
Roofline Analysis:

Exercise 3: Register Occupancy Limiter

Resultson MI210
Initial Roofline Analysis
Exercise Instructions:

95

95
95
96

96
97
97
97
97
98
98
98
98

98
99

99

99
99

100

100
100
100
102
105
106
107
109
111
111
111
112
113
114

116
116
116
118
122
124
126
126
126

Solution Roofline
Roofline Comparison
Summary and Take-aways
Results on MI300A
Roofline Analysis:

Exercise 4: Strided Data Access Patterns (and how to find them)

Results on MI210
Initial Roofline Analysis
Exercise Instructions:
Solution Roofline Analysis
Roofline Comparison

Summary and Take-aways
Results on MI300A

Exercise 5: Algorithmic Optimizations
Results on MI210:
Initial Roofline Analysis
Exercise Instructions:
Solution Roofline Analysis
Roofline Comparison
Summary and Take-aways

Results on MI300A

ROCprof Trace Decoder
Setting up environment
Basic test — vectorAdd

ROCprofiler Compute Viewer
Saxpy ...
Matrix multiply - hip version
Matrix multiply library test (DGEMM)

AMD Accelerator Cloud (AAC)

File: login_info/ AAC/README.md at https://github.com/amd/HPCTrainingExamples

We have some small cloud based systems available for training activities. Attendees can login using the
instructions below. This set of instructions assumes that users have already received their <username>

and <port_number> for the container, and that they have either provided an ssh key to the training team,
or they have received a password from the training team.

Login Instructions

The instructions below rely on ssh to access the AAC. If you have not sent your public key in for an account
and do not have an ssh public key, start with the instructions on how to generate an ssh key. If you have sent
an ssh key and received your account information, skip to the section on how to log into the system.
SSH-Key Generation

Generate an ssh key on your local system, which will be stored in .ssh :

cd $HOME
ssh-keygen -t ed25519 -N "'

To examine the content of your public key do:
cat $HOME/.ssh/id_ed25519.pub

NOTE: at first login, you will be presented with the AAC user agreement form. This covers the terms of use
of the compute hardware as well as how we will handle your data. Scroll down with the down arrow and type
yes when prompted. Note that if you will scroll down too much, then no will be received as answer and
you will be logged out.

Login with SSH-Key

IMPORTANT: if you are supposed to login with an ssh key and you are prompted a password, do not type
any password! Instead, type Ctrl+C and contact us to get some help.

To login to an AAC MI300A system using the ssh key use the <username> that the training team has
provided you, for instance:

ssh <username>@aac6.amd.com -i <path/to/ssh/key> (1)

Login with password

For a password login, the command is the same as in (1) , except that it is not necessary to specify a path
to the ssh key. Just type the password that has been given to you when prompted:

ssh <username>@aac6.amd.com

IMPORTANT: It is fundamental to not type the wrong password more than two times otherwise your L.P.
address will be blacklisted and you will not be allowed access to AAC until we modify our firewall to get you
back in. This is especially important if you are at an event where all the attendees are connecting to the
same wireless network.

If you are using a password login, you can upload an ssh key with the following command to avoid using a
password

ssh-copy-id -i <path/to/ssh/key.pub> -o UpdateHostKeys=yes <username>Qaac6.amd.com

In the commands above -i points to the path of your ssh key. The -i option is not needed if your
default key is used.

To simplify the login even further, you can add the following to your .ssh/config file:

%60https://raw.githubusercontent.com/amd/HPCTrainingExamples/refs/heads/main/login_info/AAC/README.md%60

AMD AAC cluster

Host aac
User <username>
Hostname aac6.amd.com // this may be different depending on the container
IdentityFile <path/to/ssh/key> // this points to the private key file
ServerAlivelInterval 600
ServerAliveCountMax 30

The ServerAlivex lines in the config file may be added to avoid timeouts when idle. You can then login
using:

ssh aac -p <port_number>
It may also happen that a message like the following will show after logging into AAC:

defelelclclelelelelcleleleleldddeeeeedddddddcdelcleddddeeeecedededcdcdetdddddeeeee

@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
defelelclclelelelelelelelelEEdeeeeleeeeedddedeleleEdddeeeeeeedcddelEddddeeeeee

IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!

Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that a host key has just been changed.

In such a case, remove in your local system the offending keys located in .ssh/known_hosts , as indicated
by the warning message.

Login Troubleshooting

Here are some troubleshooting tips if you cannot login to AAC following the instructions above:

1. Check the spelling of the command ssh, in particular <username> and password.

2. Turn off VPN if on.

3. Try logging in from a different machine if available (and migrate the ssh key to the new machine or
generate a new one and send it to us).

4. Try a jump host: this is a local server that you ssh to and then do a second ssh command from there.

In case none of these options work, send us the output of the ssh command followed by -vv and also the
output of traceroute aac6.amd.com . Additionally, let us know if the command ping aac6.amd.com
works on your end.

Directories and Files
$HOME=/home/aac/shared/teams/hackathon-testing/<group>/<username>"

You can copy files in or out of AAC with the scp or the rsync command.

Copy into AAC from your local system, for instance:

scp -i <path/to/ssh/key> <file> <username>@aac6.amd.com:~/<path/to/file>
Copy from AAC to your local system:

scp -i <path/to/ssh/key> <username>Qaac6.amd.com:~/<path/to/file> .

To copy files in or out of the container, you can also use rsync as shown below:

rsync -avz -e "ssh -i <path/to/ssh/key>" <file> <username>Qaac6.amd.com:~/<path/to/file>

Container Environment

Please consult the container’s README to learn about the latest specs of the training container.

https://github.com/amd/HPCTrainingDock/blob/main/README.md

The software on the node is based on the Ubuntu 22.04 Operating System with one of the latest versions of
the ROCm software stack. It contains multiple versions of AMD, GCC, and LLVM compilers, hip libraries,
GPU-Aware MPI, AMD profiling tools and HPC community tools. The container also has modules set up
with the lua modules package and a slurm package and configuration. It includes the following additional
packages:

e emacs
e vim

« autotools
e cmake

o tmux

e boost

o eigen

o fftw

e gmp

e gsl

¢ hdf5-openmpi
o lapack

e magma

e matplotlib
e parmetis
o mpfr

e mpidpy

e openblas
e openssl

o SWig

e numpy

e scipy
e hbsparse

Explore Modules
To see what modules are available do:

module avail

The output list of module avail should show:

-——- e /etc/lmod/modules/Linux --- -—= -—=
clang/base gcc/base

-——- -—= ---- /etc/lmod/modules/LinuxPlus - -—= -—=
miniconda3/25.3.1 miniforge3/24.9.0

e e /etc/lmod/modules/ROCH —-- - -

amdclang/19.0.0-6.4.1 rocprof-tracedecoder/6.4.1
amdflang-new/rocm-afar-7.0.5 rocprofiler-compute/6.4.1 (D)
hipfort/6.4.1 rocprofiler-sdk/6.4.1
opencl/6.4.1 rocprofiler-systems/6.4.1 (D)
rocm/6.4.1

-------------------------------- /etc/1mod/modules/ROCmMPlus —————————=——=————————-——————————

adios2/2.10.1 hpctoolkit/2024.01.99-next netcdf-c/4.9.3 scorep/9.0
fftw/3.3.10 hypre/2.33.0 netcdf-fortran/4.6.2 tau/dev
hdf5/1.14.6 kokkos/4.6.01 petsc/3.23.1

-—== - --- /etc/lmod/modules/ROCmPlus-MPI ---- - -
mpidpy/4.0.3 openmpi/5.0.7-uccl.4.4-ucx1.18.1

- -—- - /etc/lmod/modules/ROCmPlus-AMDResearchTools ——————————=—————————————
rocprofiler-compute/develop rocprofiler-systems/amd-staging

-——= -—- -- /etc/1lmod/modules/ROCmPlus-LatestCompilers ———-—-——————————————————
hipfort_from_source/6.4.1

- -—- --- /etc/1lmod/modules/ROCmPlus-AT m— e
cupy/14.0.0al jax/0.6.0 pytorch/2.7.1 (D)
ftorch/dev pytorch/2.7.1_tunableop_enabled tensorflow/merge-250318

-—=- ittt /etc/1mod/modules/misc ——- - -
hipifly/dev

Where:
D: Default Module

There are several modules associated with each ROCm version. One is the rocm module which is needed by
many of the other modules. The second is the amdclang module when using the amdclang compiler that
comes bundled with ROCm. The third is the hipfort module for the Fortran interfaces to HIP. Also, there is
an OpenCL module and one for each of the AMD profilers.

Compiler modules set the C, CXX, FC flags. Only one compiler module can be loaded at a time. hipcc is in
the path when the rocm module is loaded. Note that there are several modules that set the compiler flags
and that they set the full path to the compilers to avoid path problems.

Slurm Information

The AAC6 node is set up with Slurm. Slurm configuration is for a single queue that is shared with the rest
of the node. Run the following command to get info on Slurm:

sinfo

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST

1CN192C4G1H_MI300A_Ubuntu22x* up 8-00:00:00 3 idle ppac-pll-s24-[16,26,30,35] ,ppac-pli-s25-40
1CN48C1G1H_MI300A_Ubuntu22 up 8-00:00:00 4 idle sh5-pl1-s12-[09,12,15,33,36]

The Slurm salloc command may be used to acquire a long term session that exclusively grants access to
one or more GPUs. Alternatively, the srun or sbatch commands may be used to acquire a session with
one or more GPUs and only exclusively use the session for the life of the run of an application. squeue
will show information on who is currently running jobs.

Training Examples Repo

You can get the examples from our repository. This repository contains all the code that we normally use
during our training events:

cd $HOME
git clone https://github.com/amd/HPCTrainingExamples.git

Programming Model Exercises — Managed Memory and Single
Address Space (APU)

From HPCTrainingExamples/ManagedMemory/README.md in the training exercises repository

NOTE: these exercises have been tested on MI210 and MI300A accelerators using a container environment.
To see details on the container environment (such as operating system and modules available) please see
README.md on this repo.

10

https://github.com/amd/HPCTrainingDock

The source code for these exercises is based on those in the presentation, but with details filled in so that
there is a working code. You may want to examine the code in these exercises and compare it to the code in
the presentation and to the code in the other exercises.

CPU Code baseline

git clone https://github.com/amd/HPCTrainingExamples.git
cd HPCTrainingExamples/ManagedMemory

First, run the standard CPU version. This is a working version of the original CPU code from the
programming model presentation. The example will work with any C compiler and run on any CPU. To set
up the environment, we need to set the CC environment variable to the C compiler executable. We do this by
loading the amdclang module which sets CC=/opt/rocm-<version>/1lvm/bin/amdclang . The makefile
uses the CC environment which we have set. In our modules, we set the “family” to compiler so that only
one compiler can be loaded at a time.

cd HPCTrainingExamples/ManagedMemory/CPU_Code
module load amdclang
make

will compile with /opt/rocm-<version>/1lvm/bin/amdclang -g -03 cpu_code.c -o cpu_code Then
run code with

./cpu_code

Standard GPU Code example

This example shows the standard GPU explicit memory management. For this case, we must move the memory
ourselves. This example will run on any AMD Instinct GPU (data center GPUs) and most workstation or
desktop discrete GPUs and APUs. The AMD GPU driver and ROCm software needs to be installed.

For the environment setup, we need the ROCm bin directory added to the path. We do this by load-
ing the ROCm module with module load rocm . This will set the path to the rocm bin directory.

We could also do this with export PATH=/opt/rocm-<version>/bin or by supplying the full path
/opt/rocm-<version>/bin/hipcc to the compile line. Note that even this may not be necessary as the
ROCm install may have placed a link to hipcc in /usr/bin/hipcc during the ROCm install.

We also supply a --offload-arch=${AMDGPU_GFXMODEL} option to the compile line. While not necessarily
required, it helps in cases where the architecture is not autodetected properly. We use the following line to query

what the architecture string AMDGPU_GFXMODEL should be. We can also set our own AMDGPU_GFXMODEL
variable in cases where we want to cross-compile or compile for more than one architecture.

AMDGPU_GFXMODEL 7= $(strip $(shell rocminfo |grep -m 1 -E gfx[~0]{1} | sed -e 's/ *Name: *//'))

The AMDGPU_GFXMODEL architecture string is gfx90a for MI200 series and gfx942 for MI300A and
MI300X. We can also compile for more than one architecture with export AMDGPU_GFXMODEL="gfx90a,gfx942"

cd ../GPU_Code
make

This will compile with hipcc -g -03 --offload-arch=${AMDGPU_GFXMODEL} gpu_code.hip -o gpu_code

Then run the code with

./gpu_code

11

Managed Memory Code

In this example, we will set the HSA_XNACK environment variable to 1 and let the Operating System move
the memory for us. This will run on AMD Instinct GPUs for the data center including MI300X, MI300A,
and MI200 series. To set up the environment, module load rocm .

export HSA_XNACK=1

module load rocm

cd ../Managed_Memory_Code
make

./gpu_code

To understand the difference between the explicit memory management programming and the managed
memory, let’s compare the two codes.

diff gpu_code.hip ../GPU_Code/
You should see the following:

34a35,37

> double *in_d, *out_d;

> HIP_CHECK (hipMalloc((void **)&in_d, Msize));

> HIP_CHECK (hipMalloc ((void **)&out_d, Msize));

38a42,43

> HIP_CHECK (hipMemcpy(in_d, in_h, Msize, hipMemcpyHostToDevice)) ;
>

41c46

< gpu_func<<<grid,block,0,0>>>(in_h, out_h, M);

> gpu_func<<<grid,block,0,0>>>(in_d, out_d, M);

43a49

> HIP_CHECK (hipMemcpy (out_h, out_d, Msize, hipMemcpyDeviceToHost)) ;

It may be more instructive to look at the lines of hip code that are required compared to the explicit memory
management GPU code.

grep hip ../GPU_Code/gpu_code.hip
which gets the following output

#include "hip/hip_runtime.h"

hipError_t gpuErr = call; \
if (hipSuccess != gpuErr){ \
__FILE__, __LINE__, hipGetErrorString(gpuErr)); \

HIP_CHECK (hipMalloc((void **)&in_d, Msize));

HIP_CHECK (hipMalloc((void **)&out_d, Msize));

HIP_CHECK (hipMemcpy(in_d, in_h, Msize, hipMemcpyHostToDevice));
HIP_CHECK (hipDeviceSynchronize());

HIP_CHECK (hipMemcpy (out_h, out_d, Msize, hipMemcpyDeviceToHost));

grep hip gpu_code.hip

And for the managed memory program, we essentially get just the addition of the hipDeviceSynchronize
call plus including the hip runtime header and the error checking macro.

#include "hip/hip_runtime.h"

hipError_t gpuErr = call; \
if (hipSuccess != gpuErr){ \
__FILE__, __LINE__, hipGetErrorString(gpuErr)); \

HIP_CHECK (hipDeviceSynchronize());

12

APU Code — Single Address Space in HIP

We’'ll run the same code as we used in the managed memory example. Because the memory pointers are
addressable on both the CPU and the GPU, no memory management is necessary. First, log onto an MI300A
node. Then compile and run the code as follows.

export HSA_XNACK=1
module load rocm
cd ../APU_Code
make

./gpu_code

It may be confusing why we need HSA_XNACK=1 . Even with the APU, we need to map the pointers into
the GPU page map though the memory itself does not need to be copied.

OpenMP APU or single address space

For this example, we have a simple code with the loop offloading in the main code, openmp_code , and a

second version, openmp_codel , with the offloaded loop in a subroutine where the compiler cannot tell the size
of the array. Running this on the MI200 series, it passes, despite that it does not have a single address space. We
add export LIBOMPTARGET_INFO=-1 or for less output export LIBOMPTARGET_INFO=$((0x1 | 0x10))

to verify that it is running on the GPU.

export HSA_XNACK=1
module load amdclang
cd ../OpenMP_Code
make

You should see some warnings that are basically telling you the AMD clang compiler is ignoring the simd
clause is being ignored. You can remove the simd from the OpenMP pragmas, but at the expense of
portability to some other OpenMP compilers. Now run the code.

./openmp_code
./openmp_codel
export LIBOMPTARGET_INFO=$((0x1 | 0x10)) # or export LIBOMPTARGET_INF0=-1
./openmp_code
./openmp_codel

If the executable is running on the GPU you will see some output as a result of the LIBOMPTARGET_INFO
environment variable being set. If it is not running on the GPU, you will not see anything.

For more experimentation with this example, comment out the first line of the two source codes.

//#pragma omp requires unified_shared_memory
make

export LIBOMPTARGET_INFO=-1

./openmp_code

./openmp_codel

Now with the LIBOMPTARGET_INFO variable set, we get a report that memory is being copied to the device
and back. The OpenMP compiler is helping out a lot more than might be expected even without an APU.

RAJA Single Address Code

First, set up the environment

module load amdclang
module load rocm

For the Raja example, we need to build the Raja code first

13

cd ~/HPCTrainingExamples/ManagedMemory/Raja_Code
PWDir="pwd"

git clone --recursive https://github.com/LLNL/RAJA.git Raja_build
cd Raja_build

mkdir build_hip && cd build_hip

cmake -DCMAKE_INSTALL_PREFIX=${PWDir}/Raja_HIP \
-DROCM_ROOT_DIR=/opt/rocm \
-DHIP_ROOT_DIR=/opt/rocm \
-DHIP_PATH=/opt/rocm/bin \
-DENABLE_TESTS=0ff \
-DENABLE_EXAMPLES=0ff \
-DRAJA_ENABLE_EXERCISES=0ff \
-DENABLE_HIP=0n \

make -j 8
make install

cd ../..
rm -rf Raja_build

export Raja_DIR=${PWDir}/Raja_HIP

Now we build the example. Note that we just allocated the arrays on the host with malloc. To run it on the
MI200 series, we need to set the HSA_XNACK variable.

To run with managed memory
export HSA_XNACK=1

mkdir build && cd build
CXX=hipcc cmake ..

make

./raja_code

cd ..
rm -rf build

cd ${PWDir}
rm -rf Raja_HIP

cd ..
rm -rf ${PROB_NAME}
Kokkos Unified Address Code

First, set up the environment

module load amdclang
module load rocm

For the Kokkos example, we also need to build the Kokkos code first

cd ~/HPCTrainingExamples/ManagedMemory/Kokkos_Code

PWDir="pwd"

14

git clone https://github.com/kokkos/kokkos Kokkos_build
cd Kokkos_build

mkdir build_hip && cd build_hip

cmake -DCMAKE_INSTALL_PREFIX=${PWDir}/Kokkos_HIP -DKokkos_ENABLE_SERIAL=0N \
-DKokkos_ENABLE_HIP=0N -DKokkos_ARCH_ZEN=0ON -DKokkos_ARCH_VEGA90A=0N \
-DCMAKE_CXX_COMPILER=hipcc ..

make -j 8
make install

cd ../..
rm -rf Kokkos_build

export Kokkos_DIR=${PWDir}/Kokkos_HIP
Now we build the example. Note that we have not had to declare the arrays in Kokkos Views.

To run with managed memory
export HSA_XNACK=1

mkdir build && cd build
CXX=hipcc cmake ..

make

./kokkos_code

cd ${PwDir}
rm -rf Kokkos_HIP

cd ..
rm -rf ${PROB_NAME}

With recent versions of Kokkos, there is support for a single memory copy for the MI300A GPU.
-Dkokkos_ENABLE_IMPL_HIP_UNIFIED_MEMORY=0ON in Kokkos 4.4+

Makes it easy to switch between host/device duplicate arrays to single memory copy on the MI300A.

Introduction to OpenMP Offloading

README.md from HPCTrainingExamples/Pragma_Examples/OpenMP/C/BuildExamples in the Training
Examples repository

We start the introduction with how to compile programs using OpenMP offloading to GPUs. This leads us
to how to write makefiles and CMakeLists.

OpenMP C Build systems: make and cmake

README.md in HPCTrainingExamples/Pragma_Examples/OpenMP/C/BuildExamples of the Training
Examples repository

Build systems for make and cmake are an important starting step to working with OpenMP. We’ll start
with samples for C builds. We’ll test them with some of our sample code to make sure your system is setup
properly.

Make

cd HPCTrainingExamples/Pragma_Examples/OpenMP/C/BuildExamples

15

First let’s take a look at the makefile
cat Makefile
The output should be

all: openmp_code
ROCM_GPU 7= $(strip $(shell rocminfo |grep -m 1 -E gfx["0]{1} | sed -e 's/ *Name: *//'))
CC1=$(notdir $(CC))

ifneq ($(findstring amdclang,$(CC1)),)

OPENMP_FLAGS = -fopenmp --offload-arch=${ROCM_GPU}
else ifneq ($(findstring clang,$(CC1)),)

OPENMP_FLAGS = -fopenmp --offload-arch=${ROCM_GPU}
else ifneq ($(findstring gcc,$(CC1)),)

OPENMP_FLAGS = -fopenmp -foffload=-march=${ROCM_GPU}
else ifneq ($(findstring CC,$(CC1)),)

OPENMP_FLAGS = -fopenmp
endif

CFLAGS = -g -03 -fstrict-aliasing ${OPENMP_FLAGS}
LDFLAGS = ${0OPENMP_FLAGS} -fno-lto -1m

openmp_code: openmp_code.o
$(CC) $(LDFLAGS) $~ -o $@

Cleanup

clean:
rm -f *.o0 openmp_code
rm -rf build

module load amdclang
make

Now run the executable

./openmp_code

CMake

Looking at the CMakeLists.txt
cat CMakeLists.txt

The output should be

cmake_minimum_required (VERSION 3.21 FATAL_ERROR)
project (Memory_pragmas LANGUAGES C)

if (NOT CMAKE_BUILD_TYPE)
set (CMAKE_BUILD_TYPE RelWithDebInfo)
endif (NOT CMAKE_BUILD_TYPE)

execute_process (COMMAND rocminfo COMMAND grep -m 1 -E gfx[~0]{1} COMMAND sed -e "s/ *Name:

string (REPLACE -02 -03 CMAKE_C_FLAGS_RELWITHDEBINFO ${CMAKE_C_FLAGS_RELWITHDEBINFO})
set (CMAKE_C_FLAGS_DEBUG "-ggdb")
set (CMAKE_C_FLAGS "-fstrict-aliasing -faligned-allocation -fnew-alignment=256")
if ("${CMAKE_C_COMPILER_ID}" STREQUAL "Clang")
set (CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fopenmp --offload-arch=${ROCM_GPU}")
elseif ("${CMAKE_C_COMPILER_ID}" STREQUAL "GNU")

16

*//" OUTPUT_STRIP_TRAILI

set (CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fopenmp -foffload=-march=${ROCM_GPU}")
elseif (CMAKE_C_COMPILER_ID MATCHES "Cray")
set (CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fopenmp")
#the cray compiler decides the offload-arch by loading appropriate modules
#module load craype-accel-amd-gfx942 for example
endif ()

add_executable (openmp_code openmp_code.c)

module load amdclang
mkdir build && cd build && cmake ..
make

Now run the executable

./openmp_code

OpenMP CXX Build systems: make and cmake

README.md in HPCTrainingExamples/Pragma_Examples/OpenMP/CXX/BuildExamples of the Training
Examples repository

Build systems for make and cmake are an important starting step to working with OpenMP. We’ll show
samples for CXX builds. We’'ll test them with some of our sample code to make sure your system is setup

properly.

Make

cd ../../CXX/BuildExamples

First let’s take a look at the makefile
cat Makefile

The output should be

all: openmp_code
ROCM_GPU 7= $(strip $(shell rocminfo |grep -m 1 -E gfx["0]{1} | sed -e 's/ *Name: *//'))
CXX1=$(notdir $(CXX))

ifneq ($(findstring amdclang,$(CXX1)),)

OPENMP_FLAGS = -fopemmp --offload-arch=${ROCM_GPU}
else ifneq ($(findstring clang,$(CXX1)),)

OPENMP_FLAGS = -fopenmp --offload-arch=${ROCM_GPU}
else ifneq ($(findstring gcc,$(CXX1)),)

OPENMP_FLAGS = -fopenmp -foffload=-march=${ROCM_GPU}
else ifneq ($(findstring CC,$(CXX1)),)

OPENMP_FLAGS = -fopenmp
endif

CXXFLAGS = -g -03 -fstrict-aliasing ${OPENMP_FLAGS}
LDFLAGS = ${0PENMP_FLAGS} -fno-lto -1lm

openmp_code: openmp_code.o
$(CXX) $(LDFLAGS) $~ -o $@

Cleanup
clean:

17

rm -f *.o0 openmp_code
rm -rf build

module load amdclang
make

Now run the executable

./openmp_code

CMake
Looking at the CMakeLists.txt

cat CMakeLists.txt

The output should be

cmake_minimum_required (VERSION 3.21 FATAL_ERROR)
project (Memory_pragmas LANGUAGES CXX)

set (CMAKE_CXX_STANDARD 17)

if (NOT CMAKE_BUILD_TYPE)
set (CMAKE_BUILD_TYPE RelWithDebInfo)
endif (NOT CMAKE_BUILD_TYPE)

execute_process (COMMAND rocminfo COMMAND grep -m 1 -E gfx["0]{1} COMMAND sed -e "s/ *Name: *//" OUTPUT_STRIP_TRAILI

string (REPLACE -02 -03 CMAKE_CXX_FLAGS_RELWITHDEBINFO ${CMAKE_CXX_FLAGS_RELWITHDEBINFO})
set (CMAKE_CXX_FLAGS_DEBUG "-ggdb")
set (CMAKE_CXX_FLAGS "-fstrict-aliasing -faligned-allocation -fnew-alignment=256")
if ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "Clang")

set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fopenmp --offload-arch=${ROCM_GPU}")
elseif ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "GNU")

set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fopenmp -foffload=-march=${ROCM_GPU}")
elseif (CMAKE_CXX_COMPILER_ID MATCHES "Cray")

set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fopenmp")

#the cray compiler decides the offload-arch by loading appropriate modules

#module load craype-accel-amd-gfx942 for example
endif ()

add_executable (openmp_code openmp_code.cc)

module load amdclang
mkdir build && cd build && cmake ..
make

Now run the executable

./openmp_code

OpenMP Fortran Build systems: make and cmake

README.md in HPCTrainingExamples/Pragma_Examples/OpenMP/Fortran/BuildExamples of the
Training Examples repository

Build systems for make and cmake are an important starting step to working with OpenMP. We’ll show
samples for Fortran builds. We’ll test them with some of our sample code to make sure your system is setup

properly.

18

Make

cd ../../Fortran/BuildExamples
First let’s take a look at the makefile
cat Makefile

The output should be

all:openmp_code

ROCM_GPU 7= $(strip $(shell rocminfo |grep -m 1 -E gfx["0]{1} | sed -e 's/ *Name:

FC1=$(notdir $(FC))

ifneq ($(findstring amdflang, $(FC1)),)
OPENMP_FLAGS = -fopenmp --offload-arch=${ROCM_GPU}
FREE_FORM_FLAG = -ffree-form

else ifneq ($(findstring flang, $(FC1)),)
OPENMP_FLAGS = -fopenmp --offload-arch=${ROCM_GPU}
FREE_FORM_FLAG = -Mfreeform

else ifneq ($(findstring gfortran,$(FC1)),)
OPENMP_FLAGS = -fopenmp --offload=-march=$(ROCM_GPU)
FREE_FORM_FLAG = -ffree-form

else ifneq ($(findstring ftn,$(FC1)),)
OPENMP_FLAGS = -fopenmp

endif

FFLAGS = -g -03 ${FREE_FORM_FLAG} ${OPENMP_FLAGS}
ifeq (${FC1},gfortran-13)
LDFLAGS = ${0PENMP_FLAGS} -fno-lto
else
LDFLAGS = ${0OPENMP_FLAGS}
endif

openmp_code.o: openmp_code.F90
$(FC) -c $(FFLAGS) $~

openmp_code: openmp_code.o
$(FC) $(LDFLAGS) $~ -o $@

Cleanup

clean:
rm -f *.o0 openmp_code *.mod
rm -rf build

module load amdflang-new
make

Now run the executable

./openmp_code

CMake
Looking at the CMakeLists.txt

cat CMakeLists.txt

The output should be

19

*//'))

cmake_minimum_required (VERSION 3.21 FATAL_ERROR)
project (Memory_pragmas LANGUAGES Fortran)

if (NOT CMAKE_BUILD_TYPE)
set (CMAKE_BUILD_TYPE RelWithDebInfo)
endif (NOT CMAKE_BUILD_TYPE)

execute_process (COMMAND rocminfo COMMAND grep -m 1 -E gfx["0]{1} COMMAND sed -e "s/ *Name: *//" OUTPUT_STRIP_TRAILI

string (REPLACE -02 -03 CMAKE_Fortran_FLAGS_RELWITHDEBINFO ${CMAKE_Fortran_FLAGS_RELWITHDEBINFO})
set (CMAKE_Fortran_FLAGS_DEBUG "-ggdb")
message (3{CMAKE_Fortran_COMPILER_ID})
if ("${CMAKE_Fortran_COMPILER_ID}" STREQUAL "Clang")

set (CMAKE_Fortran_FLAGS "${CMAKE_Fortran_FLAGS} -fopenmp --offload-arch=${ROCM_GPU}")
elseif ("${CMAKE_Fortran_COMPILER_ID}" STREQUAL "GNU")

set (CMAKE_Fortran_FLAGS "${CMAKE_Fortran_FLAGS} -fopenmp -foffload=-march=${ROCM_GPU}")
elseif (CMAKE_Fortran_COMPILER_ID MATCHES "Cray")

set (CMAKE_Fortran_FLAGS "${CMAKE_Fortran_FLAGS} -fopenmp")

#the cray compiler decides the offload-arch by loading appropriate modules

#module load craype-accel-amd-gfx942 for example
endif ()
add_executable (openmp_code openmp_code.F90)

module load amdflang-new
mkdir build && cd build && cmake ..
make

Now run the executable

./openmp_code

First OpenMP C offload:

README.md from HPCTrainingExamples/Pragma_Examples/OpenMP/C/1_saxpy in the Training Exam-
ples repository

Porting of saxpy step by step and explore the discrete GPU and APU programming models:

e Part 1: Unified shared memory after Part 1 you may want to explore the exercises 2-5 first with usm
before you come to explore the behavior without USM.

o Part 2: Explore differences of HSA_XNACK=0 and 1
e Part 3: Map clauses

This exercise will show in a step by step solution how to port a your first kernels.

Part 1: Unified shared memory

For now, set

export HSA_XNACK=1

to make use of the APU programming model (unified memory).

There are 6 different enumerated folders. (Reccomendation: vimdiff saxpy.cpp ../<X_saxpy_version>/saxpy.cpp

may help you to see the differences):

0) the serial CPU code.

cd O_saxpy_serial_portyourself

20

Try to port this example yourself. If you are stuck, use the step by step solution in folders 1-
6 and read the instructions for those exersices below. Recommendation for your first port: use
#pragma omp requires unified_shared memory and export HSA_XNACK=1 (before running) that

you do not have to worry about map clauses. Steps 1-3 of the solution assume unified shared memory. Map
clauses and investigating the behaviour of export HSA_XNACK=0 or =1 is added in the later steps.

e Compile the serial version. Note that -fopenmp is required as omp_ get_ wtime is used to time the
loop execution.
amdclang++ -fopenmp saxpy.cpp —O saxpy
or with the cray environment (aac7):
CC -fopenmp saxpy.cpp -0 saxpy
o Run the serial version.
. /saxpy
Note: you can also use the Makefile.
make
instead of compiling manually.
You can now try to port the serial CPU version to the GPU

vi saxpy.cpp

and don’t forget to port the Makefile (Hint: What has to be added to compile for the GPU? Note: for cray
compilers)

vi Makefile

or follow the step by step solution: #### 1) Move the computation to the device

cd ../1_saxpy_omptarget

vi saxpy.cpp

add #pragma omp target to move the loop in the saxpy subroutine to the device. - Compile this first

GPU version. Make sure you add --offload-arch=gfx942 (on MI300A, find out what your system’s

gfx... is with rocminfo)

amdclang++ -fopenmp --offload-arch=gfx942 saxpy.cpp -o saxpy
(or use the Makefile) - Run

. /saxpy

The observed time is much larger than for the CPU version. More parallelism is required!

2) Add parallelism

cd ../2_saxpy_teamsdistribute
vi saxpy.cpp

add “teams distribute” - Compile again

amdclang++ -fopenmp --offload-arch=gfx942 saxpy.cpp -o saxpy
e run again

. /saxpy

The observed time is a bit better than in case 1 but still not the full parallelism is used.

21

3) Add multi-level parallelism

cd ../3_saxpy_parallelforsimd
vi saxpy.cpp

add “parallel for” for more parellelism - Compile again

amdclang++ -fopenmp --offload-arch=gfx942 saxpy.cpp -0 saxpy
e TUN again

./saxpy

The observed time is much better than all previous versions. Note that the initialization kernel is a warm-up
kernel here. If we do not have a warm-up kernel, the observed performance would be significantly worse.
Hence the benefit of the accelerator is usually seen only after the first kernel. You can try this by commenting
the !$omp target... in the initialize subroutine, then the meassured kernel is the first which touches the
arrays used in the kernel.

Reccomendation: After Part 1 you may want to explore the exercises 2-5 first with usm before you come to
explore the behavior without USM.

Part 2: Impact of USM

4) Explore impact of unified memory:

cd ../4_saxpy_nousm
vi saxpy.cpp

The #pragma omp requires... line is removed. - Compile again
amdclang++ -fopenmp --offload-arch=gfx942 saxpy.cpp -o saxpy

e run again
. /saxpy

so far we worked with unfied shared memory and the APU programming model. This allows good performance
on MI300A, but not on discrete GPUs. In case you will work on discrete GPUs or want to write portable
code for both discrete GPUs and APUs, you have to focus on data management, too.

export HSA_XNACK=0

to get similar behaviour like on discrete GPUs (with memory copies). Compiling and running this version
without any map clauses will result in much worse performance than with unified shared memory and
HSA_XNACK=1 (no memory copies on MI300A).

Part 3: Map clauses

5) map clauses this version introduces map clauses for each kernel.

cd ../5_saxpy_map
vi saxpy.cpp

see where the map clasues where added. The x vector only has to be maped “to”. - Compile again
amdclang++ -fopenmp --offload-arch=gfx942 saxpy.cpp -o saxpy

e run again
. /saxpy

The performance is not much better than version 4.

22

6) unstructured data region with enter and exit data clauses the memory is only moved once at the
beginning the time to solution should be roughly in the order of magnitude of the unified shared memory
version, but still slightly slower as the memory is copied like on discrete GPUs. Test yourself:

cd ../6_saxpy_targetdata
vi saxpy.cpp
o Compile again
amdclang++ -fopenmp --offload-arch=gfx942 saxpy.cpp -o saxpy
e run again
. /saxpy
Additional exercise: What happens to the result, if you comment the omp target update 7
vi saxpy.cpp
Don’t forget to recompile after commenting it.
amdclang++ -fopenmp --offload-arch=gfx942 saxpy.cpp -o saxpy

The results will be wrong! This shows, that proper validation of results is crutial when porting! Before you
port a large app, think about your validation strategy before you start. Incremental testing is essential to
capture such errors like missing data movement.

Note that this version uses the new allocator with an alignment of 128 instead of malloc to control the
memory alignment. This is beneficial for improved performance.

7) parameter tuning experiment with num_ teams

cd ../7_saxpy_numteams
vi saxpy.cpp

specify num__ teams(...) choose a number of teams you want to test - Compile again
amdclang++ -fopenmp --offload-arch=gfx942 saxpy.cpp -0 saxpy

e run again
. /saxpy

investigating different numbers of teams you will find that the compiler default (without setting this) was
already leading to good performance. Tuning e.g. num_teams or thread_limit may be required for
some kernels, but the defaults are chosen quite well for saxpy. saxpy is a very simple kernel, this finding may
differ for very complex kernels.

First Fortran OpenMP offload: Porting saxpy step by step and explore the
discrete GPU and APU programming models:

README.md from HPCTrainingExamples/Pragma_Examples/OpenMP/Fortran/1_saxpy in the Training
Examples repository

This exercise will show in a step by step solution how to port a your first kernels. This simple example will
not use a Makefile to practice how to compile for the GPU or APU. All following exercises will use a Makefile.

There are 6 different enumerated folders. (Reccomendation: vimdiff saxpy.f90 ../<X_saxpy_version>/saxpy.f90

may help you to see the differences):

First, prepare the environment (load modules, set environment variables), if you didn’t do so before.

23

Part 1: Porting with unified shared memory enabled

For now, set

export HSA_XNACK=1

and load the amdflang-new compiler module

module load amdflang-new

to make use of the APU programming model (unified memory). 0) the serial CPU code.
cd O_saxpy_serial_portyourself

Try to port this example yourself. If you are stuck, use the step by step solution in folders 1-
6 and read the instructions for those exersices below. Recommendation for your first port: use
!$omp requires unified_shared memory (in the code after implicit none in each module) and

export HSA_XNACK=1 (before running) that you do not have to worry about map clauses. Steps
1-3 of the solution assume unified shared memory. Map clauses and investigating the behaviour of
export HSA_XNACK=0 or =1 is added in the later steps.

e Compile the serial version. Note that -fopenmp is required as omp_ get_ wtime is used to time the
loop execution.
amdflang -fopenmp saxpy.F90 -o saxpy
e Run the serial version.
./saxpy

You can now try to port the serial CPU version to the GPU or follow the step by step solution: 1) Move the
computation to the device

cd ../1_saxpy_omptarget
vi saxpy.f90

add !'$omp target to move the loop in the saxpy subroutine to the device. - Compile this first GPU
version. Make sure you add --offload-arch=gfx942 (on MI300A, find out what your system’s gfx... is

with rocminfo) on aac6 or aac7 with amdflang-new:
amdflang -fopenmp --offload-arch=gfx942 saxpy.F90 -o saxpy
or on on aac? only with ftn:
First, make sure you loaded the right module that offload is enabled before you compile with
ftn -fopenmp saxpy.F90 -o saxpy
e Run
. /saxpy
The observed time is much larger than for the CPU version. More parallelism is required!
2) Add parallelism

cd ../2_saxpy_teamsdistribute
vi saxpy.f£90

add “teams distribute” - Compile again - run again The observed time is a bit better than in case 1 but still
not the full parallelism is used.

3) Add multi-level parallelism

cd ../3_saxpy_paralleldosimd
vi saxpy.f90

24

add “parallel do” for more parellelism - Compile again - run again The observed time is much better than
all previous versions. Note that the initialization kernel is a warm-up kernel here. If we do not have a
warm-up kernel, the observed performance would be significantly worse. Hence the benefit of the accelerator
is usually seen only after the first kernel. You can try this by commenting the !$omp target... in the initialize
subroutine, then the meassured kernel is the first which touches the arrays used in the kernel.

Part 2: explore the impact of unified shared memory
4) Explore impact of unified memory:

cd ../4_saxpy_nousm
vi saxpy.f90

The !'$omp requires... line is removed. - Compile again - run again so far we worked with unfied shared
memory and the APU programming model. This allows good performance on MI300A, but not on discrete
GPUs. In case you will work on discrete GPUs or want to write portable code for both discrete GPUs and
APUs, you have to focus on data management, too.

export HSA_XNACK=0

to get similar behaviour like on discrete GPUs (with memory copies). Compiling and running this version
without any map clauses will result in much worse performance than with unified shared memory and
HSA_XNACK=1 (no memory copies on MI300A).

Part 3: with map clauses
Set
export HSA_XNACK=0
that the map clauses do have an effect on MI300A.
5) this version introduces map clauses for each kernel.

cd ../5_saxpy_map
vi saxpy.f90

see where the map clasues where added. The x vector only has to be maped “to”. - compile again - run again
The performance is not much better than version 4.

6) with enter and exit data clauses the memory is only moved once at the beginning the time to solution
should be roughly in the order of magnitude of the unified shared memory version, but still slightly
slower as the memory is copied like on discrete GPUs. Test yourself:

cd ../6_saxpy_targetdata
vi saxpy.f90

e compile again
o run again Additional exercise: What happens to the result, if you comment the !$omp target update
(in line 29)7

vi saxpy.f90
e Don’t forget to recompile after commenting it.

The results will be wrong! This shows, that proper validation of results is crutial when porting! Before you
port a large app, think about your validation strategy before you start. Incremental testing is essential to
capture such errors like missing data movement.

7) experiment with num_ teams

cd ../7_saxpy_numteams
vi saxpy.f90

25

specify num__teams(...) choose a number of teams you want to test - compile again - run again investigating
different numbers of teams you will find that the compiler default (without setting this) was already leading
to good performance. saxpy is a very simple kernel, this finding may differ for very complex kernels.

After finishing this introductory exercise, go to the next exercise in the Fortran folder:

cd ../..

Real World OpenMP Language Constructs

README.md in HPCTrainingExamples/Pragma_Examples/OpenMP/C/SingleLineConstructs of the
Training Exercises repository.

We start off the real world language constructs by looking at single line compute constructs.

OpenMP Single Line Compute Constructs:

We start with adding a single line directive to move the computation of a loop to the GPU. The exercises for
this will utilize the saxpy example.

CPU version

This example uses OpenMP on the CPU with threading for parallelism. The pragma used is

#pragma omp parallel for

We go to the directory with the example and load the amdclang module. We can then build and run the code.

cd HPCTrainingExamples/Pragma_Examples/OpenMP/C/SingleLineConstructs
module load amdclang

make saxpy_cpu

./saxpy_cpu

You should get some output like:

Time of kernel: 0.188165
check output:

y[0] 4.000000

y[N-1] 4.000000

You can use the CPU example and port it to the GPU on your own to get more experience at a later point in
time. We will step through the process in these exercises to show you how it is done.

First we will work with a very simple case. It has all the code in a single subroutine with arrays allocated on
the stack. This permits the compiler to have as much information as possible. Note that we could also load
the new amdflang beta which has a perfectly good amdclang compiler. Also, we have made the array size
smaller so that it won’t run out of stack space.

make saxpy_gpu_singleunit_autoalloc
./saxpy_gpu_singleunit_autoalloc

You will get a warning about vectorization that is telling you that you do not need the simd clause for the
amdclang compiler. But it compiles fine and creates an executable. We run the executable.

./saxpy_gpu_singleunit_autoalloc
The output

Time of kernel: 0.016511
check output:

y[0] 4.000000

y[N-1] 4.000000

26

We note that we did not have to supply any explicit memory management such as a map clause. The compiler
can detect the array sizes and that the arrays need to be moved.

Now let’s move on to the next example where we dynamically allocate the arrays. We are still using a single
subroutine as the previous example.

make saxpy_gpu_singleunit_dynamic
./saxpy_gpu_singleunit_dynamic

This time we get the following output on a MI200 series GPU.

Queue error - HSA_STATUS_ERROR_MEMORY_FAULT
Display only launched kernel:
Kernel 'omp target in main @ 19 (__omp_offloading_34_4474430_main_119)'

OFFLOAD ERROR: Memory access fault by GPU 8 (agent Ox5ebda70) at virtual address 0x7£81e79dd000. Reasons:

Use 'OFFLOAD_TRACK_ALLOCATION_TRACES=true' to track device allocations
Aborted (core dumped)

The error message makes it very clear that we are missing the data for the array. We could follow the advice
to get a more detailed report if we do not know what array it is. But we’ll take a simpler approach. We’ll set
the HSA_XNACK environment variable to tell the system to manage the memory for us. This will work on
the data center AMD Instinct GPUs. For workstation GPUs, you may need to add an explicit map clause.

export HSA_XNACK=1
./saxpy_gpu_singleunit_dynamic

Now we get the expected output:

Time of kermel: 0.063025
check output:

y[0] 4.000000

y[N-1] 4.000000

So the compiler can sometimes help with moving the memory in very simple cases. But it doesn’t take much
complexity before it doesn’t have enough information. We return to our original saxpy_cpu.c example

and change the pragma to direct the compiler to offload the calculation to the GPU as already done in
saxpy_gpu_parallelfor.c . We keep the HSA_XNACK=1 setting from before.

#pragma omp target teams distribute parallel for simd
And building and running the example.

make saxpy_gpu_parallelfor
./saxpy_gpu_parallelfor

Output

Time of kermel: 0.061191
check output:

y[0] 4.000000

y[N-1] 4.000000

OpenMP has added a simpler loop directive that you can also use. The pragma line is pretty long for the
original directive, so this should make it simpler to add to your program. The new pragma is

#pragma omp target teams loop

This form generally will produce the same results as the earlier directive. But, in principle, it may give the
compiler more freedom how to generate the parallel GPU code.

make saxpy_gpu_loop
./saxpy_gpu_loop

Even the example is a bit easier to run with less typing.

The output

27

Unknown (

Time of kernel: 0.061429
check output:

y[0] 4.000000

y[N-1] 4.000000

So now we have demonstrated how easy it is to add a pragma to a loop to cause it to run on the GPU. And
we have seen a little on how the managed memory capability makes the process a little easier. We can focus
on parallelizing each loop rather than worrying about where our array data is located.

You can experiment with these examples on both a MI300A APU and a discrete GPU such as MI300X or
M1I200 series GPU. You should see a performance difference since the MI300A only has to map the pointer
and not move the whole array.

We have one more example to look at. Many scientific codes have multi-dimensional data that need to be
operated on. We can use the collapse clause to spread out the work from both loops rather than just the
outer one. This can be helpful if the outer loop is small. But since we are always trying to generate more
work and parallelism, it can also have some benefit for larger outer loops.

We’ll consider the case of Fortran since 2-dimensional arrays are much easier to work with. The directive will
now become

!$omp target teams distribute parallel do collapse(2)
Building and running the example

export HSA_XNACK=1
make saxpy_gpu_collapse
./saxpy_gpu_collapse

And the output

Time of kernel: 0.007212
check output:

y[0][0] 4.000000

y[N-1] [M-1] 4.000000

OpenMP Single Line Compute Constructs:

README.md from HPCTrainingExamples/Pragma_Examples/OpenMP/Fortran/SingleLineConstructs
in the Training Examples repository

We start with adding a single line directive to move the computation of a loop to the GPU. The exercises for
this will utilize the saxpy example.

NOTE : the examples in Fortran also work without setting HSA_XNACK=1 . The reason is that Fortran
passes the array size information along with the array. So the compiler has more information to work with.
In Fortran, the additional information is called the “dope” vector. It is last century slang for “give me the
dope on it”. We would say “beta” in today’s slang.

CPU version

This example uses OpenMP on the CPU with threading for parallelism. The pragma used is

#pragma omp parallel for

We go to the directory with the example and load the amdclang module. We can then build and run the code.

cd HPCTrainingExamples/Pragma_Examples/OpenMP/Fortran/SingleLineConstructs
module load amdflang-new

make saxpy_cpu

./saxpy_cpu

You should get some output like:

28

Time of kernel: 0.151135
plausibility check:

y(1) 4.000000

y(n-1) 4.000000

You can use these CPU examples and port them to the GPU on your own to get more experience at a later
point in time. We will step through the process in these exercises to show you how it is done.

First we will work with a very simple case. It has all the code in a single subroutine with statically allocated
arrays on the stack. This permits the compiler to have as much information as possible. Note that we could
also load the regular amdclang module instead of the new amdflang. Also, we have made the array size
smaller so that it won’t run out of stack space.

make saxpy_gpu_singleunit_autoalloc
./saxpy_gpu_singleunit_autoallloc

The output

Time of kernel: 0.022465
plausibility check:
y(1) 4.000000

y(n) 4.000000

We note that we did not have to supply any explicit memory management such as a map clause. The compiler
can detect the array sizes and that the arrays need to be moved.

Now let’s move on to the next example where we dynamically allocate the arrays. We are still using a single
subroutine as the previous example. Note that, unlike the C case, we are not setting HSA_XNACK=1 to
make the example run (see note at the beginning of this README):

make saxpy_gpu_singleunit_dynamic
./saxpy_gpu_singleunit_dynamic

This time we get the following output:

Time of kermel: 0.022440
plausibility check:
y(1) 4.000000

y(n) 4.000000

We return to our original saxpy_cpu.c example and change the pragma to direct the compiler to offload
the calculation to the GPU as already done in saxpy_gpu_paralleldo.F90 . setting from before.
#pragma omp target teams distribute parallel for simd

And building and running the example.

make saxpy_gpu_paralleldo
./saxpy_gpu_paralleldo

Output

Time of kernel: 0.052156
plausibility check:
y(1) 4.000000

y(n) 4.000000

OpenMP has added a simpler loop directive that you can also use. The pragma line is pretty long for the
original directive, so this should make it simpler to add to your program. The new pragma is

#pragma omp target teams loop

This form generally will produce the same results as the earlier directive. But, in principle, it may give the
compiler more freedom how to generate the parallel GPU code.

29

make saxpy_gpu_loop
. /saxpy_gpu_loop

Even the example is a bit easier to run with less typing.
The output

Time of kernel: 0.052010
plausibility check:
y(1) 4.000000

y(n) 4.000000

So now we have demonstrated how easy it is to add a pragma to a loop to cause it to run on the GPU. And
we have seen a little on how the managed memory capability makes the process a little easier. We can focus
on parallelizing each loop rather than worrying about where our array data is located.

You can experiment with these examples on both a MI300A APU and a discrete GPU such as MI300X or
MI200 series GPU. You should see a performance difference since the MI300A only has to map the pointer
and not move the whole array.

We have one less example to look at. Many scientific codes have multi-dimensional data that need to be
operated on. We can use the collapse clause to spread out the work from both loops rather than just the
outer one. This can be helpful if the outer loop is small. But since we are always trying to generate more
work and parallelism, it can also have some benefit for larger outer loops.

We'll consider the case of Fortran since 2-dimensional arrays are much easier to work with. The directive will
now become

!$omp target teams distribute parallel do collapse(2)
Building and running the example

make saxpy_gpu_collapse
. /saxpy_gpu_collapse

And the output

Time of kermel: 0.029263
plausibility check:
y(1,1) 4.000000

y(m,n) 4.000000

OpenMP complex compute constructs in C

README.md from HPCTrainingExamples/Pragma_Examples/OpenMP/C/ComplexComputeConstructs in
the Training Examples repository

These exercises explore more complex compute constructs. We begin with breaking apart the meanings of
each of the clauses in the single combined compute directive.

First retrieve the examples for this part.

git clone https://github.com/amd/HPCTrainingExamples

Full combined compute directive

We'll start with a baseline from the full combined compute directive
#pragma omp target teams distribute parallel for simd

Setting up the environment

module load amdclang
export HSA_XNACK=1
export LIBOMPTARGET_KERNEL_TRACE=1

30

This example is in the previous exercises on simple single line compute constructs
cd HPCTrainingExamples/Pragma_Examples/OpenMP/C/SingleLineConstructs

make saxpy_gpu_parallelfor
./saxpy_gpu_parallelfor

Check the output. It should be something like the following, but with some variation depending on the GPU
model you are on.

DEVID: O SGN:5 ConstWGSize:256 args: 5 teamsXthrds:(416X 256) reqd:(0X 0) lds_usage:0B sgpr_count:24 vgpr_c
Time of kermel: 0.082906

There are 416 teams (workgroups) of size 256. There is a low vector register usage a 8. We'll also look at the
run-time of 0.082906 for comparison.

Target directive

We'll start with what happens with just the target directive

cd HPCTrainingExamples/Pragma_ Examples/OpenMP /C/ComplexComputeConstructs
Setting up the environment

module load amdclang
export HSA_XNACK=1
export LIBOMPTARGET_KERNEL_INF0=1

make saxpy_gpu_target
./saxpy_gpu_target

The output will be similar to the following:

DEVID: O SGN:3 ConstWGSize:257 args: 5 teamsXthrds:(1X 256) reqd:(0X 0) lds_usage:16B sgpr_count:16 vgpr_
Time of kermel: 5.407085

We only have one team of 256 workgroup size. Basically we are running serial — one thread on one team
(workgroup). The runtime reflects that with 65 times longer than the combined directive.

Teams clause

The teams exercise will add the teams clause after the target directive.

make saxpy_gpu_target_teams
./saxpy_gpu_target_teams

The output

DEVID: O SGN:3 ConstWGSize:257 args: 5 teamsXthrds:(624X 256) reqd:(0X 0) lds_usage:16B sgpr_count:12 vgpr_
Time of kernel: 11.166301

There are 624 workgroups, but each one is doing all the work. This duplicates the effort and ends up taking
twice the time as the target directive alone. Note that this is also creating a race condition when threads are
trying to write to the same location, which produces an incorrect output that is also non deterministic. One
could add num_teams(1) to the pragma directive to require the creation of a single team, in which case no
race condition can occur.

Distribute clause Adding the distribute clause starts to get some parallelism by partitioning the work
across the workgroups. But still with only one thread per workgroup.

make saxpy_gpu_target_teams_distribute
./saxpy_gpu_target_teams_distribute

Output

31

DEVID: O SGN:3 ConstWGSize:257 args: 5 teamsXthrds:(624X 256) reqd:(0X
Time of kernmel: 0.149113

0) lds_usage:16B sgpr_count:24 vgpr_

We have more workgroups at 624 than the baseline case, but we are not using all the threads. This is using
more of the compute capacity at 624/416 times as many workgroups and associated compute units. The
runtime is much closer to the baseline. As a further exploration, try changing the array size in the example

or trying a different kernel with more work.

parallel for without the teams distribute clauses As a further experiment, let’s try just adding
parallel for to engage all the threads on one workgroup. The directive is the following:

#pragma omp target parallel for
Building and running it

make saxpy_gpu_parallel_for
./saxpy_gpu_parallel_for

Output should be something like

DEVID: O SGN:2 ConstWGSize:256 args: 5 teamsXthrds:(1X 256) reqd:(0X
Time of kernel: 0.126748

This gives a pretty good runtime while using fewer GPU compute units.

Split multi-level directive

Build both the collapse and split level C examples.

make saxpy_gpu_collapse

. /saxpy_gpu_collapse

make saxpy_gpu_split_level
./saxpy_gpu_split_level

Compare the output from LIBOMPTARGET _KERNEL_TRACE=1.
DEVID: O SGN:5 ConstWGSize:256 args: 6 teamsXthrds:(3907X 256) reqd:(0X

Time of kernel: 0.027777

DEVID: O SGN:3 ConstWGSize:257 args: 6 teamsXthrds:(416X 256) reqd:(0X

Time of kernel: 0.027449

0) lds_usage:32B sgpr_count:25 vgpr_

0) lds_usage:0B sgpr_count:29 vgpr_c

0) lds_usage:36B sgpr_count:27 vgpr_

On your own: try different array sizes and ratios of iterations between the loop levels.

OpenMP complex compute constructs in Fortran

README.md from HPCTrainingExamples/Pragma_Examples/OpenMP/Fortran/ComplexComputeConstructs

in the Training Examples repository
To compile:

module load amdclang
make

Note from above that you do not need to do export HSA_XNACK=1 for these examples. These
exercises explore more complex compute constructs. The exercises are analogous to those in
../../C/ComplexComputeConstructs so we recommend you check out the instructions in the

README located in that directory for details about the specific examples.

32

https://github.com/amd/HPCTrainingExamples/blob/main/Pragma_Examples/OpenMP/C/ComplexComputeConstructs/README.md
https://github.com/amd/HPCTrainingExamples/blob/main/Pragma_Examples/OpenMP/C/ComplexComputeConstructs/README.md

Reduction exercise:

README.md from HPCTrainingExamples/Pragma_Examples/OpenMP/C/2_reduction from the Training
Examples repository.

This exercise will show how to port a reduction.

0) serial CPU version Version to port yourself. Don’t forget to port the Makefile.
cd O_reduction_portyourself

Build

make

run

./vecadd

Remember the output result for the serial version to validate the offload version. Adapt Makefile for offload.
Port the example, build and run after every kernel you ported to ensure correctness.

1) solution with unified shared memory Set export HSA_XNACK=1 to test this version.
cd 1_reduction_usm

Build

make

run

./reduction

Note: you may want to use vimdiff <filel> <file2> to compare your solution with this version.

2) solution with map clauses Set export HSA_XNACK=0 to test this version.
cd 2_reduction_map

Build

make

run

./reduction

Note: you may want to use vimdiff <filel> <file2> to compare your solution with this version.

Porting exercise: reduction

README.md from HPCTrainingExamples/Pragma_Examples/OpenMP/Fortran/2_reduction from the
Training Examples repository.

This exercise focusses on two things: - Part 1: how to port a reduction to the GPU - Part 2: importance of
map clauses on discrete GPUs or HSA_ XNACK=0 on MI300A

First, prepare the environment (loading modules, set environment variables), if you didn’t do so before. ###
For Part 1 and 2: serial CPU version to port 0) a version to port yourself.

cd O_reduction_portyourself
vi freduce.F

e Only port the Makefile and the reduction itself. This exercise focusses on how to implement a reduction,
not on porting the full example.

33

How to build all versions:
make

and run:

./freduce

The other folders 1 and 2 have different flavors of the solution: ##+# Part 1. Port with unified shared
memory

cd 1_reduction_solution_usm
vi freduce.F

contains a sample solution for unified shared memory / APU programming model (correct output: each
element 1010) run this with setting export HSA_XNACK=1 in advance

Part 2: Port with map clause
2.1 Porting exercise

cd 2_reduction_solution
vi freduce.F

Contains a sample solution for discrete GPUs (correct output: each element 1010) run this with setting
export HSA_XNACK=0 in advance ###+# 2.2 Behaviour with and without USM The third folder contains
an exercise to explore the behavior with and without USM:

cd 3_reduction_solution
vi freduce.F

This example intentionally does the mapping wrong (from instead of to). You can see how the result changes
(output 1000 instead of 1010) when you use export export XSA_XNACK=0 . No error is shown, but the

result is wrong. Test the same wrong code with export HSA_XNACK=1 | then the result is correct again
as mapping clauses are ignored. Take home message: if you develop for both APUs and discrete GPUs on
MI300A, check if the results are the same for HSA_XNACK=0 and =1 as map clauses will be ignored with

HSA_XNACK=1 ! Ignoring memory copies is great for code portability and performance without code changes,
but be careful to include proper validation checks during development for both discrete GPUs and APUs.

Porting exercise reduction of multiple scalars in one kernel

README.md from HPCTrainingExamples/Pragma_Examples/OpenMP/C/4_reduction_scalars from
the Training Examples repository.

This folder has two code versions:

0) a serial cpu version to port yourself. Hint: don’t forget to port the Makefile.
Build:

make

Run:

./reduction_scalar

1) an openmp offload ported solution. The solution shows how you can do a reduction of multiple
scalars in one kernel. Note that scalars do not need to be explicitly mapped.

34

Porting exercise reduction of multiple scalars in one kernel

README.md from HPCTrainingExamples/Pragma_Examples/OpenMP/Fortran/4_reduction_scalars
from the Training Examples repository.

This folder has two code versions:

0) a serial cpu version to port yourself.
Hint: don’t forget to port the Makefile.
Build:
make
Run:

./reduction_scalar

1) an openmp offload ported solution. It shows how you can do a reduction of multiple scalars in one
kernel. Note that scalars do not need to be explicitly mapped.

Porting exercise reduction into an array

README.md from HPCTrainingExamples/Pragma_Examples/OpenMP/C/6_reduction_array from the
Training Examples repository.

This folder has two code versions:

0) a serial cpu version to port yourself. Hint: don’t forget to port the Makefile.
Build:

make

Run:

./reduction_array

1) an openmp offload ported solution. The solution shows how you can do a reduction of multiple
values into an array in one kernel.

Porting exercise reduction of multiple scalars in one kernel

README.md from HPCTrainingExamples/Pragma_Examples/OpenMP/Fortran/9_reduction_array
from the Training Examples repository.

This folder has two code versions:

0) a serial cpu version to port yourself.
Hint: don’t forget to port the Makefile.
Build:
make
Run:

./reduction_scalar

1) an openmp offload ported solution. The solution shows how you can do a reduction of multiple values
into an array in one kernel.

35

C Code — Porting device routine exercises
README.md from HPCTrainingExamples/Pragma_Examples/OpenMP/C/5_device_routines in Train-
ing Examples repository

This exercise will show how to port kernels which call a subroutine or function. Each version has a sub-folder
with a - serial CPU version to port yourself and a - solution for unified memory and - a solution with map
clauses.

Build and run analogous to the previous exercises.
There are three different versions:

cd 1_device_routine

Explore the serial CPU code first.

cd O_device_routine_portyourself
module load amdclang

make

./device_routine

The rocm module will be loaded with the amdclang module. And the current rocm module will set
HSA_XNACK=1 . If there are no modules set up on your system, set the CC environment variable to the
full path to the C compiler you want to use. Add the ROCm directory to the PATH and also the LLVM
directory under ROCm. Also add the lib directory to the LD_LIBRARY_PATH . And finally set HSA_XNACK

with export HSA_XNACK=1 .

make
./device_routine

You should see the result:
Result: sum of x is 1000.000000
Now try and convert the example to run on the GPU. Start with adding #pragma omp target teams distribute parallel

before the for loops in the main program in device_routine.c . Note that one of the loops also needs

a reduction(+:sum) clause added to the target directive. How do you show the compiler to compile
the function in the other file, compute.c, for the GPU? Try adding the #pragma omp declare target
directive to the subroutine declaration in compute.c.

There are two solutions for this exercise. One with the APU programming model using unified shared memory.
The other has explicit map clauses for when unified shared memory is not available or not being used. We’ll
look at the unified shared memory version first.

cd ../1_device_routine_usm

Look at the two C source files and compare to the originals in 0_device_routine_portyourself . To
build and run the example:

make
./device_routine

Similarly with the solution using map clauses:
cd ../2_device_routine_map

Look for the map clauses in the device_routine.c source file. In this case, The memory is only accessed
on the GPU. So, we use map(alloc:x[0:N]) and map(release:x[0:N]) in the clauses. Build and run the examples.

make
./device_routine

cd 2_device_routine_wglobaldata

36

First look at the original code in 0_device_routine_wglobaldata_portyourself
cd O_device_routine_wglobaldata_portyourself

Note the addition of the global_data.c file with the definition of the constants array. Build and run the
example.

make
./device_routine

Now try modifying the example to run on the GPU. How do you use the global data from the global_data.c
file in your device subroutine?

For the solution, lets look at the example in 1_device_routine_wglobaldata .
cd 1_device_routine_wglobaldata

Look at the directive #pragma omp declare target in the global_data.c file. Is this necessary for
your version of the compiler?

It is a bit more complicated if the data being used is dynamically allocated. We have to be sure and map it
over to the GPU after the memory allocation. We can experiment with this case in the next example.

cd ../3_device_routine_wdynglobaldata

Again there is a version that you can try and port before looking at the solution.

cd O_device_routine_wdynglobaldata_portyourself

Look at the global_data.c file and experiment with the right directive to move the data to the GPU.

The solution is also available.
cd 1_device_routine_wdynglobaldata

See the directives used to move the constants array to the GPU. Note that we also need to add declare target
on the pointer to the array.

#pragma omp target enter data map(alloc:constants[0:isize])
In this example, we initialize the data on the GPU with:

#pragma omp target teams distribute parallel for
for (int i = 0; i< isize; i++) {
constants[i] = (double)i;

}
How would this be different if we initialized the data on the CPU?

Part 1: Fortran with interface blocks

README.md from HPCTrainingExamples/Pragma_Examples/OpenMP/Fortran/5_device_routines in
Training Examples repository

Let’s start with the device routine in a separate file with an interface.
cd device_routine_with_interface
there are six code versions in enumerated folders:

0_device_routine_portyourself
1_device_routine_wrong
2_device_routine_usm
3_device_routine_map
4_device_routine_device_type
5_device_routine_enter_data

37

Starting with the CPU version to try and porting yourself
cd O_device_routine_portyourself
Build and run

make
./device_routine

The result should be

Result: sum of x is 1000.000000000000

Now add the directive to the three loops in device_compute.f90
!$omp target teams distribute parallel do

For the last loop, it is also necessary to add reduction(+:sum)

This has been done for you in the 1_device_routine_wrong directory
cd ../1_device_routine_wrong

Build the code

make

You should see an error.

1d.11d: error: undefined symbol: compute_

The compute routine is created only for the host and not for the device. So we need to add the device target
directive to the compute subroutine definition in compute.f90

Moving to the next version at 2_ device routine_usm directory where the device target directive has been
added.

cd ../2_device_routine_usm
Note the additions. In compute.f90:

subroutine compute (x)
implicit none
'$omp requires unified_shared_memory
'$omp declare target

and in device_ compute.f90
program device routine

implicit nome
!$omp requires unified_shared_memory

Now build and run the example

make
./device_routine

For the case where we want to do explicit memory movement, we use maps as show in 03_device_routine_map

cd ../03_device_routine_map

We take out the !$omp requires unified_shared_memory and add map(tofrom:x) and map(to:x)
clauses. We can run this example as before:

38

make
./device_routine

Some of the other clauses that can be uses are the device_type(nohost) that only generates device code
for the declare target clauses. Check out the example at

cd ../4_device_routine_device_type
make
./device_routine

The last example shows the use of the enter/exit data directives. This is an example of the use of unstructured
data movement directives.

!$omp target enter data map(alloc:x(1:N))
!$omp target exit data map(delete:x)

These are added to the code in 5_device_routine_enter_data

cd ../5_device_routine_enter_data
make
./device_routine

Part 2: Fortran with modules

There are three versions

O_device_routine_with_module_portyourself
1_device_routine_with_module
2_device_routine_with_module_usm

We first check out the original code in 0_device_routine_with_module_portyourself
cd O_device_routine_with_module_portyourself
Build and run

make
./device_routine
make clean

Now try and add the directives to port the example code to run on the device (GPU).

The solution for explicit data movement using unstructured memory directivesisin 1_device_routine_with_module

cd ../1_device_routine_with_module
make
./device_routine

Examining the two source files, we see that we first need to add the compute directives:

!$omp target teams distribute parallel do
!$omp target teams distribute parallel do reduction(+:sum)

In addition, we need the explicit memory movement directives

!$omp target enter data map(alloc:x(1:N))
!$omp target exit data map(delete:x)

But that is not all we need to do. We also need to add !$omp declare target in compute.f0 to tell the
compiler to generate a device version of the compute subroutine.

The next example shows the unified shared memory version.

cd ../2_device_routine_with_module_usm

39

We need to add !$omp requires unified_shared_memory to both source code files since they both will
have OpenMP target directives. Now we just need to add the compute directives as above and also add the
!$omp declare target directive inside the subroutine definition in computemod.f90.

Now build and run

make
./device_routine

C++ member function

README.md from HPCTrainingExamples/Pragma_Examples/OpenMP/CXX/5_device_routines in Train-
ing Examples repository

The first example is where there is a compute method in the Science class that is called from a parallel target
region.

cd 1_member_function
The original code is shown in 0_member_function_portyourself
cd O_member_function_portyourself

Try adding the #pragma omp target teams loop directive to the loop in the bigscience.cc routine
to port it to run on the device.

To see the solution to the porting, see the code in 1_member_function directory.

Looking at the loop in bigscience.cc :

#pragma omp target teams loop
for (int k = 0; k < N; k++){
myscienceclass.compute (&x[k], N);

}
To try out the code, compile it and run it.

make
./bigscience

Note that nothing needs to be done to the class in Science.hh . Why is this? Basically, the defined method
function in Science.hh is in-lined into the bigscience.cc file. So it is handled by the directive added

around the loop in bigscience.cc .

C++ member function external

So what happens when the compute method is defined in a different file? For this case, let’s take a look at
the next example in 2_method_function_external

cd ../2_method_function_external

Try porting the code in 0_member_function_external_portyourself . Note that in this example, the
compute member function is defined in Science_member_functions.cc

For the solution, go to the 1_member_function_external directory

cd ../1_member_function_external

Note that now we have to add #pragma omp declare target around the compute method definition. We

also need a #pragma omp end declare target directive to close out the declare target region.

Let’s try compiling and running the example

40

make
./bigscience

The next example, 2_member_function_external_data uses a data value init_value from the Science

class. The thing to note is that we do not need to add a #pragma omp declare target around the
declaration in the class.

Check that this runs fine with your compiler

cd ../2_member_function_external_data
make
./bigscience

C++ virtual methods

Additional complexity in C++ classes can cause difficulties with porting to GPUs. Fundamentally, the GPU
language is C with only a little support for C++. So let’s take a look at a simple virtual method where class
inheritance is used.

cd ../../3_virtual_methods

The original CPU C++ code is given in 0_virtual_methods_portyourself . We create a new HotScience

class that is based on the Science class. The new class is defined in HotScience.hh . It overrides the compute
method. The method definition for the new compute function is in HotScience_member_functions.cc .

First, let’s verify that the original code works.

cd O_virtual_methods_portyourself
make
./bigscience

Try porting this version and see what might be required.
The solution is given in 1_virtual_methods directory.
cd ../1_virtual_methods

Examine the source code files to see what is needed. Note that now the #pragma omp declare target

block is needed around the method definition in HotScience_member_functions.cc . Let’s verify that
this works with your current compiler.

make
./bigscience

A special note here for the current amdclang++ compiler. With the changes to the source code, the compiler
issues a warning about maybe not being mapped correctly

warning: type 'HotScience' is not trivially copyable and not guaranteed to be mapped correctly

The code still compiles and runs properly. To suppress the warning, -Wno-openmp-mapping has been
added to CXXFLAGS in the Makefile.

Exercise: mapping of different datatypes

README.md in HPCTrainingExamples/Pragma_Examples/OpenMP/Fortran/7_derived_types of the
Training Exercises repository.

This exercise explores the possibilities of mapping derived types. This is one of the main challenges one may
encounter when porting a Fortran app to discrete GPUs. This exercise also shows that on the APU using
HSA_XNACK=1 such problems do not exist. Note: This exercise was designed for amdflang-new.

Compile the examples:

41

make
first, set
export HSA_XNACK=0

to explore the behaviour similar to a discrete GPU (Remark: vimdiff filel file2 may help to find the
differences).

Explore and run the four examples:

1) The first example leaves the mapping to the compiler
Run:
./dtype_derived_type_automap

this results in a memory access fault. Hence, this implementation is wrong on a discrete GPU (or MI300A:
disabling HSA_XNACK).

3) The second example adds mapping clauses for the allocatable array which is a member of the derived
type

Run:
./dtype_derived_type
this again results in a memory access fault
5) The third example provides a solution: a pointer to the allocatable array is introduced
Run:
./dtype_pointer

6) In example 2 and 3 the scalars used for the range of the loop were replaced by integer numbers to see
the impact of the allocatable array only. In this forth example they are re-introduced. This example
shows, that mapping of scalar members of derived types is working.

Run:
./dtype_scalar_members

8) When you run the unified shared memory version with XNACK off, you will get a warning and the
same memory access fault as in example 1 and two

./dtype_derived_type_usm

AMDGPU message: Running a program that requires XNACK on a system where XNACK is disabled. This
may cause problems when using an OS-allocated pointer inside a target region. Re-run with HSA_XNACK=1
to remove this warning.

Now switch on unified shared memory by

export HSA_XNACK=1

Run all the five examples again. All of them should run sucessfully.
Set

export LIBOMPTARGET_INFO=-1

with the amdflang-new compiler or

export CRAY_ACC_DEBUG=1

if you work with the ftn compiler.

42

Run example 3 with and without unified shared memory (export HSA_ XNACK=1 and HSA__ XNACK=0)
You are able to see host to device copies in the shown log in the case of HSA_ XNACK=0. In the case of
HSA_XNACK=1 those copies are gone and this message is shown:

AMDGPU device 0 info: Application configured to run in zero-copy using auto zero-copy.

Hence, if a discrete GPU program is compiled with HSA_ XNACK=1 on MI300A, memory copies are
automatically ignored. This makes code portable between discrete GPUs an APUs. Include !$omp re-
quires_ unified_shared memory at the top of the program (after implicit none) such that the compiler can
make full use of the APU programming model. This is shown in example code 5. When you compare the
code examples, the unified shared memory version dtype derived_type_usm (version 5) is very simple to
implement. If you only work on an APU, this is the easiest way to port, as mapping clauses are not required
to obtain good performance.

You may want to set
export LIBOMPTARGET_INF0=0

before you run the next exercise.

OpenMP Offloading for C++ Codes that use Classes

README.md in HPCTrainingExamples/Pragma_Examples/OpenMP/CXX/cpp_classes from the Training
Examples repository

These examples show how to use OpenMP for GPU offloading in the context of a C++ code that makes uses
of classes, and a programming paradigm where the most relevant members of the class are private, with their
associated values accessed and modified by appropriate get and set functions.

In the present directory, you will find two subdirectories, one called usm and one called explicit .

The usm Sub-directory

In this context, usm stands for unified shared memory, which is what we are requiring for the code samples
in this directory. To compile the code in the usm directory, do:

module load rocm
module load amdclang
export HSA_XNACK=1
make

If the amdclang module is not available on your system, make sure to do:
export CXX=$ROCM_PATH/1lvm/bin/amdclang++
before running the make command.

Note that if one was to not set HSA_XNACK=1 the code would not compile, because we are requiring unified

shared memory with the following pragma line in main.cpp :
#pragma omp requires unified_shared_memory
You may have noticed many compiler warnings such as this one:

main.cpp:22:20: warning: Type 'daxpy' is not trivially copyable and not guaranteed to be mapped correctly [-Wopenmg
22 | double val = data.getConst() * data.getX(i) + data.getY(i);

From the warning, you can already see what potential issues can arise in a C++ programming paradigm like
the one we decided to set ourselves in. When possible, using unified shared memory can help get around
those warnings.

In the wusm directory, there are two subdirectories, daxpy and operations .

43

The daxpy Sub-directory Here we are defining a class object to perform a daxpy operation. Notice

that the daxpy operation is performed within the main.cpp . Moreover, we are using the get and set
member functions of the daxpy class from within the target region without using any maps, thanks to the
unified shared memory framework.

The operations Sub-Directory The codeinthe operations directory adds one layer of complexity
and performs a daxpy from the main.cpp file but using a class called operations that has two members

of class type: one of type daxpy , already mentioned before, and one of type norm , which will compute a
user-defined norm of an input vector, in this case the output of the daxpy operation. Note that everything
works seamlessly even when calling member functions from the ops object: these member functions are

wrappers to the member functions of the daxpy and norm class members.

The explicit Sub-directory

This sub-directory contains example code that is meant to work even without enabling unified shared memory,
meaning that it will compile and run regardless of whether HSA_XNACK=1 . This is achieved by creating an
appropriate data environment with the use of maps, as it will explained next. To compile:

module load rocm
module load amdclang
make

Again, make sure that the CXX environment variable is set as below, before running the make command:
export CXX=$ROCM_PATH/1lvm/bin/amdclang++

The directory is named explicit because we are explicitly taking care of all the data movement between
host and device, helping the compiler with figuring out how to perform the offload to GPU. The only
sub-directory here is daxpy .

The daxpy Sub-directory The explicit memory movement scenario gets tricky really quickly, as you
have seen with the numerous warning messages produced by the compiler when building the usm examples.
Things get particularly complicated when using anything that is not just a pointer for our data members,
such as for instance standard vectors, like we were doing in the usm directory. In the daxpy.hpp file

where the daxpy class is declared, we have now included in the constructor the following pragmas:
#pragma omp target enter data map(alloc: z_[0:N_J,y_[0:N_]) map(to: a_)

The above pragma creates a data environment for an unstructured data region and maps x_,y_, N_ and a__
to the device. Note that we also had to explicitly map the scalars to make sure that they are available on
the device when we call the apply function, which is defined in daxpy.cpp . The following pragma is
included in the destructor for the class:

#pragma omp target exit data map(delete: x_[0:N_J,y [0:N_J], a_)

Submodule test — does the Fortran compiler support the new submodules feature
in the Fortran 2008 standard (extension in 2003)

README.md in HPCTrainingExamples/Pragma_Examples/OpenMP/Fortran/Submodules of the Training
Exercises repository.

Try with the old flang compiler — Load the amdclang module and you get

make

44

/opt/rocm-6.4.0/11lvm/bin/amdflang -c -g -03 -fopenmp interface.f90

/opt/rocm-6.4.0/11vm/bin/amdflang -c -g -03 -fopenmp impl.f90

F90-S-1059-The definition of subprogram module_func_impl does not have the same number of arguments as its declarat
0 inform, 0 warnings, 1 severes, 0 fatal for module_func_impl

make: *** [Makefile:11: impl.o] Error 1

Try with a recent next generation flang compiler
make

/opt/rocmplus-6.4.0/rocm-afar-6.1.0/bin/amdflang -c -g -03 -fopenmp interface.f90
/opt/rocmplus-6.4.0/rocm-afar-6.1.0/bin/amdflang -c -g -03 -fopenmp impl.f90

Introduction to HIP Exercises

HIP /basic__examples Documentation
Table of Contents

01_error_check
02_add_d2h_data_transfer
03_complete_square_elements
04_complete_matrix_multiply
05_compare_with_library

06_hipify_pingpong

NSe o W

07_matrix_multiply_shared

Please refer to the individual directories for documentation specific to each exercise.

Find the error
README.md in HPCTrainingExamples/HIP/01_error_check of the Training Exercises repository.

Compile and run the vector addition program and use the error from the error-checking macro to decide how
to fix the problem.

To compile and run:

$ make

$ sbatch -A <account-name> submit.sh

where account-name is your account name for the system (may be required for certain systems). A job

file titled <name-of-exercise>-%J.out will be produced, where %J is the job id number of your run.
To check your program output, simply run:

cat <name-of-exercise>-%J.out

Add the device-to-host data transfer

README.md in HPCTrainingExamples/HIP/02_add_d2h_data_transfer of the Training Exercises
repository.

This example simply initializes an array of integers to 0 on the host, sends the Os from the host array to the
device array, then adds 1 to each element in the kernel, then sends the 1s back to the host array.

However, the device-to-host data transfer call (hipMemcpy) is missing. Please add in the missing call and
run the program. Look for the TODO.

45

This is the API call to use:
hipError_t hipMemcpy(void *dst, void #*src, size_t size_in_bytes, hipMemcpyKind kind)
To compile and run:

$ make

$ sbatch -A <account-name> submit.sh

where account-name is your account name for the system (may be required for certain systems). A job

file titled <name-of-exercise>-%J.out will be produced, where %J is the job id number of your run.
To check your program output, simply run:

cat <name-of-exercise>-%J.out

Complete the square elements kernel

README.md in HPCTrainingExamples/HIP/03_complete_square_elements of the Training Exercises
repository.

In this exercise, there is a host array and a device array. The host array is initialized in a loop so each element
is given the value of the iteration from 0 to N-1. Then the host array is copied to the device array, and the
GPU kernel simply squares each element of the array. Then the results are sent back from the device array
to the host array.

However, the kernel is not complete. So you must complete the kernel by adding in the line where the value
is squared, and make sure to guard for going out of the array bounds. Look for the TODO.

To compile and run:

$ make

$ sbatch -A <account-name> submit.sh

where account-name is your account name for the system (may be required for certain systems). A job

file titled <name-of-exercise>-%J.out will be produced, where %J is the job id number of your run.
To check your program output, simply run:

cat <name-of-exercise>-%J.out

Complete the matrix multiply kernel

README.md in HPCTrainingExamples/HIP//04_complete_matrix_multiply of the Training Exercises
repository.

In this exercise, a matrix multiply is performed on the GPU. In the code, the indices row_index and

col_index iterate through the arrays in row-major (across the first row, then across the second row, etc.)
and column-major (down the first column, then down the second column, etc.) order, respectively.

Look at the matrix multiply kernel and decide which of these two indices should define the elements of arrays
A and B. Look for the TODO.

To compile and run:

$ make

$ sbatch -A <account-name> submit.sh

where account-name is your account name for the system (may be required for certain systems). A job

file titled <name-of-exercise>-%J.out will be produced, where %J is the job id number of your run.
To check your program output, simply run:

46

cat <name-of-exercise>-%J.out

Complete the matrix multiply kernel

README.md in HPCTrainingExamples/HIP/05_compare_with_library of the Training Exercises repos-
itory.

In this exercise, we will use the matrix_multiply kernel we completed in 04_complete_the_kernel
and compare its performance against the hipBLAS version of DGEMM.

You will not need to make any code changes. Instead, you will simply compile the code and submit the job.
This will run the code under the rocprof profiling tool and parse the results.

To compile and run:

$ make

$ sbatch -A <account-name> submit.sh

where account-name is your account name for the system (may be required for certain systems). A job

file titled <name-of-exercise>-%J.out will be produced, where %J is the job id number of your run.
To check your program output, simply run:

cat <name-of-exercise>-%J.out
To view the resulting profile, run the python script:
./parse_output.py

It should be clear from the performance difference that using existing libraries is typically the right choice
instead of re-inventing the (slower) wheel.

hipify the CUDA pingpong code
README.md in HPCTrainingExamples/HIP/06_hipify_pingpong of the Training Exercises repository.

This code sends data back and forth between the host and device 50 times and calculates the bandwidth.

Your job is to hipify the code, then compile and run it. For this exercise, it is recommend to use
hipify-perl on the CUDA program and redirect the output to a new file titled pingpong.cpp

NOTE: The #include "hip/hip_runtime.h" doesn't always get added when a code is hipify‘-ed,
so it might need to be added manually.

To compile and run:

$ make

$ sbatch -A <account-name> submit.sh

where account-name is your assigned Frontier username. A job file titled <name-of-exercise>-%J.out

will be produced, where %J is the job id number of your run. To check your program output, simply run:
cat <name-of-exercise>-JJ.out
or open the file directly using vim .

Recall that the CPU and GPU are connected with PCle4 (x16), which has a peak bandwidth of 32 GB/s.
What percentage of the peak performance do we achieve?

47

Complete the matrix multiply with shared memory

README.md in HPCTrainingExamples/HIP/07_matrix_multiply_shared of the Training Exercises
repository.

In this example, a matrix multiply is performed with shared memory, where each thread computes 1 element
of the resultant matrix.

NOTE: The shared memory allocations are only of size THREADS_PER_BLOCK , which is smaller than the
array size. So each thread must loop through its dot-product (since that’s what each element of the resultant
matrix is) in chunks until it completes the full dot product.

Your job in this exercise is to correctly copy the data from global memory into the shared memory arrays,
then compile and run the program.

To compile and run:

$ make

$ sbatch -A <account-name> submit.sh

where account-name is your assigned Frontier username. A job file titled <name-of-exercise>-%J.out

will be produced, where %J is the job id number of your run. To check your program output, simply run:

cat <name-of-exercise>-%J.out

Porting Applications to HIP

Hipify Examples

NOTE: these exercises have been tested on MI210 and MI300A accelerators using a container environment.
To see details on the container environment (such as operating system and modules available) please see
README.md on this repo.

Exercise 1: Manual code conversion from CUDA to HIP (10 min)

Choose one or more of the CUDA samples in HPCTrainingExamples/HIPIFY/mini-nbody/cuda directory.
Manually convert it to HIP. Tip: for example, the cudaMalloc will be called hipMalloc. You can choose from
nbody-block.cu, nbody-orig.cu, nbody-soa.cu

You’ll want to compile on the node you've been allocated so that hipcc will choose the correct GPU
architecture.

Exercise 2: Code conversion from CUDA to HIP using HIPify tools (10 min)

Use the hipify-perl script to “hipify” the CUDA samples you used to manually convert to HIP in
Exercise 1. hipify-perl is in $ROCM_PATH/hip/bin directory and should be in your path.

First test the conversion to see what will be converted

hipify-perl -examine nbody-orig.cu

You'll see the statistics of HIP APIs that will be generated. The output might be different depending on the
ROCm version.

[HIPIFY] info: file 'nbody-orig.cu' statistics:
CONVERTED refs count: 7
TOTAL lines of code: 91
WARNINGS: O

[HIPIFY] info: CONVERTED refs by names:

48

https://github.com/amd/HPCTrainingDock

cudaFree => hipFree: 1

cudaMalloc => hipMalloc: 1

cudaMemcpyDeviceToHost => hipMemcpyDeviceToHost: 1
cudaMemcpyHostToDevice => hipMemcpyHostToDevice: 1

hipify-perl isin $ROCM_PATH/hip/bin directory and should be in your path. In some versions of

ROCm, the script is called hipify-perl .

Now let’s actually do the conversion.

hipify-perl nbody-orig.cu > nbody-orig.cpp
Compile the HIP programs.

hipcc -DSHMOO -I ../ nbody-orig.cpp -o nbody-orig

The #define SHMOO fixes some timer printouts. Add --offload-arch=<gpu_type> to specify the GPU
type and avoid the autodetection issues when running on a single GPU on a node.

e Fix any compiler issues, for example, if there was something that didn’t hipify correctly.
e Be on the lookout for hard-coded Nvidia specific things like warp sizes and PTX.

Run the program
./nbody-orig
A batch version of Exercise 2 is:

#!/bin/bash
#SBATCH -N 1
#SBATCH --ntasks=1
#SBATCH --gpus=1
#SBATCH -p Local(
#SBATCH -t 00:10:00

pwd
module load rocm

cd HPCTrainingExamples/HIPIFY/mini-nbody/cuda
hipify-perl -print-stats nbody-orig.cu > nbody-orig.cpp
hipcc -DSHMOO -I ../ nbody-orig.cpp -o nbody-orig
./nbody-orig

Notes:

o Hipify tools do not check correctness
e hipconvertinplace-perl isa convenience script that does hipify-perl -inplace -print-stats
command

HIPifly Example: Vector Addition
Original author was Trey White, at the time with HPE and now with ORNL.

The HIPifly method for converting CUDA code to HIP, is straight-forward and works with minimal modifi-
cations to the source code. This example applies the HIPifly method to a simple vector addition problem
offloaded to the GPU using CUDA.

All CUDA functions are defined in the src/gpu_functions.cu file. By including the hipifly.h file
when using HIP, all the CUDA functions will be automatically replaced with the analogous HIP function
during compile time.

49

By default, the program is compiled for NVIDIA GPUs using nvcc . To compile for CUDA just run make

To compile for AMD GPUs using hipcc run make DFLAGS=-DENABLE_HIP . Note that the Makefile
applies different GPU compilation flags when compiling for CUDA or for HIP.

The paths to the CUDA or the ROCm software stack as CUDA_PATH or ROCM_PATH are needed to compile.
After compiling run the program: ./vector_add # HIP and OpenMP Interoperability

README.md in HPCTrainingExamples/HIP-OpenMP/CXX from the Training Examples in repository. If

the amdclang is not available in your system, make sure to do export CXX=amdclang++ .

Full OpenMP Application Code

The first example is just a straightforward openmp offload version of saxpy. Any C++ compiler that supports
OpenMP offload to hip should work.

cd HPCTrainingExamples/HIP-OpenMP/CXX/saxpy_openmp_offload
module load rocm

module load amdclang

make

OpenMP Application Calling a HIP Kernel

Now we move on to an OpenMP main calling a HIP version of the saxpy kernel. Note that we have to get
the device version of the array pointers to pass into the HIP kernel, using use_device_ptr(x,y)

cd HPCTrainingExamples/HIP-OpenMP/CXX/saxpy_openmp_hip
module load rocm

module load amdclang

unset HSA_XNACK

make

Try to create an equivalent version of the code in saxpy_openmp.cc that uses omp target enter data

and omp target exit data instead of omp target data .

APU Programming Model Version

With the APU programming model the explicit memory management handled with OpenMP in the
saxpy_open_hip directory can now be removed. The code has to be run after setting HSA_XNACK=1 to
enable unified shared memory:

cd HPCTrainingExamples/HIP-OpenMP/CXX/saxpy_APU
module load rocm

module load amdclang

export HSA_XNACK=1

make

HIP application calling an OpenMP Kernel

The next example does the converse of what we saw: it is a HIP application code calling an OpenMP kernel
for saxpy executing on the GPU:

cd HPCTrainingExamples/HIP-OpenMP/CXX/saxpy_hip_openmp
module load rocm

module load amdclang

unset HSA_XNACK

make

50

Try to create a version that leverages the APU progamming model, in a similar way done for the OpenMP
application calling a HIP kernel.

OpenMP and HIP Kernels in the Same Source File

You can put both OpenMP and HIP code in the same source file with some care. The next hands-on
exercise shows how in the code in HPCTrainingExamples/HIP-OpenMP/daxpy . We have code that uses
both OpenMP and HIP. These require two separate passes with compilers: one with amdclang++ and the
other with hipcc. Go to the directory containing the example and set up the environment:

cd HPCTrainingExamples/HIP-OpenMP/CXX/daxpy
module load rocm
module load amdclang

View the source code file daxpy.cc and note the two #ifdef blocks.

The first one is DEVICE__ CODE that we want to compile with hipcc.

The second is HOST__CODE that we will use the C++ compiler to compile.

All of the HIP calls and variables are in the first block. The second block contains the OpenMP pragmas.

While we can use hipce to compile standard C++ code, it will not work on code with OpenMP pragmas.
The call to the HIP daxpy kernel occurs near the end of the host code block. We could split out these two
code blocks into separate files, but this may be more intrusive with a code design.

Now we can take a look at the Makefile we use to compile the code in the single file. In the file, we create
two object files for the executable to be dependent on.

We then compile one with the CXX compiler with -D__HOST_CODE__ defined.

The second object file is compiled using hipcc and with -D__DEVICE_CODE__ defined.

This doesn’t completely solve all the issues with separate translation units, but it does help workaround some
code organization constraints.

Now on to building and running the example.

make
. /daxpy

Running a Fortran to HIP interop example

README.md HPCTrainingExamples/Pragma_Examples/OpenMP/Fortran/8_interop from the Training
Examples repository

This is a simple example to demonstrate fortran to HIP interoperability

module load rocm
module load amdflang-new
make

run the code:
./interop
Code will run to completion if it passes verification ## Calling GEMM from Fortran

README.md in HPCTrainingExamples/HIP-OpenMP/F/Calling DGEMM from the Training Examples
repository

o1

The files in this directory show how to call a rocblas dgemm function from an OpenMP application code
written in Fortran. If the amdclang module is not available in your system, set FC=amdflang or to the

next generation AMD Fortran compiler.

Explicit Memory Management

In this explicit memory management example, a target data region is created, from which a wrapper to the
rocblas dgemm is called. Pay particular attention to the items passed to the wrapper call. Also notice the
use use_device_addr(A,B,C) before the call to the wrapper.

What happens if you instead use use_device_ptr(A,B,C) 7 Check the output by setting

OMPLIBTARGET_INFO=-1 . Remember that the behavior of OpenMP directives may be different
across languages, such as Fortran and C++4.

To compile and run:

module load rocm
module load amdclang
make

Unified Shared Memory

In the wusm directory, we are showing how the code can be simplified rather dramatically by removing all
the explicit data management due to the use of unified shared memory, setting HSA_ XNACK=1. To compile
and run:

module load rocm
module load amdclang
make

Try to use hipfort to avoid having to include the explicit rocm_ interface that we are using in this example.

Kokkos examples

Stream Triad
Step 1: Build a separate Kokkos package

NOTE: these exercises have been tested on MI210 and MI300A accelerators using a container environment.
To see details on the container environment (such as operating system and modules available) please see
README.md on this repo.

cd $HOME/HPCTraining/Examples
git clone https://github.com/kokkos/kokkos Kokkos_build
cd Kokkos_build

Build Kokkos with OpenMP backend

mkdir build_openmp && cd build_openmp
cmake -DCMAKE_INSTALL_PREFIX=${HOME}/Kokkos_OpenMP -DKokkos_ENABLE_SERIAL=0n \
-DKokkos_ENABLE_OPENMP=0n ..

make -j 8
make install

cd ..

Build Kokkos with HIP backend

52

https://github.com/amd/HPCTrainingDock

mkdir build_hip && cd build_hip

cmake -DCMAKE_INSTALL_PREFIX=${HOME}/Kokkos_HIP -DKokkos_ENABLE_SERIAL=0N \
-DKokkos_ENABLE_HIP=0N -DKokkos_ARCH_ZEN=0ON -DKokkos_ARCH_VEGA90A=0N \
-DCMAKE_CXX_COMPILER=hipcc

make -j 8; make install
cd ..

Set Kokkos_DIR to point to external Kokkos package to use

export Kokkos_DIR=${HOME}/Kokkos_HIP

Step 2: Modify Build
Get example

git clone --recursive https://github.com/Essentials0fParallelComputing/Chapter13 Chapterl3
cd Chapter13/Kokkos/StreamTriad
cd Orig

Test serial version with
mkdir build && cd build; cmake ..; make; ./StreamTriad

If the run fails (SEGV), try reducing the size of the arrays, by reducing the value of the nsize variable in
StreamTriad.cc.

Add to CMakeLists.txt

(add) find_package(Kokkos REQUIRED)
add_executables(StreamTriad)
(add) target_link_libraries(StreamTriad Kokkos::kokkos)

Retest with
cmake ..; make
and run ./StreamTriad again

Check Verl for solution. These modifications have already been made in Verl version.

Step 3: Add Kokkos views for memory allocation of arrays
(peek at verd/StreamTriad.cc to see the end result)

Add include file

#include <Kokkos_Core.hpp>

Add initialize and finalize

Kokkos::initialize(argc, argv); {

} Kokkos::finalize();
Replace static array declarations with Kokkos views

int nsize=80000000;

Kokkos: :View<double *> a("a", nsize);
Kokkos: :View<double *> b("b", nsize);
Kokkos: :View<double *> c("c", nsize);

Rebuild and run

CXX=hipcc cmake ..
make
./StreamTriad

53

Step 4: Add Kokkos execution pattern - parallel_for Change for loops to Kokkos parallel fors.
At start of loop

Kokkos: :parallel_for(nsize, KOKKOS_LAMBDA (int i) {

At end of loop, replace closing brace with

b;

Rebuild and run. Add environment variables as Kokkos message suggests:

export OMP_PROC_BIND=spread
export OMP_PLACES=threads
export OMP_PROC_BIND=true

How much speedup do you observe?

Step 5: Add Kokkos timers
Add Kokkos calls

Kokkos: :Timer timer;
timer.reset(); // for timer start
time_sum += timer.seconds();

Remove

#include <timer.h>

struct timespec tstart;

cpu_timer_start (&tstart);

time_sum += cpu_timer_stop(tstart);

6. Run and measure performance with OpenMP
Find out how many virtual cores are on your CPU
1scpu

First run with a single processor:

Average runtime

Then run the OpenMP version:

Average runtime

Portability Exercises
1. Rebuild Stream Triad using Kokkos build with HIP
Set Kokkos DIR to point to external Kokkos build with HIP

export Kokkos_DIR=${HOME}/Kokkos_HIP/1ib/cmake/Kokkos_HIP
cmake ..
make

2. Run and measure performance with AMD Radeon GPUs
HIP build with ROCm

Ver4 - Average runtime is msecs

54

C++ Standard Parallelism on AMD GPUs

Here are some instructions on how to compile and run some tests that exploit C++ standard parallelism,
which is available with ROCm, starting from version 6.1.1. Hence, please double check the version of ROCm
you are using to make sure it has HIPSTDPAR enabled. HIPSTDPAR relies on the LLVM compiler, the
hipstdpar header only library, and rocThrust.

NOTE: these exercises have been tested on MI210 and MI300A accelerators using a container environment.
To see details on the container environment (such as operating system and modules available) please see
README.md on this repo.

git clone https://github.com/amd/HPCTrainingExamples.git

hipstdpar__saxpy_ foreach example

export HSA_XNACK=1
module load amdclang

cd ~/HPCTrainingExamples/HIPStdPar/CXX/saxpy_foreach

make
export AMD_LOG_LEVEL=3

. /saxpy
clean

hipstdpar__saxpy__transform example

export HSA_XNACK=1
module load amdclang

cd ~/HPCTrainingExamples/HIPStdPar/CXX/saxpy_transform

make
export AMD_LOG_LEVEL=3

. /saxpy
clean

hipstdpar__saxpy__transform_ reduce example

export HSA_XNACK=1
module load amdclang

cd ~/HPCTrainingExamples/HIPStdPar/CXX/saxpy_transform_reduce

make
export AMD_LOG_LEVEL=3

. /saxpy
clean

Traveling Salesperson Problem

#!/bin/bash

git clone https://github.com/pkestene/tsp

cd tsp

git checkout 51587

wget —q https://raw.githubusercontent.com/ROCm/roc-stdpar/main/data/patches/tsp/TSP.patch

patch -pl < TSP.patch

55

https://github.com/amd/HPCTrainingDock

cd stdpar

export HSA_XNACK=1
module load amdclang
export STDPAR_CXX=$CXX

export ROCM_GPU="rocminfo |grep -m 1 -E gfx[~0]{1} | sed -e 's/ *Name:

export STDPAR_TARGET=${ROCM_GPU}
export AMD_LOG_LEVEL=3 #optional

make tsp_clang_stdpar_gpu
./tsp_clang_stdpar_gpu 13 #or more. ..

make clean
cd ../..
rm -rf tsp

hipstdpar__shallowwater__orig.sh

cd ~/HPCTrainingExamples/HIPStdPar/CXX/ShallowWater_Orig

mkdir build && cd build
cmake ..

make

./ShallowWater

cd ..
rm -rf build
hipstdpar__shallowwater__verl.sh

cd ~/HPCTrainingExamples/HIPStdPar/CXX/ShallowWater_Verl

mkdir build && cd build
cmake ..

make

./ShallowWater

cd ..
rm -rf build

hipstdpar__shallowwater_ ver2.sh

export HSA_XNACK=1
module load amdclang

cd ~/HPCTrainingExamples/HIPStdPar/CXX/ShallowWater_Ver2
make

#export AMD_LOG_LEVEL=3

./ShallowWater

make clean

hipstdpar__shallowwater__stdpar.sh

export HSA_XNACK=1
module load amdclang

56

*//'"

cd ~/HPCTrainingExamples/HIPStdPar/CXX/ShallowWater_StdPar

make
#export AMD_LOG_LEVEL=3
./ShallowWater

make clean

Mix and Match

The examples contained in the MixandMatch directory demonstrate how to correctly combine StdPar with
other commonly used programming models, such as OpenMP and HIP.

All examples require the user to specify the path to the StdPar header in the Makefile:

module load rocm
export STDPAR_PATH=${ROCM_PATH}/include/thrust/system/hip/hipstdpar
export HSA_XNACK=1

Note HIPSTDPAR assumes the device is HMM enabled and setting HSA_XNACK to one is also required. In
devices where HMM is not enabled, the additional compilation flag --hipstdpar-interpose-alloc needs

to be included. This will instruct the compiler to replace all dynamic memory allocations with compatible
with hipManagedMemory allocations.

e omp_stdpar: demonstrates how to integrate StdPar and OpenMP within the same application. It
utilizes object-oriented programming techniques to implement the same interface in specialized ways.

e std_cpu_gpu: shows how to combine StdPar sections using par and par_unseq to run on both
the CPU and GPU within the same application.

e hip_stdpar: illustrates how to use HIP routines to allocate and transfer data to GPU buffers for use in
StdPar sections.

e atomic_stdpar_omp: explains how atomic operations can be safely performed within a StdPar section
using the par_unseq policy. The example also includes an equivalent OpenMP implementation.

Advanced OpenMP presentation

README.md in HPCTrainingExamples/Pragma_Examples/OpenMP/CXX/memory_pragmas from Training
Exercises repository

Memory Pragmas
Setup your environment

module load amdclang
or
export CXX=<C++ Compiler>
Example: export CXX=amdclang++

export LIBOMPTARGET_INFO=-1
export LIBOMPTARGET_KERNEL_TRACE=[1,2]
export OMP_TARGET_OFFLOAD=MANDATORY

You can also be more selective in the output generated by using the individual bit masks
export LIBOMPTARGET_INF0=$((0x01 | 0x02 | 0x04 | 0x08 | 0x10 | 0x20))

The first example code uses just a single pragma with a map clause at the computational loop.

LY

meml.cc:#pragma omp target teams distribute parallel for simd map(to: x[0:n], y[0:n]) map(from: z[0:n])

Examine this code and then compile and run. There is a map clause on pragma line just before computational
loop

mkdir build && cd build
cmake ..

make

. /mem1

You should get some output like the following

Libomptarget device
Libomptarget device
Libomptarget device
Libomptarget device
Libomptarget device
Libomptarget device
Libomptarget device
Libomptarget device
Libomptarget device
Libomptarget device
Libomptarget device
Libomptarget device
Libomptarget device
Libomptarget device
Libomptarget device
Libomptarget device
Libomptarget device
Libomptarget device
Libomptarget device

info: Entering OpenMP kernel at meml.cc:89:1 with 5 arguments:
info: firstprivate(n)[4] (implicit)

info: from(z[0:n]) [80000]

info: firstprivate(a)[8] (implicit)

info: to(x[0:n])[80000]

info: to(y[0:n]) [80000]

info: Creating new map entry with HstPtrBase=0x0000000001772200,
info: Creating new map entry with HstPtrBase=0x000000000174b0eO,
info: Copying data from host to device, HstPtr=0x000000000174b0e0,
info: Creating new map entry with HstPtrBase=0x000000000175e970,
info: Copying data from host to device, HstPtr=0x000000000175e970,
info: Mapping exists with HstPtrBegin=0x0000000001772200,

info: Mapping exists with HstPtrBegin=0x000000000174b0e0,

info: Mapping exists with HstPtrBegin=0x000000000175e970,

info: Mapping exists with HstPtrBegin=0x000000000175e970,

info: Mapping exists with HstPtrBegin=0x000000000174b0e0,

info: Mapping exists with HstPtrBegin=0x0000000001772200,

info: Copying data from device to host, TgtPtr=0x00007£617c420000,
info: Removing map entry with HstPtrBegin=0x000000000175e970,
Libomptarget device O info: Removing map entry with HstPtrBegin=0x000000000174b0eO,
Libomptarget device O info: Removing map entry with HstPtrBegin=0x0000000001772200,
-Timing in Seconds: min=0.010115, max=0.010115, avg=0.010115

-Overall time is 0.010505

Last Value: z[9999]=7.000000

O OO O OO OO0 OODO0OO0OO OO0 OO OoOOo

Explore examples 2 through 5 and observe the output produced when the LIBOMPTARGET_INFO environment
variable is set.

Mem?2 pattern : Add enter/exit data alloc/delete when memory is created/freed
After new mem2.cc:#pragma omp target enter data map(alloc: x[0:n], y[O:n], z[0:n])

Loop around computational loop and keep map on computational loop. The map to/from should check if the
data exists. If not, it will allocate/delete it. Then it will do the copies to and from. This will increment the Ref-

erence Counter and decrement it at end of loop. mem2.cc:#pragma omp target teams distribute parallel for simd m:

Before delete mem2.cc:#pragma omp target exit data map(delete: x[0:n], y[0:n], z[0:n])
Mem3 pattern: Replacing map to/from with updates to bypass unneeded device memory check

After new mem3.cc:#pragma omp target enter data map(alloc: x[0:n], y[0:n], z[0:n])

Before computational loop. Data should be copied. Reference counter should not change. mem3.cc:#pragma omp target upd

mem3.cc:#pragma omp target teams distribute parallel for simd
After computational loop mem3.cc:#pragma omp target update from (z[0:n])

Before delete mem3.cc:#pragma omp target exit data map(delete: x[0:n], y[0:n], z[0:n])

58

Mem4 pattern: Replacing delete with release to use Reference Counting

memé4.cc:#pragma omp target enter data map(alloc: x[0:n], y[0:n], z[0:nl)
mem4.cc:#pragma omp target exit data map(release: x[0:n], y[0:n], z[0:n])
mem4.cc:#pragma omp target teams distribute parallel for simd map(always to: x[0:n], y[0:n]) map(always from: z|

Memb pattern: Using enter data map to/from alloc/delete to reduce memory copies

mem5.cc:#pragma omp target enter data map(to: x[0:n], y[0:n]) map(alloc: z[0:n])
mem5.cc:#pragma omp target exit data map(from: z[0:n]) map(delete: x[0:n], y[0:n])
mem5.cc:#pragma omp target teams distribute parallel for simd map(to:x[0:n], y[0:n]) map(from: z[0:n])

One solution that miminizes data transfer

Mem6 pattern: Using enter data alloc/delete with update clause at end

mem6.cc:#pragma omp target enter data map(alloc: x[0:n], y[0:n], z[0:n])
mem6.cc:#pragma omp target teams distribute parallel for simd

mem6 . cc: #pragma omp target update from(z[0])

mem6.cc:#pragma omp target exit data map(delete: x[0:n], y[0:n]l, z[0:n])
mem6.cc:#pragma omp target teams distribute parallel for simd

Unified Shared Memory
Mem?7 pattern: Using Unified Shared Memory to automatically move data

mem7.cc:#pragma omp requires unified_shared_memory
mem7.cc:#pragma omp target teams distribute parallel for simd
mem7.cc:#pragma omp target teams distribute parallel for simd

For this example, HSA_XNACK=1 needs to be set

export HSA_XNACK=1
make mem7
. /mem7

Unified Shared Memory with backwards compatibility
Mem8 pattern: Demonstrating Unified Shared Memory with maps for backward compatibility

set HSA_XNACK=1 at runtime

mem8.cc:#pragma omp requires unified_shared_memory

mem8.cc:#pragma omp target enter data map(alloc: x[0:n], y[0:n], z[0:n])
mem8.cc:#pragma omp target teams distribute parallel for simd
mem8.cc:#pragma omp target update from(z[0])

mem8.cc:#pragma omp target exit data map(delete: x[0:n], y[0:n], z[0:n])
mem8.cc:#pragma omp target teams distribute parallel for simd

APU Code — Unified Address in OpenMP

We now switch to how unified address programming would look in other languages. The language we will
work with the most will be OpenMP. We'll start by looking at the unified address code shown in slide 31 and
32. It is also in the mem12.cc file in the directory given below. You should also compare it to the original
GPU code using explicit memory management in meml.cc through mem6.cc.

We’ll now run the unified address example if we have access to an MIS00A GPU. If you don’t have access
to an MI300A, we’ll also run nearly the same code in mem7.cc with managed memory on the MI1200 series
GPUs. We'll be looking at all of the versions of this code in the Advanced OpenMP presentation.

cd ~/HPCTrainingExamples/Pragma_Examples/OpenMP/CXX/memory_pragmas
module load amdclang

59

make meml2
. /mem12

Kernel Pragmas

README.md in HPCTrainingExamples/Pragma_Examples/OpenMP/CXX/kernel_pragmas from Training
Exercises repository

Download the exercises and go to the directory with the kernel pragma examples

git clone https://github.com/amd/HPCTrainingExamples.git
cd HPCTrainingExamples/Pragma_Examples/OpenMP/CXX/kernel_pragmas

Setup your environment. You should unset the LIBOMPTARGET_INFO environment from previous exercise.
unset LIBOMPTARGET_INFO

export CXX=amdclang++

export LIBOMPTARGET_KERNEL_TRACE=1
export OMP_TARGET_OFFLOAD=MANDATORY
export HSA_XNACK=1

The base version 1 code is the Unified Shared memory example from the previous exercises

mkdir build && cd build
cmake ..

make kernell

./kernell

Kernel2 : add num_threads(64)

Kernel3 : add num_threads(64) thread_limit(64)
On your own: Uncomment line in CMakeLists.txt with -faligned-allocation -fnew-alignment=256
Another option is to add the attribute (std::align_val_t(128)) to each new line. For example:

double *x = new (std::align_val_t(128)) double[n];

Advanced HIP

README.md from HPCTrainingFExamples/HIP-Optimizations/daxpy from the Training Examples
repository.

Optimizing DAXPY HIP

In this exercise, we will progressively make changes to optimize the DAXPY kernel on GPU. Any AMD GPU
can be used to test this.

DAXPY Problem:
Z=aX+Y
where a isascalar, X , Y and Z are arrays of double precision values.

In DAXPY, we load 2 FP64 values (8 bytes each) and store 1 FP64 value (8 bytes). We can ignore the scalar
load because it is constant. We have 1 multiplication and 1 addition operation for the 12 bytes moved per
element of the array. This yields a low arithmetic intensity of 2/24. So, this kernel is not compute bound, so
we will only measure the achieved memory bandwith instead of FLOPS.

60

Inputs

e N , the number of elementsin X , Y and Z . N may be reset to suit some optimizations.
Choose a sufficiently large array size to see some differences in performance.

Build Code

git clone https://github.com/amd/HPCTrainingExamples.git
cd HPCTrainingExamples/HIP-Optimizations/daxpy
make

Run exercises

./daxpy_1 10000000
./daxpy_2 10000000
./daxpy_3 10000000
./daxpy_4 10000000
./daxpy_5 10000000

Things to ponder about

daxpy_1 This shows a naive implementation of the daxpy problem on the GPU where only 1 wavefront
is launched and the 64 work-items in that wavefront loop over the entire array and process 64 elements at a
time. We expect this kernel to perform very poorly because it simply utilizes a part of 1 CU, and leaves the
rest of the GPU unutilized.

daxpy_2 This time, we are launching multiple wavefronts, each work-item now processing only 1 element

of each array. This launches N/64 wavefronts, enough to be scheduled on all CUs. We see a big improvement
in performance here.

daxpy_3 In this experiment, we check to see if launching larger workgroups can help lower our kernel
launch overhead because we launch fewer workgroups if each workgroup has 256 work-items. In this case too,
an improvement in measured bandwidth achieved is seen.

daxpy_4 If we ensured that the array has a multiple of BLOCK_SIZE elements so that all work-items
in each workgroup have an element to process, then we can avoid the conditional statement in the kernel.
This could reduce some instructions in the kernel.. Do we see any improvement? In this trivial case, this
does not matter. Nevertheless, it is something we could keep in mind.

Question: What happens if BLOCK_SIZE is 1024 ? Why?

daxpy_5 In this experiment, we will use double2 type in the kernel to see if the compiler can generate

global_load_dwordx4 instructions instead of global_load_dwordx2 instructions. So, with same

number of load and store instructions, we are able to read/write two elements from each array in each thread.
This should help amortize on the cost of index calculations.

To show this difference, we need to generate the assembly for these two kernels. To generate the assembly
code for these kernels, ensure that the -g --save-temps flags are passed to hipcc . Then you can find

the assembly code in daxpy_*-host-x86_64-unknown-linux-gnu.s files. Examining daxpy_3 and
daxpy_5 , we see the two cases (edited here for clarity):
daxpy_3 :

global_load_dwordx2 v[2:3], v[2:3], off
v_mov_b32_e32 v6, sb

61

global_load_dwordx2 v[4:5], v[4:5], off
v_add_co_u32_e32 v0, vcc, s4, v0
v_addc_co_u32_e32 v1, vcc, v6, vl, vcc
s_waitcnt vmcnt (0)

v_fmac_f64_e32 v[4:5], s[6:7], v[2:3]
global_store_dwordx2 v[0:1], v[4:5], off

daxpy_5

We observe that, in the daxpy_5

global_load_dwordx4 v[0:3], v[0:1], off
v_mov_b32_e32 v10, sb
global_load_dwordx4 v[4:7], v[4:5], off
s_waitcnt vment (0)

v_fmac_f64_e32 v[4:5], s[6:7], v[0:1]
v_add_co_u32_e32 v0, vcc, s4, v8
v_fmac_f64_e32 v[6:7], s[6:7], v[2:3]
v_addc_co_u32_e32 vl1, vcc, v10, v9, vcc
global_store_dwordx4 v[0:1], v[4:7], off

each element being processed.

Notes

case, there are two v_fmac_f64_e32

instructions as expected, one for

Before timing kernels, it is best to launch the kernel at least once as warmup so that those initial GPU

launch latencies do not affect your timing measurements.
The timing loop is typically several hundred iterations.

You may find that the various optimizations work differently in MI210 vs MI300A devices, and this

may be due to differences in hardware architecture.

Register Exercises

In this set of examples, we explore

e VGPRs — Vector General Purpose Registers
e SGPRs — Scalar General Purpose Registers

e Occupancy

Register Pressure - ROCm Blogs

For these exercises, retrieve them with

git clone https://github.com/AMD/HPCTrainingExamples
cd HPCTrainingExamples/rocm-blogs-codes/registerpressure

Set up your environment

module load rocm

The exercises were tested on an MI210 with ROCm version 6.4.1.

Get the compiler resource report for the lbm.cpp kernel. Use the proper gfx model code in the compile
command.

hipcc -c --offload-arch=gfx90a -Rpass-analysis=kernel-resource-usage lbm.cpp

Output should be something like

1bm.

1bm

1bm.

1bm

62

cpp:16:1: remark: SGPRs: 100 [-Rpass-analysis=kernel-resource-usage]

.cpp:16:1: remark: VGPRs: 104 [-Rpass-analysis=kernel-resource-usage]

cpp:16:1: remark: AGPRs: O [-Rpass-analysis=kernel-resource-usage]

.cpp:16:1: remark: ScratchSize [bytes/lane]: O [-Rpass-analysis=kernel-resource-usagel]

1bm.cpp:16:1: remark: Dynamic Stack: False [-Rpass-analysis=kernel-resource-usage]
lbm.cpp:16:1: remark: Occupancy [waves/SIMD]: 4 [-Rpass-analysis=kernel-resource-usage]
lbm.cpp:16:1: remark: SGPRs Spill: O [-Rpass-analysis=kernel-resource-usage]
1bm.cpp:16:1: remark: VGPRs Spill: O [-Rpass-analysis=kernel-resource-usage]
lbm.cpp:16:1: remark: LDS Size [bytes/block]: O [-Rpass-analysis=kernel-resource-usage

Repeat for the other cases

Remove unnecessary math functions pow(current_phi, 2.0) on line 37 can be changed to current_ phi
* current__phi

This C function raises the argument to a floating point power in software. It is not a very efficient way to do
the operation and also consumes a lot of registers.

hipcc -c --offload-arch=gfx90a -Rpass-analysis=kernel-resource-usage lbm_1_nopow.cpp

Rearrange code so variables are declared close to use

hipcc -c¢ --offload-arch=gfx90a -Rpass-analysis=kernel-resource-usage lbm_2_rearrange.cpp

Add restrict attribute to function arguments
hipcc -c --offload-arch=gfx90a -Rpass-analysis=kernel-resource-usage lbm_3_restrict.cpp
Try exploring other ways of reducing the number of VGPRs.

One way which might help is to use __global__ __launch_bounds__(256) void kernel Try different

workgroup sizes for launch bounds. Valid sizes would be 64, 128, 256, 512, and 1024. Smaller should lead to
fewer VGPRs.

Register pressure in AMD CDNA™2 GPUs

Sample codes for the following blog:
https://rocm.blogs.amd.com/sof tware-tools-optimization/register-pressure/ README.html

HIP Transpose Examples
README.md from HPCTrainingExamples/HIP/transpose from the Training Examples repository.

In this set of examples, we explore

o Using LDS (Local Data Share or Shared Memory)
e Coalesced reads and writes

For these exercises, retrieve them with

git clone https://github.com/AMD/HPCTrainingExamples
cd HPCTrainingExamples/HIP/transpose

Set up your environment
module load rocm

The exercises were tested on an MI210 with ROCm version 6.4.1.

Transpose Read Contiguous

In this example, we will read the matrix data in a contiguous manner. This means that the data read varies
quickest by the second index — data[slow][fast]. This is the normal C and C++ convention. The data must be
in a single block of memory. On the host side, we allocate the data arrays as 1D arrays. A macro is defined
on the device side to make it clearer how the indices vary.

63

https://rocm.blogs.amd.com/software-tools-optimization/register-pressure/README.html

Examine the file transpose_kernel_read_contiguous.cpp . Note that the 2D matrix is read in contiguos
order and written out with striding though memory — Transpose: output[X][Y] = input[Y][X].

#define GIDX(y, x, sizex) y * sizex + x
__global__ void transpose_kernel_read_contiguous (
double* __restrict__ input, double* __restrict__ output,
int srcHeight, int srcWidth) {
// Calculate source global thread indices
const int srcX = blockIdx.x * blockDim.x + threadIdx.x;
const int srcY = blockIdx.y * blockDim.y + threadIdx.y;

// Boundary check
if (srcY < srcHeight && srcX < srcWidth) {
// Transpose: output[x][y] = input[y] [x]
const int input_gid = GIDX(srcY,srcX,srcWidth);
const int output_gid = GIDX(srcX,srcY,srcHeight); // flipped axis
output [output_gid] = input[input_gid]l;

}

Build the transpose read contiguous application and run it.

make transpose_read_contiguous
./transpose_read_contiguous

The output for the last matrix size should look like

Testing Matrix dimensions: 8192 x 8192
Input size: 512.00 MB
Output size: 512.00 MB

Basic Transpose, Read Contiguous - Average Time: 4450.20 micros

Verification: PASSED

Transpose Write Contiguous

What happens if we make the writes contiguous instead of the reads? Let’s take a look at the kernel for that
case.

#define GIDX(y, x, sizex) y * sizex + x

__global__ void transpose_kernel_write_contiguous(

double* __restrict__ input, doublex __restrict__ output,

int srcHeight, int srcWidth) {
// Calculate destination global thread indices
const int dstX = blockIdx.x * blockDim.x + threadldx.x;
const int dstY = blockIdx.y * blockDim.y + threadIdx.y;
const int dstWidth = srcHeight;
const int dstHeight = srcWidth;

// Boundary check

if (dstY < dstHeight && dstX < dstWidth) {
// Transpose: output[y][x] = input[x] [y]
const int input_gid = GIDX(dstX,dstY,srcWidth); // flipped axis
const int output_gid = GIDX(dstY,dstX,dstWidth);

output [output_gid] = input[input_gid];

64

Now the write order for the output array is contiguous. Let’s compile and run it.

make transpose_write_contiguous
./transpose_write_contiguous

The output for the last matrix size should look like

Testing Matrix dimensions: 8192 x 8192
Input size: 512.00 MB
Output size: 512.00 MB

Basic Transpose, Write Contiguous - Average Time: 2901.80 micros

Verification: PASSED
We get a substantial speedup. So it is more important to have contiguous (coalesced) writes than reads.

Can we do better than this? If we use a shared memory tile, we can make both the read and write contiguous.

Tiled Matrix Transpose
The kernel code for the matrix transpose with a shared memory tile is a little more complicated.

#define GIDX(y, x, sizex) y * sizex + x
#define PAD 1

/* Use a **shared-memory tilex* ("TILE_SIZE x (TILE_SIZE+PAD)") to stage the data.

* Pad the shared-memory tile to avoid bank conflicts.

Load the tile from the **row-major source** (contiguous reads).

* __syncthreads()".

Write the transposed tile back to the **row-major destination** (“outputl[coll][row]™),
which is now a **contiguous write** pattern.

__global__ void transpose_kernel_tiled(
double* __restrict input, doublex* restrict output,

const int srcHeight, const int srcWidth)

// thread coordinates in the source matrix
const int tx = threadIdx.x;
const int ty = threadIdx.y;

// source global coordinates this thread will read
const int srcX = blockIdx.x *x TILE_SIZE + tx;
const int srcY = blockIdx.y * TILE_SIZE + ty;

// allocate a shared (LDS) memory tile with padding to avoid bank conflicts
__shared__ double tile[TILE_SIZE] [TILE_SIZE + PAD];

// Read from global memory into tile with coalesced reads
if (srcY < srcHeight && srcX < srcWidth) {
tile[ty] [tx] = input[GIDX(srcY, srcX, srcWidth)];
} else {
tile[ty] [tx]

0.0; // guard value - never used for writes

// Synchronize to make sure all of the tile is updated before using it
__syncthreads();

// destination global coordinates this thread will write
const int dstY = blockIdx.x * TILE_SIZE + ty; // swapped axes

65

const int dstX = blockIdx.y * TILE_SIZE + tx;

// Write back to global memory with coalesced writes
if (dstY < srcWidth && dstX < srcHeight) {
output [GIDX(dstY, dstX, srcWidth)] = tilel[tx][ty];
}
}

Compiling and running the tiled transpose.

make transpose_tiled
./transpose_tiled

The output from the last matrix size

Testing Matrix dimensions: 8192 x 8192
Input size: 512.00 MB
Output size: 512.00 MB

Tiled Transpose, Read and Write Contiguous - Average Time: 2686.40 micros

Verification: PASSED

We get a little speedup over the contiguous write approach.

Transpose from the rocblas library

Now let’s try the rocblas transpose routine. We no longer need a kernel since that will be provided by the
rocblas library. The host code is also simpler, though you do need to know how to call the rocblas library
routine.

Here is the code required to call the rocblas transpose routine

// See https://github.com/ROCm/rocBLAS/blob/develop/clients/samples/example_c_dgeam.c
// for an example how to use the transpose library routine in rocblas

// Create handle to rocblas library

rocblas_handle handle;

rocblas_status roc_status=rocblas_create_handle(&handle);
CHECK_ROCBLAS_STATUS (roc_status);

// scalar arguments will be from host memory
roc_status = rocblas_set_pointer_mode(handle, rocblas_pointer_mode_host) ;
CHECK_ROCBLAS_STATUS (roc_status);

// set up the parameters needed for the transpose operation
const double alpha = 1.0;
const double beta = 0.0;

// For transpose: C= alpha * op(A) + beta * B

// where op(A) = A"T and B is the zero matrix
rocblas_operation transa = rocblas_operation_transpose;
rocblas_operation transb = rocblas_operation_none;

// Call rocblas_geam for the transpose operation
roc_status = rocblas_dgeam(handle,
transa, transb,
width, height,
&alpha, d_input, width,
&beta, d_output, width,
d_output, width);

66

CHECK_ROCBLAS_STATUS (roc_status);

hipCheck(hipDeviceSynchronize());
Now let’s build and run this version.

make transpose_rocblas
./transpose_rocblas

ROCBlas Transpose - Average Time: 3638.60 micros

So this is a little slower than some of our custom version, but it may be because the rocblas routine has to be
for general use.

Transpose timed comparison For convenience, we have written a version which will run all the transpose
kernels and report a comparison between them.

make transpose_timed
./transpose_timed

The last part of the output should be something like:

Performance Summary:

Basic read contiguous 4439.60 micros
Basic write contiguous 2899.80 micros
Tiled - both contiguous 2686.80 micros

ROCBlas 3638.60 micros

Speedup (Write Contiguous): 1.53x
Speedup (Tiled - Both Contiguous): 1.65x
Speedup (ROCBlas): 1.22x

Verification: PASSED

GPU Aware MPI

README.md from HPCTrainingExamples/MPI-examples from the Training Examples repository.

Point-to-point and collective

NOTE: these exercises have been tested on MI210 and MI300A accelerators using a container environment.
To see details on the container environment (such as operating system and modules available) please see
README.md on this repo.

Allocate at least two GPUs and set up your environment

module load openmpi rocm
export OMPI_CXX=hipcc

Find the code and compile

cd HPCTrainingExamples/MPI-examples
mpicxx -o ./pt2pt ./pt2pt.cpp

Set the environment variable and run the code

mpirun -n 2 -mca pml ucx ./pt2pt

OSU Benchmark
Get the OSU micro-benchmark tarball and extract it

mkdir OMB
cd OMB

67

https://github.com/amd/HPCTrainingDock

wget https://mvapich.cse.ohio-state.edu/download/mvapich/osu-micro-benchmarks-7.3.tar.gz
tar -xvf osu-micro-benchmarks-7.3.tar.gz

Create a build directory and cd to osu-micro-benchmarks-7.3

mkdir build
cd osu-micro-benchmarks-7.3
module load rocm openmpi

Build and install OSU micro-benchmarks

./configure --prefix="pwd /../build/ \
CC="which mpicc™ \
CXX="which mpicxx™ \
CPPFLAGS=-D__HIP_PLATFORM_AMD__=1 \
--enable-rocm \
--with-rocm=${ROCM_PATH}

make -j12

make install

If you get the error “cannot include hip/hip_ runtime_ api.h”, grep for HIP_ PLATFORM_ HCC and
replace it with HIP_ PLATFORM__AMD in configure.ac and configure files.

Check if osu microbenchmark is actually built

1s -1 ../build/libexec/osu-micro-benchmarks/mpi/

if you see files collective, one-sided, pt2pt, and startup, your build is successful.
Allocate 2 GPUs, and make those visible

export HIP_VISIBLE_DEVICES=0,1

Make sure GPU-Aware communication is enabled and run the benchmark

mpirun -n 2 -mca pml ucx ../build/libexec/osu-micro-benchmarks/mpi/pt2pt/osu_bw \
-m $((16%x1024%1024)) D D

Notes: - Try different pairs of GPUs. - Run the command “rocm-smi —showtopo” to see the link type between
the pairs of GPUs. - How does the bandwidth vary for xGMI connected GPUs vs PCIE connected GPUs?

Ghost Exchange example

The Ghost Exchange example is a simplified instance of what we believe a real scientific application code
that uses MPI might look like. There are OpenMP and HIP versions of this example in 2D, each of which
has multiple implementations tackling progressive code improvements. For detailed instructions, see the
dedicated directory. Low detail, quick start instructions are reported here for people that want to experiment
quickly and are OK with filling in the blanks on their own.

For what follows, we focus on the 2D OpenMP version set, which begins with a CPU only version that can
be compiled and run as below:

module load amdclang openmpi

git clone https://github.com/amd/HPCTrainingExamples.git

cd HPCTrainingExamples/MPI-examples/GhostExchange/GhostExchange_ArrayAssign/Orig

mkdir build && cd build

cmake ..

make -j

mpirun -n 8 --mca pml ucx ./GhostExchange -x 4 -y 2 -i 20000 -j 20000 -h 2 -t -c -I 1000

We can improve this performance by using process placement so that we are using all the memory channels.

On MI210 nodes, we have 2 NUMA per node. So we can assign 4 ranks per NUMA when running with 8
ranks:

68

https://github.com/amd/HPCTrainingExamples/tree/main/MPI-examples/GhostExchange
https://github.com/amd/HPCTrainingExamples/tree/main/MPI-examples/GhostExchange/GhostExchange_ArrayAssign

mpirun -n 8 --mca pml ucx --bind-to core --map-by ppr:4:numa --report-bindings ./GhostExchange \
-x 4 -y 2 -i 20000 -j 20000 -h 2 -t -c -I 1000

On MI300A node, we have 4 NUMA per node. So we can assign 2 ranks per NUMA when running with 8
ranks:

mpirun -n 8 --mca pml ucx --bind-to core --map-by ppr:2:numa --report-bindings ./GhostExchange \
-x 4 -y 2 -i 20000 -j 20000 -h 2 -t -c -I 1000

Let’s consider the OpenMP version from now on: in Verl, the original CPU implementation is ported to
GPU using OpenMP and unified shared memory (or single memory space when running on MI300A). This is
enabled with export HSA_XNACK=1 as shown below. For MI210 we have:

export HSA_XNACK=1

cd ../Verl

mkdir build && cd build

cmake ..

make -j

mpirun -n 8 --mca pml ucx --bind-to core --map-by ppr:4:numa -x HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
./GhostExchange -x 4 -y 2 -i 20000 -j 20000 -h 2 -t -c -I 1000

Alternatively, on MI300A, we can run with:

mpirun -n 8 --mca pml ucx --bind-to core --map-by ppr:2:numa -x HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
./GhostExchange -x 4 -y 2 -i 20000 -j 20000 -h 2 -t -c -I 1000

The MPI communication buffers up to this point were allocated on the CPU, we can allocate them on the
GPU and save memory on the CPU, while at the same time leveraging GPU-aware MPI, as shown in Ver3.
For MI210:

export HSA_XNACK=1

cd ../Ver3

mkdir build && cd build

cmake ..

make -j

mpirun -n 8 --mca pml ucx --bind-to core --map-by ppr:4:numa -x HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
./GhostExchange -x 4 -y 2 -i 20000 -j 20000 -h 2 -t -c -I 1000

Alternatively, on MI300A, we can run with:

mpirun -n 8 --mca pml ucx --bind-to core --map-by ppr:2:numa -x HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
./GhostExchange -x 4 -y 2 -i 20000 -j 20000 -h 2 -t -c -I 1000

Memory allocations can be expensive for the GPU. This next version just allocates the MPI buffers dynamically
once in the main routine.

export HSA_XNACK=1

cd ../Verd

mkdir build && cd build

cmake ..

make -j

mpirun -n 8 --mca pml ucx --bind-to core --map-by ppr:4:numa -x HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
./GhostExchange -x 4 -y 2 -i 20000 -j 20000 -h 2 -t -c -I 1000

Alternatively, on MI300A, we can run with:

mpirun -n 8 --mca pml ucx --bind-to core --map-by ppr:2:numa -x HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
./GhostExchange -x 4 -y 2 -i 20000 -j 20000 -h 2 -t -c -I 1000

Two more versions are available in the dedicated directory, which are not discussed here.

RCCL Test
To run RCCL test, follow these steps:

69

https://github.com/amd/HPCTrainingExamples/tree/main/MPI-examples/GhostExchange/GhostExchange_ArrayAssign

module load rocm

module load openmpi

git clone https://github.com/ROCm/rccl-tests.git
cd rccl-tests/

make MPI=1 MPI_HOME=$MPI_PATH HIP_HOME=$ROCM_PATH

where above MPI_PATH and ROCM_PATH are set by loading the openmpi and rocm modules
respectively, according to the installation of OpenMPI and ROCm provided in our HPCTrainingDock repo.

After successful build, you should be able to see the executables in ./build directory. You can run the
collectives with:

./build/all_reduce_perf -b 4M -e 128M -f 2 -g 4

The above command will run for 4M (-b) to 128M (-e) messages, with a multiplication factor between
sizes equal to 2 (-f), and using 4 GPUs (-g).

MPI Example: Ghost Exchange with OpenMP

README.md from HPCTrainingExamples/MPI-examples/GhostExchange/GhostExchange ArrayAssign
from the Training Examples repository.

In this version of the Ghost Exchange example we use OpenMP to perform the necessary computations in
parallel on GPUs.These computations are for instance data initialization and solution advancement. When
running in parallel, each MPI process will execute the prescribed kernels in parallel, and these will execute in
parallel on the GPU, thanks to OpenMP. We begin with an original implementation that can run in parallel
thanks to MPI but is CPU only, meaning that the computations will run in serial on the CPU on a per
process basis. Several improved versions are provided which are outlined in the next paragraph.

Features of the various versions

The Ghost Exchange example with OpenMP contains several implementations at various stages of performance
optimization. Generally speaking, however, the various versions follow the same basic algorithm, what changes
is where the computation happens, or the data movement and location. See below a breakdown of the features
of the various versions:

e Orig: this is a CPU-only implementation that runs in parallel with MPI, and serves as the starting
point for further optimizations. It is recommended to start here.

e Verl: this version is a variation of Orig that uses OpenMP and unified shared memory to offload
the computations to the GPUs. Memory can be moved to the GPU using map clauses with OpenMP,
however it is much easier to not have to worry about explicit memory management for an initial port,
which is what the unified shared memory allows. Note that arrays allocated on the CPU are used for
MPI communication, henche GPU aware MPI is not used in this version. To enable unified shared
memory, export HSA_XNACK=1 before running the example.

e Ver2: this is a variation of Verl, adding roctx ranges to get more easily readable profiling output.
This change does not affect performance.

e Ver3: this is a variation of Ver2, allocating the communication buffers on GPU using the OpenMP
APIL

e Ver4: this is a variation of Ver2, exploring dynamically allocating communication buffers on the CPU
using malloc.

e Ver5: this is a variation of Ver4, where the solution array is unrolled from a 2D array into a 1D array.

e Ver6: this is a variation of Ver5, using explicit memory management directives to specify when data
movement should happen. In this context unified shared memory is not required and therefore one
could unset HSA_XNACK .

70

https://github.com/amd/HPCTrainingDock

Overview of the implementation

The code is controlled with the following arguments: - -i imax -j jmax : set the total problem size to
imax*jmax cells. - -x nprocx -y nprocy : set the number of MPI processes in the x and y direction

respectively, with nprocx*nprocy total processes. - -h nhalo : number of halo layers, the minimum
value dictated by the mathematical operator in this case is one, but it can be made bigger to increase the
communication work, for experimentation. - -t : legacy argument used to include MPI barriers before the
ghost exchange. Currently has no impact. - -c : include as input argument to include the ghost cells in the
corners of the MPI subdomains during the ghost exchange. - -p : include as input argument to print the

solution field (including values on the halo). Printing is limited above by the size of the problem.

The kernel used to advance the solution is a blur kernel, that modifies the value of a given element by
averaging the values at a 5-point stencil location centered at the given element:

xnew[jl[i] = (x[j104i] + x[jI[i-11 + x[jl0i+1] + x[j-11[i] + x[j+1]1[i]1)/5.0

The halo exchange happens in a two-step fashion as shown in the image below, from the book Parallel and
high performance computing, by Robey and Zamora:

[image](ghost__exchange2.png" >

Above, a ghost cell on a process is delimited by a dashed outline, while cells owned by a process are marked
with a solid line. Communication is represented with arrows and colors representing the original data, and
the location that data is being communicated and copied to. We see that each process communicates based
on the part of the problem it owns: the process that owns the central portion of data must communicate in
all four directions, while processes on the corner only have to communicate in two directions only.

We now describe how to compile and run some of the above versions. Note that the modules that will be
loaded next rely on the model installation described in the HPCTrainingDock repo.

Original version of Ghost Exchange
module load openmpi amdclang
Setting HSA_XNACK=1 now for all of the following runs, except for Ver6, for which it is not needed.

export HSA_XNACK=1
export MAX_ITER=1000

Build the code

cd Orig
mkdir build && cd build
cmake ..
make -j

Run the example

echo "Orig Ver: Timing for CPU version with 4 ranks"
mpirun -n 4 ./GhostExchange -x 2 -y 2 -i 20000 -j 20000 -h 1 -c -I ${MAX_ITER}

Note the time that it took to run and the time for each part of the application.

Now we will try and run it with some simple affinity settings. These map the 4 process to separate NUMA
regions and binds the process to the core

echo "Orig Ver: Timing for CPU version with 4 ranks with affinity"
mpirun -n 4 --bind-to core -map-by ppr:1l:numa --report-bindings ./GhostExchange -x 2 -y 2 -i 20000 -j 200C

Here are other affinity settings that you can try. These are for larger number of ranks and GPUs. Note that
the number of processes per resource (ppr) increases

71

https://www.manning.com/books/parallel-and-high-performance-computing
https://www.manning.com/books/parallel-and-high-performance-computing
https://github.com/amd/HPCTrainingDock

echo "Orig Ver: Timing for CPU version with 16 ranks"
mpirun -n 16 ./GhostExchange -x 4 -y 4 -i 20000 -j 20000 -h 1 -t -c -I ${MAX_ITER}
echo "Orig Ver: Timing for CPU version with 16 ranks with affinity"

mpirun -n 16 --bind-to core -map-by ppr:2:numa --report-bindings ./GhostExchange -x 4 -y 4 -i
mpirun -n 64 --bind-to core -map-by ppr:8:numa --report-bindings ./GhostExchange -x 8 -y 8 -i
mpirun -n 256 ./GhostExchange -x 16 -y 16 -i 20000 -j 20000 -h 1 -t -c

mpirun -n 16 --bind-to core -map-by ppr:2:numa ./GhostExchange -x 4 -y 4 -i 20000 -j 20000 -h
mpirun -n 64 --bind-to core -map-by ppr:8:numa ./GhostExchange -x 8 -y 8 -i 20000 -j 20000 -h

mpirun -n 256 --bind-to hwthread -map-by ppr:32:numa ./GhostExchange -x 16 -y 16 -i 20000 -j 20000 -h

Version 1 — Adding OpenMP target offload to original CPU code

Build the example

cd ../../Verl

mkdir build && cd build
cmake ..

make -j

Now run the example

echo "Ver 1: Timing for GPU version with 4 ranks with compute pragmas"

20000 -j 200C
20000 -j 200C

1 -t -c
1 -t —-c
1 -t -c -T ${

mpirun -n 4 --bind-to core -map-by ppr:l:numa --report-bindings ./GhostExchange -x 2 -y 2 -i 20000 -j 2000C

Adding affinity script

echo "Ver 1: Timing for GPU version with 4 ranks with compute pragmas"

mpirun -n 4 --bind-to core -map-by ppr:l:numa --report-bindings ../../affinity_script.sh ./GhostExchange -x 2

You can export the environment variable below to check that the kernels are indeed executing on the GPU:

export LIBOMPTARGET_INFO=-1

Version 2 through 6 can be run similarly. For version 6, we recommend to unset HSA_XNACK since explicit

memory management is implemented in this example. On MI300A, having HSA_XNACK=1 set will make
OpenMP ignore the map clauses.

HIP-Python

README.md from HPCTrainingExamples/Python/hip-python in the Training Examples repository

For these examples, get a GPU with salloc or srun.

salloc -N 1 --ntasks 16 --gpus=1 --time=01:00:00
or
srun -N 1 --ntasks 16 --gpus=1 --time=01:00:00 --pty /bin/bash

Be sure and free up the GPU when you are done with the exercises.
The first test is to check that the hip-python environment is set up correctly.

module load rocm hip-python
python -c 'from hip import hip, hiprtc' 2> /dev/null && echo 'Success' || echo 'Failure'

HIP-Python has an extensive capability for retrieving device properties and attributes. We’ll take a look at
the two main functions — higGetDeviceProperties and hipDeviceGetAttribute.

Obtaining Device Properties

We'll take a look at the higGetDeviceProperties function first. Copy the following code into a file named
hipGetDevicePropeties_example.py or pull the example down with

72

git clone https://github.com/AMD/HPCTrainingExamples
cd HPCTrainingExamples/Python/hip-python

The hipGetDeviceProperties_example.py file

from hip import hip

def hip_check(call_result):

err = call_result[0]

result = call_result[1:]

if len(result) ==
result = result[0]

if isinstance(err, hip.hipError_t) and err != hip.hipError_t.hipSuccess:
raise RuntimeError(str(err))

return result

props = hip.hipDeviceProp_t()
hip_check(hip.hipGetDeviceProperties(props,0))

for attrib in sorted(props.PROPERTIES()):
print (f"props.{attrib}={getattr(props,attrib)}")
print ("ok")

Try it by loading the proper modules and running it with python3.

module load rocm hip-python
python3 hipGetDeviceProperties_example.py

Some of the useful properties that can be obtained are:

props.managedMemory=1
props.name=b'AMD Instinct MI210'
props.warpSize=64

Getting Device Attributes

The second function to get device information is hipDeviceGetAttribute. Copy the following into
hipDeviceGetAttribute_example.py or use the file in the hip-python examples.

from hip import hip

def hip_check(call_result):

err = call_result[0]

result = call_result[1:]

if len(result) ==
result = result[0]

if isinstance(err, hip.hipError_t) and err != hip.hipError_t.hipSuccess:
raise RuntimeError(str(err))

return result

device_num = 0

for attrib in (

hip.hipDeviceAttribute_t.hipDeviceAttributeMaxBlockDimX,
hip.hipDeviceAttribute_t.hipDeviceAttributeMaxBlockDimY,
hip.hipDeviceAttribute_t.hipDeviceAttributeMaxBlockDimZ,
hip.hipDeviceAttribute_t.hipDeviceAttributeMaxGridDimX,
hip.hipDeviceAttribute_t.hipDeviceAttributeMaxGridDimY,
hip.hipDeviceAttribute_t.hipDeviceAttributeMaxGridDimZ,
hip.hipDeviceAttribute_t.hipDeviceAttributeWarpSize,

73

value = hip_check(hip.hipDeviceGetAttribute(attrib,device_num))
print (f"{attrib.name}: {valuel}")
print ("ok")

Run this file.

module load rocm hip-python
python3 hipDeviceGetAttribute_example.py

Output

hipDeviceAttributeMaxBlockDimX: 1024
hipDeviceAttributeMaxBlockDimY: 1024
hipDeviceAttributeMaxBlockDimZ: 1024
hipDeviceAttributeMaxGridDimX: 2147483647
hipDeviceAttributeMaxGridDimY: 65536
hipDeviceAttributeMaxGridDimZ: 65536
hipDeviceAttributeWarpSize: 64

ok

Accessing HIP Streams using HIP-Python

In the HIP streams example, we’ll see how to create streams from Python and pass array data to the stream
routines from Python arrays.

The code in the file hipstreams_ example.py.

import ctypes
import random
import array

from hip import hip

def hip_check(call_result):

err = call_result[0]

result = call_result[1:]

if len(result) == 1:
result = result[0]

if isinstance(err, hip.hipError_t) and err != hip.hipError_t.hipSuccess:
raise RuntimeError(str(err))

return result

inputs

n = 100

x_h = array.array("i", [int (random.random()*10) for i in range(O,n)])
num_bytes = x_h.itemsize * len(x_h)

x_d = hip_check(hip.hipMalloc (num_bytes))

stream = hip_check(hip.hipStreamCreate())
hip_check(hip.hipMemcpyAsync(x_d,x_h,num_bytes,hip.hipMemcpyKind.hipMemcpyHostToDevice,stream))
hip_check(hip.hipMemsetAsync(x_d,0,num_bytes,stream))
hip_check(hip.hipMemcpyAsync(x_h,x_d,num_bytes,hip.hipMemcpyKind.hipMemcpyDeviceToHost,stream))
hip_check(hip.hipStreamSynchronize(stream))

hip_check(hip.hipStreamDestroy(stream))

deallocate device data
hip_check(hip.hipFree(x_d))

for i,x in enumerate(x_h):
if x 1= 0:

74

raise ValueError(f"expected '0O' for element {i}, is: '{x}'")
print ("ok")

Now run this example.

module load rocm hip-python
python3 hipstreams_example.py

Calling hipBLAS from Python using HIP-Python

In the file hipblas_ numpy_ example.py, the hipBLAS library Saxpy routine is called. It operates on a numpy
data array.

import ctypes
import math
import numpy as np

from hip import hip
from hip import hipblas

def hip_check(call_result):

err = call_result[0]

result = call_result[1:]

if len(result) ==
result = result[0]

if isinstance(err,hip.hipError_t) and err != hip.hipError_t.hipSuccess:
raise RuntimeError(str(err))

elif isinstance(err,hipblas.hipblasStatus_t) and err != hipblas.hipblasStatus_t.HIPBLAS_STATUS_SUCCESS:
raise RuntimeError(str(err))

return result

num_elements = 100

input data on host

alpha = ctypes.c_float(2)

x_h = np.random.rand(num_elements) .astype(dtype=np.float32)
y_h = np.random.rand(num_elements) .astype(dtype=np.float32)

expected result
y_expected = alpha*x_h + y_h

device vectors

num_bytes = num_elements * np.dtype(np.float32).itemsize
x_d = hip_check(hip.hipMalloc (num_bytes))

y_d = hip_check(hip.hipMalloc(num_bytes))

copy input data to device
hip_check(hip.hipMemcpy(x_d,x_h,num_bytes,hip.hipMemcpyKind.hipMemcpyHostToDevice))
hip_check(hip.hipMemcpy(y_d,y_h,num_bytes,hip.hipMemcpyKind.hipMemcpyHostToDevice))

call hipblasSaxpy + initialization & destruction of handle

handle = hip_check(hipblas.hipblasCreate())

hip_check(hipblas.hipblasSaxpy(handle, num_elements, ctypes.addressof(alpha), x_d, 1, y_d, 1))
hip_check(hipblas.hipblasDestroy(handle))

copy result (stored in y_d) back to host (store in y_h)
hip_check(hip.hipMemcpy(y_h,y_d,num_bytes,hip.hipMemcpyKind.hipMemcpyDeviceToHost))

compare to expected result
if np.allclose(y_expected,y_h):

75

print ("ok")
else:

print ("FAILED")
#print (£"{y_h=}")
#print (£"{y_expected=}")

clean up
hip_check(hip.hipFree(x_d))
hip_check(hip.hipFree(y_d))

Using Unified Shared Memory for hipBLAS using HIP-Python

We can also take advantage of the single address space on the MI300A or the managed memory that
moves the data from host to device and back for us on the other AMD Instinct GPUs. It simplifies the
code because the memory does not have to be duplicated on the CPU and GPU. The code is in the file
hipblas__numpy_ USM__example.py.

import ctypes
import math
import numpy as np

from hip import hip
from hip import hipblas

def hip_check(call_result):

err = call_result[0]

result = call_result[1:]

if len(result) ==
result = result[0]

if isinstance(err,hip.hipError_t) and err != hip.hipError_t.hipSuccess:
raise RuntimeError(str(err))

elif isinstance(err,hipblas.hipblasStatus_t) and err != hipblas.hipblasStatus_t.HIPBLAS_STATUS_SUCCESS:
raise RuntimeError (str(err))

return result

num_elements = 100

input data on host

alpha = ctypes.c_float(2)

x_h = np.random.rand(num_elements) .astype(dtype=np.float32)
y_h = np.random.rand(num_elements) .astype(dtype=np.float32)

expected result
y_expected = alpha*x_h + y_h

call hipblasSaxpy + initialization & destruction of handle

handle = hip_check(hipblas.hipblasCreate())

hip_check(hipblas.hipblasSaxpy(handle, num_elements, ctypes.addressof(alpha), x_h, 1, y_h, 1))
hip_check(hipblas.hipblasDestroy(handle))

compare to expected result

if np.allclose(y_expected,y_h):
print("ok")

else:
print ("FAILED")

#print (£"{y_h=}")

#print (£"{y_expected=}")

To run this unified shared memory example, we also need the environment variable HSA_XNACK set to one.

76

module load rocm hip-python
export HSA_XNACK=1
python3 hipblas_numpy_USM_example.py

Calling hipFFT from Python using HIP-Python

The HIP FFT library can also be called from Python. We create a plan, perform the FFT, and then destroy
the plan. This file is hipfft_numpy_example.py

import numpy as np
from hip import hip, hipfft

def hip_check(call_result):

err = call_result[0]

result = call_result[1:]

if len(result) ==
result = result[0]

if isinstance(err, hip.hipError_t) and err != hip.hipError_t.hipSuccess:
raise RuntimeError(str(err))

if isinstance(err, hipfft.hipfftResult) and err != hipfft.hipfftResult.HIPFFT_SUCCESS:
raise RuntimeError (str(err))

return result

initial data

N = 100

hx = np.zeros(N,dtype=np.cdouble)
hx[:] =1 - 1j

copy to device
dx = hip_check(hip.hipMalloc(hx.sizexhx.itemsize))
hip_check(hip.hipMemcpy(dx, hx, dx.size, hip.hipMemcpyKind.hipMemcpyHostToDevice))

create plan
plan = hip_check(hipfft.hipfftPlan1d(N, hipfft.hipfftType.HIPFFT_Z2Z, 1))

execute plan
hip_check(hipfft.hipfftExecZ2Z(plan, idata=dx, odata=dx, direction=hipfft.HIPFFT_FORWARD))
hip_check(hip.hipDeviceSynchronize())

copy to host and free device data
hip_check(hip.hipMemcpy (hx,dx,dx.size,hip.hipMemcpyKind.hipMemcpyDeviceToHost))
hip_check(hip.hipFree(dx))

if not np.isclose(hx[0].real,N) or not np.isclose(hx[0].imag,-N):
raise RuntimeError("element O must be '{N}-j{N}'.")
for i in range(1,N):
if not np.isclose(abs(hx[i]),0):
raise RuntimeError(f"element {i} must be '0'")

hip_check(hipfft.hipfftDestroy(plan))
print ("ok")

Run this examples with:

module load rocm hip-python
python3 hipfft_numpy_example.py

7

Unified Shared Memory version of calling hipFFT HIP-Python

The code is much simplier if we take advantage of the unified shared memory or managed memory. We can
just use the host versions of the data directly. The simpler code is in hipfft_ numpy_ USM_ example.py

import numpy as np
from hip import hip, hipfft

def hip_check(call_result):

err = call_result[0]

result = call_result[1:]

if len(result) ==
result = result[0]

if isinstance(err, hip.hipError_t) and err != hip.hipError_t.hipSuccess:
raise RuntimeError(str(err))

if isinstance(err, hipfft.hipfftResult) and err != hipfft.hipfftResult.HIPFFT_SUCCESS:
raise RuntimeError(str(err))

return result

initial data

N = 100

hx = np.zeros(N,dtype=np.cdouble)
hx[:] =1 - 1j

create plan
plan = hip_check(hipfft.hipfftPlan1d(N, hipfft.hipfftType.HIPFFT_Z2Z, 1))

execute plan
hip_check(hipfft.hipfftExecZ2Z(plan, idata=hx, odata=hx, direction=hipfft.HIPFFT_FORWARD))
hip_check(hip.hipDeviceSynchronize())

if not np.isclose(hx[0].real,N) or not np.isclose(hx[0].imag,-N):
raise RuntimeError("element O must be '{N}-j{N}'.")
for i in range(1,N):
if not np.isclose(abs(hx[i]),0):
raise RuntimeError(f"element {i} must be '0'")

hip_check(hipfft.hipfftDestroy(plan))
print("ok")

Run this with:

module load rocm hip-python
export HSA_XNACK=1
python3 hipfft_numpy_USM_example.py

Calling RCCL from Python using HIP-Python

We can also call the RCCL communication library from Python using HIP-Python. An example of this is
shown in rccl__example.py.

import numpy as np
from hip import hip, rccl

def hip_check(call_result):
err = call_result[0]
result = call_result[1:]
if len(result) ==
result = result[0]
if isinstance(err, hip.hipError_t) and err != hip.hipError_t.hipSuccess:

78

raise RuntimeError (str(err))

if isinstance(err, rccl.ncclResult_t) and err != rccl.ncclResult_t.ncclSuccess:
raise RuntimeError (str(err))

return result

init the communicators

num_gpus = hip_check(hip.hipGetDeviceCount())

comms = np.empty(num_gpus,dtype="uint64") # size of pointer type, such as ncclComm
devlist = np.array(range(0,num_gpus),dtype="int32")
hip_check(rccl.ncclCommInitAll (comms, num_gpus, devlist))

init data on the devices

N=4

ones = np.ones(N,dtype="int32")

zeros = np.zeros(ones.size,dtype="int32")

dxlist = []

for dev in devlist:
hip_check(hip.hipSetDevice(dev))
dx = hip_check(hip.hipMalloc(ones.size*ones.itemsize)) # items are bytes
dxlist.append(dx)
hx = ones if dev == 0 else zeros
hip_check(hip.hipMemcpy(dx,hx,dx.size,hip.hipMemcpyKind.hipMemcpyHostToDevice))

perform a broadcast
hip_check(rccl.ncclGroupStart())
for dev in devlist:
hip_check(hip.hipSetDevice(dev))
hip_check(rccl.ncclBcast(dxlist[dev], N, rccl.ncclDataType_t.ncclInt32, O, int(comms[dev]), None))
conversion to Python int is required to not let the numpy datatype to be interpreted as single-element Py_buf
hip_check(rccl.ncclGroupEnd())

download and check the output; confirm all entries are one
hx = np.empty(N,dtype="int32")
for dev in devlist:
dx=dxlist [dev]
hx[:] = 0
hip_check(hip.hipMemcpy (hx,dx,dx.size,hip.hipMemcpyKind.hipMemcpyDeviceToHost))
for i,item in enumerate(hx):
if item != 1:
raise RuntimeError(f"failed for element {il}")

clean up
for dx in dxlist:
hip_check(hip.hipFree(dx))
for comm in comms:
hip_check(rccl.ncclCommDestroy (int (comm)))
conversion to Python int is required to not let the numpy datatype to be interpreted as single-element Py_buf

print("ok")
Running this example:

module load rocm hip-python
python3 rcc_example.py

Unified Shared Memory with RCCL using HIP-Python

We can also use the host data directly by relying on the unified shared memory or the managed memory on
the AMD Instinct GPUs. The code for this is shown in rccl _USM_ example.py

79

import numpy as np
from hip import hip, rccl

def hip_check(call_result):
err = call_result[0]
result = call_result[1:]
if len(result) ==
result = result[0]

if isinstance(err, hip.hipError_t) and err != hip.hipError_t.hipSuccess:
raise RuntimeError(str(err))
if isinstance(err, rccl.ncclResult_t) and err != rccl.ncclResult_t.ncclSuccess:

raise RuntimeError(str(err))
return result

init the communicators

num_gpus = hip_check(hip.hipGetDeviceCount())

comms = np.empty(num_gpus,dtype="uint64") # size of pointer type, such as ncclComm
devlist = np.array(range(0,num_gpus),dtype="int32")
hip_check(rccl.ncclCommInitAll (comms, num_gpus, devlist))

init data on the devices

N=4

ones = np.ones(N,dtype="int32")

zeros = np.zeros(ones.size,dtype="int32")

dxlist = []

for dev in devlist:
hip_check(hip.hipSetDevice(dev))
hx = ones if dev == 0 else zeros
dxlist.append (hx)

perform a broadcast
hip_check(rccl.ncclGroupStart())
for dev in devlist:
hip_check(hip.hipSetDevice(dev))
hip_check(rccl.ncclBcast(dxlist[dev], N, rccl.ncclDataType_t.ncclInt32, O, int(comms[dev]), None))
conversion to Python int is required to not let the numpy datatype to be interpreted as single-element Py_buf
hip_check(rccl.ncclGroupEnd())

download and check the output; confirm all entries are ome
hx = np.empty(N,dtype="int32")
for dev in devlist:
hx=dxlist[dev]
for i,item in enumerate(hx):
if item != 1:
raise RuntimeError(f"failed for element {i}")

clean up
for comm in comms:
hip_check(rccl.ncclCommDestroy (int (comm)))
conversion to Python int is required to not let the numpy datatype to be interpreted as single-element Py_buf

print ("ok")
Running this version requires setting HSA_XNACK to one as in the previous unified shared memory examples.

module load rocm hip-python
export HSA_XNACK=1
python3 rcc_USM_example.py

80

Cython example

We can also speed up Python code by compiling it using the Cython package. To demonstrate this, we create
a simple array sum routine. The source code is in the file array sum.pyx.

from hip import hip, hiprtc

def array_sum(double[:, ::1] A):
cdef int m = A.shape[0]
cdef int n = A.shape[1]

cdef int i, j
cdef double result = 0

for i in range(m):
for k in range(n):
result += A[i, k]

return result
And define the interface to the array sum routine in array_sum.pyx

from hip cimport chip, chiprtc

def array_sum(double[:, ::1] A):

To compile the python routine, we need a setup.py file that gives the directions to compile a routine with the
project compiler. We’ll define the compiler, the paths, libraries, and compiler flags.

import os, sys
array_sum = "array_sum"

from setuptools import Extension, setup
from Cython.Build import cythonize

ROCM_PATH=o0s.environ.get ("ROCM_PATH", "/opt/rocm")
HIP_PLATFORM = os.environ.get ("HIP_PLATFORM", "amd")

if HIP_PLATFORM not in ("amd", "hcc"):
raise RuntimeError("Currently only HIP_PLATFORM=amd is supported")

def create_extension(name, sources):
global ROCM_PATH
global HIP_PLATFORM
rocm_inc = os.path.join(ROCM_PATH, "include")
rocm_lib_dir = os.path.join(ROCM_PATH, "1ib")
rocm_libs = ["amdhip64"]
platform = HIP_PLATFORM.upper ()
cflags = ["-D", f£"__HIP_PLATFORM_{platform}__"]

return Extension(
name,
sources=sources,
include_dirs=[rocm_inc],
library_dirs=[rocm_lib_dir],
libraries=rocm_libs,
language="c",
extra_compile_args=cflags,

setup (

81

ext_modules = cythonize(
[create_extension(array_sum, [f"{array_sum}.pyx"1),],
compiler_directives=dict(language_level=3),
compile_time_env=dict (HIP_PYTHON=True),

)
We will need to bring in the Cython package, so we create a virtual environment.

python3 -m venv cython_example
source cython_example/bin/activate

Then we set up the environment by loading the rocm and hip-python module and installing cython.

module load rocm hip-python
pip3 import cython

Compile the array_sum python code with setup.py build
python3 setup.py build
Finally we clean up afterwards.

deactivate
rm -rf cython_example

Compiling and Launching Kernels

We can also create our own C programs and compile them with the hiprtc module for a Just-In_ Time (JIT)
compile capability. This example shows a C routine called print_tid() that is encoded as a string. The

string is then converted into program source and compiled. We use the ability to query the device parameters
to get the GPU architecture to compile for.

from hip import hip, hiprtc

def hip_check(call_result):
err = call_result[0]
result = call_result[1:]
if len(result) ==
result = result[0]

if isinstance(err, hip.hipError_t) and err != hip.hipError_t.hipSuccess:
raise RuntimeError(str(err))
elif (

isinstance(err, hiprtc.hiprtcResult)
and err != hiprtc.hiprtcResult.HIPRTC_SUCCESS

raise RuntimeError(str(err))
return result

source = b"""\

extern "C" __global__ void print_tid() {
printf("tid: %d\\n", (int) threadIdx.x);

}

prog = hip_check(hiprtc.hiprtcCreateProgram(source, b"print_tid", 0, [1, [1))
props = hip.hipDeviceProp_t()

hip_check(hip.hipGetDeviceProperties(props,0))
arch = props.gcnArchName

82

print (£"Compiling kernel for {arch}")

cflags = [b"--offload-arch="+arch]
err, = hiprtc.hiprtcCompileProgram(prog, len(cflags), cflags)
if err != hiprtc.hiprtcResult.HIPRTC_SUCCESS:
log_size = hip_check(hiprtc.hiprtcGetProgramLogSize (prog))
log = bytearray(log_size)
hip_check(hiprtc.hiprtcGetProgramlLog(prog, log))
raise RuntimeError(log.decode())
code_size = hip_check(hiprtc.hiprtcGetCodeSize (prog))
code = bytearray(code_size)
hip_check(hiprtc.hiprtcGetCode(prog, code))
module = hip_check(hip.hipModuleLoadData(code))
kernel = hip_check(hip.hipModuleGetFunction(module, b"print_tid"))

#
hip_check(
hip.hipModuleLaunchKernel (
kernel,
*(1, 1, 1), # grid
*(32, 1, 1), # block
sharedMemBytes=0,
stream=None,
kernelParams=None,
extra=None,
)
)

hip_check(hip.hipDeviceSynchronize())
hip_check(hip.hipModuleUnload (module))
hip_check(hiprtc.hiprtcDestroyProgram(prog.createRef()))

print ("ok")

To run the example of creating a kernel and launching it:

module load rocm hip-python
python3 create_launch_C_kernel.py

Kernels with arguments

It is a little more complicated to launch a kernel with arguments. The program is scale_vector() and it
has six arguments. We add an “extra” field with the six arguments as part of the launch kernel call. This
example is in kernel_with_arguments.py

import ctypes
import array
import random
import math

from hip import hip, hiprtc

def hip_check(call_result):
err = call_result[0]
result = call_result[1:]
if len(result) ==
result = result[0]

if isinstance(err, hip.hipError_t) and err != hip.hipError_t.hipSuccess:
raise RuntimeError(str(err))
elif (

isinstance(err, hiprtc.hiprtcResult)

83

and err != hiprtc.hiprtcResult.HIPRTC_SUCCESS

raise RuntimeError(str(err))
return result

source = b"""\
extern "C" __global__ void scale_vector(float factor, int n, short unusedl, int unused2, float unused3, float *x) f{
int tid = threadIdx.x + blockIdx.x * blockDim.x;
if (tid == 0) {
printf("tid: %d, factor: %f, x*: %lu, n: %lu, unusedl: ’%d, unused2: ’d, unused3: %f\\n",tid,factor,x,n,(int) ur
}
if (tid < n) {
x[tid] *= factor;
}
}

prog = hip_check(hiprtc.hiprtcCreateProgram(source, b"scale_vector", 0, [1, [1))

props = hip.hipDeviceProp_t()
hip_check(hip.hipGetDeviceProperties (props,0))
arch = props.gcnArchName

print (£"Compiling kernel for {arch}")

cflags = [b"--offload-arch="+arch]
err, = hiprtc.hiprtcCompileProgram(prog, len(cflags), cflags)
if err != hiprtc.hiprtcResult.HIPRTC_SUCCESS:
log_size = hip_check(hiprtc.hiprtcGetProgramLogSize (prog))
log = bytearray(log_size)
hip_check(hiprtc.hiprtcGetProgramlog(prog, log))
raise RuntimeError(log.decode())
code_size = hip_check(hiprtc.hiprtcGetCodeSize (prog))
code = bytearray(code_size)
hip_check(hiprtc.hiprtcGetCode (prog, code))
module = hip_check(hip.hipModuleLoadData(code))
kernel = hip_check(hip.hipModuleGetFunction(module, b"scale_vector"))

kernel launch

inputs

n = 100

x_h = array.array("f", [random.random() for i in range(O,n)])
num_bytes = x_h.itemsize * len(x_h)

x_d = hip_check(hip.hipMalloc(num_bytes))

print (£"{hex(int (x_d))=}")

upload host data
hip_check(hip.hipMemcpy(x_d,x_h,num_bytes,hip.hipMemcpyKind.hipMemcpyHostToDevice))

factor = 1.23

expected result
x_expected = [a*factor for a in x_h]

block = hip.dim3(x=32)
grid = hip.dim3(math.ceil(n/block.x))

launch

84

hip_check(
hip.hipModuleLaunchKernel(

kernel,

*grid,

*block,

sharedMemBytes=0,

stream=None,

kernelParams=None,

extra=(
ctypes.c_float(factor), # 4 bytes
ctypes.c_int(n), # 8 bytes
ctypes.c_short(5), # unusedl, 10 bytes
ctypes.c_int(2), # unused2, 16 bytes (+2 padding bytes)
ctypes.c_float(5.6), # unused3 20 bytes
x_d, # 32 bytes (+4 padding bytes)

)

copy result back
hip_check(hip.hipMemcpy(x_h,x_d,num_bytes,hip.hipMemcpyKind.hipMemcpyDeviceToHost))

for i,x_h_i in enumerate(x_h):
if not math.isclose(x_h_i,x_expected[i],rel_tol=1e-6):
raise RuntimeError(f"values do not match, {x_h[il=} vs. {x_expected[il=}, {i=}")

hip_check(hip.hipFree(x_d))

hip_check(hip.hipModuleUnload (module))
hip_check(hiprtc.hiprtcDestroyProgram(prog.createRef()))

print ("ok")
Run this example with:

module load rocm hip-python
python3 kernel_with_args.py

numba-HIP

A simple numba-HIP vector addition example
from numba import hip
Chip.jit
def f(a, b, c):
like threadIdx.x + (blockIdx.x * blockDim.x)

tid = hip.grid(1)
size = len(c)

if tid < size:
cltid] = al[tid] + b[tid]

print ("0k")
To run the example

module load rocm hip-python
python3 numba-hip.py

85

An alternative approach to changing all the @cuda.jit to @hip.jit is to have numba-hip pose as
CUDA. We do this with the addition of the following two lines:

hip.pose_as_cuda()
from numba import cuda

from numba import hip

hip.pose_as_cuda()
from numba import cuda

Qcuda. jit

def f(a, b, c):
like threadIdx.x + (blockIdx.x * blockDim.x)
tid = cuda.grid(1)
size = len(c)

if tid < size:
cltid] = altid] + bltid]
print ("0k")
Running this example

module load rocm hip-python
python3 numba-hip-cuda-posing.py

CuPy Examples

README.md from HPCTrainingExamples/Python/cupy in the Training Examples repository

NOTE: these exercises have been tested on MI210 and MI300A accelerators using a container environment.
To see details on the container environment (such as operating system and modules available) please see
README.md on this repo.

Simple introduction example to CuPy for AMD GPUs

To run this example,

module load cupy
python cupy_array_sum.py

The output should look like the following:

CuPy Array: [1 2 3 4 5]

Squared CuPy Array: [1 4 9 16 25]
NumPy Array: [6 6 7 8 9]

CuPy Array from NumPy: [5 6 7 8 9]
Addition Result on GPU: [6 8 10 12 14]
Result on CPU: [6 8 10 12 14]

What is actually happening here? What is on the GPU and what is on the CPU? Let’s try and see more.

export AMD_LOG_LEVEL=1
python cupy_array_sum.py

Now our output is:

:1:hip_memory.cpp :3721: 1083559518128d us: Cannot get amd_mem_obj for ptr: 0x46b8abf0
CuPy Array: [1 2 3 4 5]

Squared CuPy Array: [1 4 9 16 25]

NumPy Array: [5 6 7 8 9]

86

https://github.com/amd/HPCTrainingDock

:1:hip_memory.cpp :3721: 1083560370823d us: Cannot get amd_mem_obj for ptr: 0x483ba890
CuPy Array from NumPy: [5 6 7 8 9]

Addition Result on GPU: [6 8 10 12 14]

Result on CPU: [6 8 10 12 14]

The warning is from the AMD logging functions and doesn’t impact the run. Now let’s increase the log level
for the run.

export AMD_LOG_LEVEL=3
python cupy_array_sum.py

Now we see lots of output that shows the hip calls and the operations on the GPU.

hipMemcpyAsync (0x559ea98f65f0, 0x7£4556800000, 40, hipMemcpyDeviceToHost, stream:<null>)
Signal = (0x7f4dbefff280), Translated start/end = 1083534945452078 / 1083534945453358, Elapsed = 1280 ns, ticks ste
Host active wait for Signal = (0x7f4d5efff200) for -1 ns

Set Handler: handle(0x7f4d5efff180), timestamp(0x559eaabead90)

Host active wait for Signal = (0x7f4d5efff180) for -1 ns

hipMemcpyAsync: Returned hipSuccess : : duration: 5948d us

hipStreamSynchronize (stream:<null>)

Handler: value(0), timestamp(0x559eaa7e7350), handle(0x7f4d5efff180)

hipStreamSynchronize: Returned hipSuccess :

hipSetDevice (0)

hipSetDevice: Returned hipSuccess :

CuPy Array: [1 2 3 4 5]

MPI4Py examples

README.md from HPCTrainingExamples/Python/mpidpy in the Training Examples repository

NOTE: these exercises have been tested on MI210 and MI300A accelerators using a container environment.
To see details on the container environment (such as operating system and modules available) please see
README.md on this repo.

Exploring MPI communication with MPI4Py

First set up the environment

module load mpi4py cupy

Add print("Rank is:", rank) right after the rank is set at line 10.
Then run the python program

mpirun -n 4 python mpidpy_cupy.py

You should see the following output, but it might be in a different order

Rank is: 3
Rank is: 1
Rank is: 2
Rank is: O

Starting allreduce test...
Starting bcast test...
Starting send-recv test...
Success

To verify if the program is running on the GPU

87

https://github.com/amd/HPCTrainingDock

export AMD_LOG_LEVEL=3
mpirun -n 4 python mpi4dpy_cupy.py

You will get a lot of output including whole programs.

AMD AT Assistant using retrieval augmented generation (RAG)

README.md from HPCTrainingExamples/MLExamples/RAG_LangChainDemo in the Training Examples
repository

We will be using retrieval augmented generation (RAG) to create an AMD AT assistant you can interact with
to answer questions on AMD GPU software and programming,.

With RAG, pre-trained, parametric-memory generation models are endowed with a non-parametric memory
through a general-purpose fine-tuning approach. This means that you can supply the most up to date content
to a pre existing model and, without additional training, use this new material as context to adjust the
answers of the pre-existing model to fit your needs.

Ollama

The main building block we will use is Ollama, which is a platform to interact with large language models.
Running the AI assistant needs the Ollama server to run the LLM model on which it is based: to install
Ollama see these instructions.

Consider the sequence of commands below: note that the first command below will kill all ollama processes
already running on your system

pkill -f ollama
ollama serve &
ollama pull 1llama3.3:70b

The ollama serve & command will run Ollama in the background. If this command does not work because
Ollama’s default port (11434) is already in use, set OLLAMA_HOST appropriately, then run ollama serve &
again. A way to set OLLAMA_HOST properly is to just increase by one the port number (so for example
export OLLAMA_HOST=127.0.0.1:11435). Then the Llama3.3 model with 70 billion parameters is
pulled.

To test that Ollama is working you can do:

ollama run llama3.3:70b

The above command will run the LLM locally, you can interact with it through the prompt and then exit
with /bye .

We will show two ways of creating the AT assistant depending on the number of users in your system.

System with a limited number of users

In this case, we assume the system has a small number of users, and that it can sustain the case where all of
them are running Ollama locally. The bigger in terms of parameters the models pulled from Ollama, the
larger the memory requirements, hence if the number of users is large and the models are big, you could
quickly finish up all the memory in the system. This is why we recommend the approach below only if the
amount of users on the system is limited.

Setting up The first thing to do, is to install the necessary software requirements: one could do it using
conda (see here for how we setup the miniconda3 module invoked below):

88

https://ollama.com/download
https://github.com/amd/HPCTrainingDock/blob/ecb81e4d7055f8594d34743b59cdeb1923faf40b/extras/scripts/miniconda3_setup.sh#L166

module load miniconda3

conda create -y -n amd_ai_assistant

conda activate amd_ai_assistant

git clone https://github.com/amd/HPCTrainingExamples.git
cd HPCTrainingExamples/MLExamples/RAG_LangChainDemo
pip3 install -r requirements.txt

The installation of the requirements (last line above) will take quite a bit of time. If you do not want to use
conda , and feel like you are aware of what you keep in your PYTHONPATH , you can do this instead:

mkdir ai_assistant_deps

cd ai_assistant_deps

export AI_ASSISTANT_DEPS=$PWD

cd ..

git clone https://github.com/amd/HPCTrainingExamples.git

cd HPCTrainingExamples/MLExamples/RAG_LangChainDemo

pip3 install -r requirements.txt --target=$AI_ASSISTANT_DEPS
export PYTHONPATH=$AI_ASSISTANT_DEPS:$PYTHONPATH

Note that it is very important to specify the target option when doing the installation with pip because
that’s where you specify the installation directory. In this way you will (hopefully) avoid messing up
other Python packages you may have already installed in your local directory. The last line above will
add the packages you just installed to your PYTHONPATH so they will be visible when you want to do
import <package> in your Python scripts.

In the present directory, there currently are three versions of the Al assistant script you can run:

1. amd_ ai_ assistant.py
2. instinct_ chat.py
3. instinct_ chat_4_llm.py

We recommend you begin with amd_ai_assistant.py since it is the most complete, optimized and up to
date of the three scripts.

All the above scripts will implement a retrieval augmented generation (RAG) model by scraping the web to
get information on AMD and AMD software to provide the necessary context to pre trained LLMs to be

able to answer AMD specific questions leveraging the info from those specific websites. We initially focus on
amd_ai_assistant.py for the reasons mentioned above. To see what websites and content is scraped in

amd_ai_assistant.py , look at the urls in the scrape_all function:

async def scrape_all(rocm_version):
rocm_docs_url=rocm_version

if rocm_version == "latest":
rocm_docs_url=rocm_version
else:

rocm_docs_url=f"docs-{rocm_version}"
main_urls = [

f"https://rocm.docs.amd.com/en/{rocm_docs_url}/",
"https://rocm.blogs.amd.com/verticals-ai.html",
"https://rocm.blogs.amd.com/verticals-ai-page2.html",
"https://rocm.blogs.amd.com/verticals-ai-page3.html",
"https://rocm.blogs.amd.com/verticals-ai-page4.html",
"https://rocm.blogs.amd.com/verticals-ai-page5.html",
"https://rocm.blogs.amd.com/verticals-ai-page6.html",
"https://rocm.blogs.amd.com/verticals-ai-page7.html",
"https://rocm.blogs.amd.com/verticals-ai-page8.html",
"https://rocm.blogs.amd.com/verticals-ai-page9.html",
"https://rocm.blogs.amd.com/verticals-ai-pagel0.html",
"https://rocm.blogs.amd.com/verticals-ai-pagell.html",
"https://rocm.blogs.amd.com/verticals-ai-pagel2.html",

89

"https://rocm.blogs.amd.com/verticals-ai-pagel3.html",
"https://rocm.blogs.amd.com/verticals-ai-pagel4.html",
"https://rocm.blogs.amd.com/verticals-hpc.html",

You can edit the above list adding or removing urls at your discretion. Note that you can decide the level of
recursion by which links at the above urls will be scraped (default is one level of recursion):

TIMEOUT = 5 # seconds

MAX_DEPTH = 1

CRAWL_DELAY = 1 # seconds delay between requests to avoid overload
CONCURRENT_REQUESTS = 5 # Limit max concurrent requests for politeness

Above, if you modify MAX_DEPTH to two for example, starting from the above urls, the script will scrape
links at those urls and then the links at the links. Let’s assume that Ollama is running effectively on the
background and you pulled LLama3.3:70b (which is the LLM mad_ai_assistant.py will be relying on

for RAG): to run the code do:

cd HPCTrainingExamples/MLExamples/RAG_LangChainDemo
python3 amd_ai_assistant.py --rocm-version <rocm_version> --scrape

The above flags will specify what ROCm version to pull the documentation of, and also that we want to force
scraping: this is because the script will save the scraped data locally so that the next time you run the script
it will not scrape again, unless you force it with the --scrape option. Without scraping again, you will be
immediately be supplied the prompt to interact with the model, saving considerable time:

AMD AI Assistant Ready! Type your questions. Type 'exit', 'quit' or 'bye' to stop.

Prompt:

The script called instinct_chat.py has either the option to be used from command line, or to use a web

user interface. The default is to use the command line option, to use the web interface (provided by Gradio)
run it with:

cd HPCTrainingExamples/MLExamples/RAG_LangChainDemo
python3 instinct_chat.py --webui

otherwise, just omit the --webui option and you will get the command line prompt. Then copy paste the
link displayed on terminal to your browser and you will get to the web user interface. Note that if you are
running this script on a cluster, you will need to take care of the proper ssh tunneling to be able to open the
user interface from your local browser. The script instinct_chat_4_l1lm.py only works with the Gradio
web interface so running it with:

cd HPCTrainingExamples/MLExamples/RAG_LangChainDemo
python3 instinct_chat_4_llm.py

will give you the web interface option by default. The above script considers 1lama3.3:70b , gemma2:27b

, mistral-large and phi3:14b to provide four answers to your prompt that will be displayed side by
side in the Gradio interface. Remember to pull all these four models with Ollama before running the script.

System with a large number of users

On a system with a large number of users, having each one of them run Ollama locally might be prohibitive.
In such a case it could be helpful to have Ollama run on a dedicated node and then have users hop
onto a web interface to interact with the models. This can be done in various ways, here we report
one way to achieve it: below we assume Ollama is already installed and Podman is used as containers
manager: 1. Ssh to the host system (something similar to ssh $USER@aac6.amd.com) 2. Ssh to the

compute node on the host system (this is where Ollama will run) 3. Add this line: host: 0.0.0.0

90

to the .ollama/config.yaml 4. Run export OLLAMA_HOST=0.0.0.0:<port_number> (for in-
stance the port number might be 11435) 5. Run export OLLAMA_PORT=<port_number> 6. Run:

ollama serve & to have Ollama run in the background 7. Run: ollama pull <some_model> : this
step is not striclty necessary as you will be able to pull models as admin user of the Open WebUI 8. Run:
podman pull ghcr.io/open-webui/open-webui:ollama : this command will pull the image you will run 9.

Run: podman run -d -p 3000:8080 -e OLLAMA_BASE_URL=http://<host_sys_IP_address>:<port_number>

: this command will run the container using the image pulled at the previous step 10. From your local machine
run: ssh -L 3000:<compute_node>:3000 <host address> (for instance could be aac6.amd.com) 11.

Type this in the address bar of your browser (such as Microsoft Edge): localhost:3000 12. Create an
admin account and make sure to remember the password you set. This is all done locally so if you remove
the Open WebUI data from your host system you will be allowed to start over (you will lose all the data
though, so make sure to take note of the password).

Troubleshooting tips If you encounter unexpected behavior while setting up Open WebUI here is
something you can do:

1. Kill Ollama

ps aux | grep 'ollama serve'
sudo pkill -f "ollama serve"

2. Stop and remove the container on Podman

podman stop open-webui-ollama
podman rm open-webui-ollama

3. If you get 505:internal error when accessing localhost:3000 , keep refreshing the page and
it should get you there

Careful to not remove the volume (that you can see by doing podman volume ls) otherwise you will lose
all the local data such as knowledge base, admin login info, user list etc.

ROCgdb

NOTE: these exercises have been tested on MI210 and MI300A accelerators using a container environment.
To see details on the container environment (such as operating system and modules available) please see
README.md on this repo.

We show a simple example on how to use the main features of the ROCm debugger rocgdb .

Saxpy Debugging

Let us consider the saxpy kernel in the HIP examples:
cd HPCTrainingExamples/HIP/saxpy

Get an allocation of a GPU and load software modules:

salloc -N 1 --gpus=1
module load rocm

You can see some information on the GPU you will be running on by doing:
rocm-smi

To introduce an error in your program, comment out the hipMalloc calls at line 71 and 72, then compile
with:

91

T

https://github.com/amd/HPCTrainingDock

mkdir build && cd build
cmake ..
make VERBOSE=1

Running the program, you will see the expected runtime error:

. /saxpy
Memory access fault by GPU node-2 (Agent handle: 0x2284d90) on address (nil). Reason: Unknown.
Aborted (core dumped)

To run the code with the rocgdb debugger, do:
rocgdb saxpy
Note that there are also two options for graphical user interfaces that can be turned on by doing:

rocgdb -tui saxpy
cgdb -d rocgdb saxpy

For the latter command above, you need to have cgdb installed on your system.

In the debugger, type run (or just r) and you will get an error similar to this one:

Thread 3 "saxpy" received signal SIGSEGV, Segmentation fault.
[Switching to thread 3, lane O (AMDGPU Lane 1:2:1:1/0 (0,0,0)[0,0,0])]
0x00007f£fff7ec1094 in saxpy() at saxpy.cpp:57

57 y[i] += a*xx[i];

Note that the cmake build type is set to RelWithDebInfo (see line 8 in CMakeLists.txt). With this build
type, the debugger will be aware of the debug symbols. If that was not the case (for instance if compiling in
Release mode), running the code with the debugger you would get an error message without line info,
and also a warning like this one:

Reading symbols from saxpy...
(No debugging symbols found in saxpy)

The error report is at a thread on the GPU. We can display information on the threads by typing
info threads (or i th). It is also possible to move to a specific thread with thread <ID> (or
t <ID>) and see the location of this thread with where . For instance, if we are interested in the thread
with ID 1:

i th

th 1

where

You can add breakpoints with break (or b) followed by the line number. For instance to put a breakpoint
right after the hipMalloc linesdo b 72 .

When possible, it is also advised to compile without optimization flags (so using -00) to avoid seeing
breakpoints placed on lines different than those specified with the breakpoint command.

You can also add a breakpoint directly at the start of the GPU kernel with b saxpy . To run to the next

breakpoint, type continue (or c).

To list all the breakpoints that have been inserted type info break (or i b):

(gdb) i b

Num Type Disp Enb Address What

1 breakpoint keep y = 0x000000000020b334 in main() at /HPCTrainingExamples/HIP/saxpy/saxpy.hi]
2 breakpoint keep y = 0x000000000020b350 in main() at /HPCTrainingExamples/HIP/saxpy/saxpy.hi

A breakpoint can be removed with delete <Num> (or d <Num>): note that <Num> is the breakpoint
ID displayed above. For instance, to remove the breakpoint at line 74, you have todo 4 1 .

92

To proceed to the next line you can do next (or n). To step into a function, do step (or s) and to

get out do finish . Note that if a breakpoint is at a kernel, doing n or s will switch between different
threads. To avoid this behavior, it is necessary to disable the breakpoint at the kernel with disable <Num>

It is possible to have information on the architecture (below shown on MI250):

(gdb) info agents
Id State Target Id Architecture Device Name Cores Thread.
* 1 A AMDGPU Agent (GPUID 64146) gfx90a Aldebaran/MI200 [Instinct MI250X/MI250] 416 3328

We can also get information on the thread grid:

(gdb) info dispatches
Id Target Id Grid Workgroup Fence Kernel Function
* 1 AMDGPU Dispatch 1:1:1 (PKID 0) [256,1,1] [128,1,1] B|Aa|Ra saxpy(int, float const*, int, floatx,

For the rocgdb documentation, please see: /opt/rocm-<version>/share/doc/rocgdb

Rocprofv3 Exercises for HIP

Jacobi
Setup environment

module load rocm
module load amdclang
module load openmpi

o Download examples repo (if necessary) and navigate to the jacobi exercises

cd ~/HPCTrainingExamples/HIP/jacobi

Compile and run one case

make clean
make
mpirun -np 2 ./Jacobi_hip -g 2 1

Let’s profile HIP

mpirun -np 2 rocprofv3 --hip-trace -- ./Jacobi_hip -g 2 1

Note that there is an output message showing that the output csv files are placed into a subdirectory. There
are two files per MPI process: one with the HW information (XXXXX_agent_info.csv) and for the HIP

API XXXXX_hip_api_trace.csv where XXXXX are numbers.

"Domain","Function","Process_Id","Thread_Id","Correlation_Id","Start_Timestamp","End_Timestamp"

"HIP_COMPILER_API","__hipRegisterFatBinary",1389712,1389712,1,4762229062888604,4762229062892624
"HIP_COMPILER_API","__hipRegisterFunction",1389712,1389712,2,4762229062903414,4762229062910744
"HIP_COMPILER_API","__hipRegisterFatBinary",1389712,1389712,3,4762229062911814,4762229062911924

"HIP_RUNTIME_API","hipGetDeviceCount",1389712,1389712,9,4762229067837299,4762229201986925
"HIP_RUNTIME_API","hipStreamCreate",1389712,1389712,10,4762229253999055,4762229484333519
"HIP_RUNTIME_API","hipStreamCreate",1389712,1389712,11,4762229484352199,4762229502251764
"HIP_RUNTIME_API","hipEventCreateWithFlags",1389712,1389712,12,4762229502311284,4762229502317444
"HIP_RUNTIME_API","hipEventCreateWithFlags",1389712,1389712,13,4762229502318894,4762229502319244
"HIP_RUNTIME_API","hipEventCreateWithFlags",1389712,1389712,14,4762229502320134,4762229502320454

93

Correlation_Id: Unique identifier for correlation between HIP and HSA async calls during activity tracing.
Start_ Timestamp: Begin time in nanoseconds (ns) when the kernel begins execution.

End_Timestamp: End time in ns when the kernel finishes execution.

Let’s create statistics
mpirun -np 2 rocprofv3 --stats --hip-trace -- ./Jacobi_hip -g 2 1

Now there are two extra files per MPI process. The first is called XXXXX_domain_stats.csv . The contents
are

"Name","Calls","TotalDurationNs","AverageNs","Percentage","MinNs", "MaxNs","StdDev"
"HIP_API",24044,1660103043,69044.378764,100.00,79,297454413,1941729.969641

The second is called XXXXX_hip_api_stats.csv and the contents are:

"Name","Calls","TotalDurationNs","AverageNs", "Percentage","MinNs", "MaxNs","StdDev"
"hipMemcpy",1005,1248355080,1242144.358209,75.20,427157,16960295,594564 .020099
"hipMemset",1,297454413,297454413.000000,17.92,297454413,297454413,0.00000000e+00
"hipStreamSynchronize",2000,62408983,31204.491500,3.76,14160,11567558,259729.446877
"hipStreamCreate",2,13571635,6785817.500000,0.8175,6588338,6983297,279278.187191
"hipInit",1,10837633,10837633.000000,0.6528,10837633,10837633,0.00000000e+00
"hipLaunchKernel",h5002,9285550,1856.367453,0.5593,1030,501227,10801.917865
"hipMemcpy2DAsync",1000,7495461,7495.461000,0.4515,1500,5522446,174573.470155
"hipEventRecord",2000,3031773,1515.886500,0.1826,750,7250,627.097396
"hipMemcpyAsync",1000,2597421,2597.421000,0.1565,2040,36110,1201.163919
"hipFree",4,1466101,366525.250000,0.0883,3380,1380181,676012.011385
"hipDeviceSynchronize",1001,713007,712.294705,0.0429,540,3060,200.535668
"hipEventElapsedTime",1000,603200,603.200000,0.0363,449,3090,174.077112
"__hipPushCallConfiguration",5002,572690,114.492203,0.0345,80,15670,223.429644
"__hipPopCallConfiguration",5002,535744,107.105958,0.0323,79,14360,265.450993
"hipHostMalloc",3,497417,165805.666667,0.0300,92599,233828,70757.088651
"hipMalloc",7,336148,48021.142857,0.0202,1820,171208,57008.652464
"hipHostFree",2,294098,147049.000000,0.0177,118099,175999,40941.482631
"__hipRegisterFatBinary",3,26819,8939.666667,1.616e-03,80,26599,15293.460705
"__hipRegisterFunction",5,8520,1704.000000,5.132e-04,170,7530,3257.518995
"hipGetDeviceCount",1,8380,8380.000000,5.048e-04,8380,8380,0.00000000e+00
"hipEventCreate",2,1690,845.000000,1.018e-04,260,1430,827.314934
"hipSetDevice",1,1280,1280.000000,7.710e-05,1280,1280,0.00000000e+00

The column Percentage means how much percentage of the execution time this command takes, in this case
we have all the calls of a specific HIP API in the same row, as you can see the column Calls of how times this
HIP command was called.

Where are the kernels?
mpirun -np 2 rocprofv3 --stats --kernel-trace --hip-trace -- ./Jacobi_hip -g 2 1
We have two more files per MPI process. The first is called XXXXX_kernel_stats.csv

"Name","Calls","TotalDurationNs","AverageNs","Percentage","MinNs","MaxNs","StdDev"

"JacobilterationKernel (int, double, double, double const*, double const*, double*, doublex)",1000,545275480,545275.
"NormKernell(int, double, double, double const*, doublex)",1001,410964270,410553.716284,32.43,401121,421282,2773.9¢C
"LocalLaplacianKernel(int, int, int, double, double, double const*, doublex)",1000,285486734,285486.734000,22.53,27
"HaloLaplacianKernel(int, int, int, double, double, double const*, double const*, doublex*)",1000,13996851,13996.851
"__amd_rocclr_copyBuffer",1001,7823550,7815.734266,0.6173,6720,9280,672.661144

"NormKernel2(int, double const*, doublex)",1001,3754094,3750.343656,0.2962,3520,4320,105.963559
"__amd_rocclr_fillBufferAligned",1,5920,5920.000000,4.671e-04,5920,5920,0.00000000e+00

The second file is called XXXXX_kernel_trace.csv . It has detailed information on each kernel dispatch.

94

"Kind","Agent_Id","Queue_Id","Thread_Id","Dispatch_Id","Kernel_Id","Kernel_Name","Correlation_Id","Start_Timestamp'
_Size_X","Workgroup_Size_Y","Workgroup_Size_Z","Grid_Size_X","Grid_Size_Y","Grid_Size_Z"

"KERNEL_DISPATCH",8,1,252734,1,10,"__amd_rocclr_fillBufferAligned",15,4484384343929154,4484384343935074,0,0,256,1,1
"KERNEL_DISPATCH",8,2,252734,2,18, "NormKernell(int, double, double, double const*, doublex)",6b33,4484384527705139,44
"KERNEL_DISPATCH",8,2,252734,3,17,"NormKernel2(int, double const*, doublex)",636,4484384528106260,4484384528109780,(
"KERNEL_DISPATCH",8,1,252734,4,13,"__amd_rocclr_copyBuffer",37,4484384528126420,4484384528135540,0,0,512,1,1,512,1,

In order to have information for each Kernel call, remove the --stats

Create pftrace file for Perfetto and Visualize

mpirun -np 2 rocprofv3 --kernel-trace --hip-trace --output-format pftrace -- ./Jacobi_hip -g 2 1

Now we have only pftrace files, one per MPI process.
e Merge the pftraces, if you want: cat *_results.pftrace > jacobi.pftrace

« Download the trace on your laptop and load the file on Perfetto. scp -P 7002 aac6.amd.com:<path_to_file>/jacobi

1. Open a browser and go to https://ui.perfetto.dev/.
2. Click on Open trace file in the top left corner.
3

. Navigate to the jacobi.pftrace or the file before the merging, that you just downloaded.
4. Use the keystrokes W,A;S,D to zoom in and move right and left in the GUI

Navigation
w/s Zoom in/out
a/d Pan left/right

Feel free to use various flags as they were presented in the presentation

Hardware Counters

Read about hardware counters available for the GPU on this system (look for gfx90a section)
less $ROCM_PATH/lib/rocprofiler/gfx_metrics.xml

Create a rocprof_counters.txt file with the counters you would like to collect

vi rocprof_counters.txt

Content for rocprof_counters.txt

pmc: VALUUtilization VALUBusy FetchSize WriteSize MemUnitStalled
pmc: GPU_UTIL CU_OCCUPANCY MeanOccupancyPerCU MeanOccupancyPerActiveCU

Execute with the counters we just added:
mpirun -np 2 rocprofv3 -i rocprof_counters.txt --kernel-trace --hip-trace -- ./Jacobi_hip -g 2 1

You’ll notice that rocprofv3 runs 2 passes, one for each set of counters we have in that file. Now the data
are in two different folders, one for each MPI process, pmc_ 1 and pmc_ 2.

Explore the content of the pmc_* directories.
Try to use the --hsa-trace option also.
Tips

Do not forget for OMP Offloading information to declare the --kernel-trace

95

https://ui.perfetto.dev/

Rocprofv3 Exercises for OpenMP

In this series of examples, we will demonstrate profiling with rocprofv3 on a platform using an AMD Instinct™
MI300 GPU. ROCm releases (6.2+) now include rocprofv3.

Note that the focus of this exercise is on rocprofv3 profiler, not on how to achieve optimal performance on
MI300A. This exercise was last tested with ROCm 6.4.2 on MI300A MPCDF Viper-GPU.

The examples are based on Fortran+OpenMP Jacobi porting example from HPCTrainingExamples.

Setup environment
Download examples repo and navigate to the Fortran+OpenMP Jacobi example exercises:

git clone https://github.com/amd/HPCTrainingExamples.git
cd HPCTrainingExamples/Pragma_Examples/OpenMP/Fortran/7_jacobi/1_jacobi_usm

Load the necessary modules, including flang-new compiler (module name for flang-new compiler on your
system might differ, check for rocm-afar-drop , amd-1llvm or something similar).

module load rocm
module load amdflang-new

For now unset HSA_XNACK environment variable:

export HSA_XNACK=0

Build and run

No profiling yet, just check that the code compiles and runs correctly.

make clean
make FC=amdflang
./jacobi -m 1024

This run should show output that looks like this:

Domain size: 1024 x 1024
Starting Jacobi run

Iteration: O - Residual: 4.42589E-02
Iteration: 100 - Residual: 1.25109E-03
Iteration: 200 - Residual: 7.43407E-04
Iteration: 300 - Residual: 5.48292E-04
Iteration: 400 - Residual: 4.41773E-04
Iteration: 500 - Residual: 3.73617E-04
Iteration: 600 - Residual: 3.25807E-04
Iteration: 700 - Residual: 2.90186E-04
Iteration: 800 - Residual: 2.62490E-04
Iteration: 900 - Residual: 2.40262E-04
Iteration: 1000 - Residual: 2.21976E-04

Stopped after 1000 iterations with residue: 2.21976E-04
Total Jacobi run time: ***** sec.

Measured lattice updates: 0.087 LU/s

Effective Flops: 1.5 GFlops

Effective device bandwidth: 0.008 TB/s

Effective AI=0.177

Basic rocprov3 profiling
Available options

Inspect rocprofv3 available options:

96

https://docs.mpcdf.mpg.de/doc/computing/viper-gpu-user-guide.html
https://github.com/amd/HPCTrainingExamples/tree/main/Pragma_Examples/OpenMP/Fortran/7_jacobi

rocprofv3 -h

NOTE: When profing OpenMP offloading, do not forget to use --kernel-trace option.

First kernel information
Collect first profiles (do not
rocprofv3 --kernel-trace -
rocprofv3 should generate 2

1. XXXXX_agent_info.c
2. XXXXX_kernel_trace

forget -- between rocprofv3 options and application binary).

- ./jacobi -m 1024

output files (XXXXX numbers are corresponding to the process id):
sv with information for the used hardware APU/GPU and CPU.

s.csv with information per each call of the kernel.

Check those output files using (adapt file paths if needed):

cat *_agent_info.csv
echo
head *_kernel_trace.csv

The output should be:

"Node_Id","Logical_Node_Id","Agent_Type","Cpu_Cores_Count","Simd_Count","Cpu_Core_Id_Base","Simd_Id_Base",'"Max_Wave

0,o0,"cpu",48,0,0,0,0,0,0,0
1,1,"CpPU",48,0,64,0,0,0,0,
2,2,"CcpU",48,0,128,0,0,0,0
3,3,"CpU",48,0,192,0,0,0,0
4,4,"GPU",0,912,0,21474877
5,5,"GPU",0,912,0,21474877
6,6,"GPU",0,912,0,21474878
7,7,"GPU",0,912,0,21474878

"Kind","Agent_Id","Queue_I
"KERNEL_DISPATCH",4,1,2,"_
"KERNEL_DISPATCH",4,1,4,"_
"KERNEL_DISPATCH",4,1,1,"_
"KERNEL_DISPATCH",4,1,3,"
"KERNEL_DISPATCH",4,1,2,"
"KERNEL_DISPATCH",4,1,4,"
"KERNEL_DISPATCH",4,1,1,"_
,1,3,"
,1,2,"

"KERNEL_DISPATCH",4
"KERNEL_DISPATCH",4

> -
>

,0,1,48,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3700,0,0,0,0,0,0,25,0,0,0,1763021218530103933,0,C
0,0,1,48,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3700,0,0,0,0,0,0,25,0,0,0,1763021218530103933,0,
,0,0,1,48,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3700,0,0,0,0,0,0,25,0,0,0,1763021218530103933,C

,0,0,1,48,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3700,0,0,0,0,0,0,25,0,0,0,1763021218530103933, C
44,8,64,0,64,64,6,228,24,24,1,10,4,32,90402,4098,29856,256,0,128,2,10,8,24,3700,2100,19,1
84,8,64,0,64,64,6,228,24,24,1,10,4,32,90402,4098,29856,256,1,136,2,10,8,24,3700,2100,19, 1
24,8,64,0,64,64,6,228,24,24,1,10,4,32,90402,4098,29856,256,2,144,2,10,8,24,3700,2100,19,1
64,8,64,0,64,64,6,228,24,24,1,10,4,32,90402,4098,29856,256,3,152,2,10,8,24,3700,2100,19,1

d","Kernel_Id","Kernel_Name","Correlation_Id","Start_Timestamp","End_Timestamp","Private_
_omp_offloading_32_2£f3c6__QMnorm_modPnorm_126",1,5329321973213203,5329321973322123,0,436C
_omp_offloading_32_2f3c3__(QMlaplacian_modPlaplacian_123",2,5329321976381800,532932197642¢
_omp_offloading_32_2f3cO__QMboundary_modPboundary_conditions_124",3,5329321979189038,532¢
_omp_offloading_32_2f3c7__QMupdate_modPupdate_123",4,5329321985289126,5329321985337166,0,
_omp_offloading_32_2f3c6__QMnorm_modPnorm_126",5,5329321987888094,5329321987980254,0,436(

__omp_offloading_32_2f3c3__(Mlaplacian_modPlaplacian_123",6,5329321990242479,532932199028¢

_omp_offloading_32_2£f3c0__QMboundary_modPboundary_conditions_124",7,5329321992966432,532¢
_omp_offloading_32_2f3c7__QMupdate_modPupdate_123",8,5329321997343879,5329321997389119,0,
_omp_offloading_32_2f3c6__QMnorm_modPnorm_126",9,5329321999929225,5329322000021345,0,436(

So the kernel trace file shows each kernel call, with its start and end timestamp. This can lead to a very

large output file.

Create statistics

One can create kernel statistics file using --stats option:

rocprofv3 --stats --kernel

-trace -- ./jacobi -m 1024

This creates two additional output files:

1. XXXXX_kernel_stats

2. XXXXX_domain_stats
HIP__API, etc.

.csv with statistics grouped by each kernel.
.csv with statistics grouped by domain, such as KERNEL_DISPATCH,

The content of kernel stats file should resemble the following:

"Name","Calls","TotalDurat
"__omp_offloading_32_2f3c6

ionNs","AverageNs","Percentage","MinNs","MaxNs","StdDev"
__QMnorm_modPnorm_126",1001,87995483,87907.575425,43.77,80200,108480,3547.283930

97

"__omp_offloading_32_2f3c7__QMupdate_modPupdate_123",1000,52197887,52197.887000,25.96,48320,69880,3052.411702

"__omp_offloading 32_2f3c3__QMlaplacian_modPlaplacian_123",1000,51095558,51095.558000,25.41,43720,60640,3253.741764
"__omp_offloading_32_2f3c0__QMboundary_modPboundary_conditions_124",1000,9759423,9759.423000,4.85,7640,13080,673.67

In this file, all the calls to a specific OpenMP block are in the same row, and you can see in the column
Calls how times this OpenMP block was called. The column Percentage means how much percentage of the
execution time this OpenMP block takes.

In many cases, simply checking the kernel stats file might be sufficient for your profiling!

If it is not, continue by visualizing the traces.

Visualizing traces using Perfetto

Create trace file suitable for Perfetto . If the application execution is short (such as this example), consider
using --sys-trace option to collect as much information as possible:

rocprofv3 --runtime-trace --output-format pftrace -- ./jacobi -m 1024

This should generate a pftrace file.

Download the trace to your laptop:

scp -P <port> aac6.amd.com:<path_to_file>/XXXXX_results.pftrace jacobi.pftrace
Now on your laptop:

1. Open a browser and go to https://ui.perfetto.dev/.
. Click on Open trace file in the top left corner.

2
3. Navigate to the jacobi.pftrace , inspect kernels and event flows.
4. Use the keystrokes W,A,S,D to zoom in and move right and left in the GUI.

(P Perfetto

Navigation

% = Y Default Workspace R

v System

Current Trace

:) ESon.. [0]{CPU)~
rocprofv3_validation_runtime.pftrac

e (24 MB) ALLOCATE BYTES on . (2] (GPU) ~

= w timeline = - R
AGENT [2] QUE... [0] (GPU)

COPY BYTES o AGENT [2] (GPU) ~

COPY to AGENT [2] THRE... (0] (GPU)

Below, you can see an example of how the trace file would be visualized in Perfetto :

98

https://ui.perfetto.dev/

X = Y Default Workspace v i
yetem

FEET
_om- |

e

H

£ | Curent Selection

Slice _omp_offioading_32_d55e39_QMnorm_modPnorm_{23.kd

Details

Name _omp_offieading_32_d55e39_QMnorm_modPnorm_123.kd
Category kemel_dispatch

Start time 00:00:00.547745 611

Absolute Time 2025-09-10T09:32:47.799024887

Duration 79us 72205

Process fjacobi [418094]

sQLID slice(18904] -

If you zoom in, you should be able to see OpenMP kernels in more details:

Additional features

Hardware Counters

Read about hardware counters available for the GPU on this system (look for gfx942 section):

less $ROCM_PATH/lib/rocprofiler/gfx_metrics.xml

Create an input_counters.txt counters input file with the counters you would like to collect, for example:

echo "pmc: VALUUtilization VALUBusy FetchSize WriteSize MemUnitStalled" > input_counters.txt
echo "pmc: GPU_UTIL CU_OCCUPANCY MeanOccupancyPerCU MeanOccupancyPerActiveCU" >> input_counters.txt

Note that not all the GPUs have the same counters, so if profile the counters above generates errors, consider
testing a single counter (e.g., VALUUtilization only).

Execute with the counters you just added:
rocprofv3 -i input_counters.txt --kernel-trace -- ./jacobi -m 1024

You’ll notice that rocprofv3 runs 2 passes, one for each set of counters we have in that file. Now the data is
in two different folders: pmc_1 and pmc_ 2. Explore the content of the pmc_ * directories.

head pmc_1/*_counter_collection.csv
echo
head pmc_2/*_counter_collection.csv

Next steps

Try to add export HSA_XNACK=1 , and check the performance. Is it better or worse? Repeat the profiling
commands and compare the outputs. What is the overhead of profiling?

**Explore the example with roctx markers which discusses a common performance optimization for applications
on MI300A in

cd Example_Allocations_and_MemoryPool_MI300A/Fortran/README.md

Finally, try to profile your own application!

99

ROCm™ Systems Profiler aka rocprof-sys

NOTE: extensive documentation on how to use rocprof-sys for the GhostExchange examples is also
available as README.md in this exercises repo. Here, we show how to use rocprof-sys tools considering
the example in HPCTrainingExamples/HIP /jacobi.

In this series of examples, we will demonstrate profiling with rocprof-sys on a platform using an AMD
Instinet™ MI250X GPU. ROCm 6.3.2 release includes the rocprofiler-systems packge that you can

install.

Note that the focus of this exercise is on rocprof-sys profiler, not on how to achieve optimal performance
on MI250X.

First, start by cloning HPCTrainingExamples repository and loading ROCm:

git clone https://github.com/amd/HPCTrainingExamples.git

Environment setup

For this training, one requires recent ROCm (>=6.3) which contains rocprof-sys , as well as an MPI
installation.

module load rocm/6.3.2
module load openmpi

Build and run

No profiling yet, just check that the code compiles and runs correctly.

cd HPCTrainingExamples/HIP/jacobi
make
mpirun -np 1 ./Jacobi_hip -g 1 1

The above run should show output that looks like this:

Topology size: 1 x 1

Local domain size (current node): 4096 x 4096
Global domain size (all nodes): 4096 x 4096
Rank O selecting device O on host TheraC63
Starting Jacobi run.

Iteration: 0 - Residual: 0.022108
Iteration: 100 - Residual: 0.000625
Iteration: 200 - Residual: 0.000371
Iteration: 300 - Residual: 0.000274
Iteration: 400 - Residual: 0.000221
Iteration: 500 - Residual: 0.000187
Iteration: 600 - Residual: 0.000163
Iteration: 700 - Residual: 0.000145
Iteration: 800 - Residual: 0.000131
Iteration: 900 - Residual: 0.000120

Iteration: 1000 - Residual: 0.000111

Stopped after 1000 iterations with residue 0.000111

Total Jacobi run time: 1.2876 sec.

Measured lattice updates: 13.03 GLU/s (total), 13.03 GLU/s (per process)
Measured FLOPS: 221.51 GFLOPS (total), 221.51 GFLOPS (per process)
Measured device bandwidth: 1.25 TB/s (total), 1.25 TB/s (per process)

100

https://github.com/amd/HPCTrainingExamples/tree/main/MPI-examples/GhostExchange

rocprof-sys config

First, generate the rocprof-sys configuration file, and ensure that this file is known to rocprof-sys

rocprof-sys-avail -G ~/.rocprofsys.cfg
export ROCPROFSYS_CONFIG_FILE=~/.rocprofsys.cfg

Second, inspect configuration file, possibly changing some variables. For example, one can modify the following
lines:

ROCPROFSYS_PROFILE = true
ROCPROFSYS_USE_ROCTX = true
ROCPROFSYS_SAMPLING_CPUS =0

You can see what flags can be included in the config file by doing:
rocprof-sys-avail --categories rocprofsys

To add brief descriptions, use the -bd option:
rocprof-sys-avail -bd --categories rocprofsys

Note that the list of flags displayed by the commands above may not include all actual flags that can be set
in the config. For a full list of options, please read the rocprof-sys documentation.

You can also create a configuration file with description per option. Beware, this is quite verbose:

rocprof-sys-avail -G ~/rocprofsys_all.cfg --all

Instrument application binary

You can instrument the binary, and inspect which functions were instrumented (note that you need to change
<TIMESTAMP> according to your generated folder path).

rocprof-sys-instrument -o ./Jacobi_hip.inst -- ./Jacobi_hip
for £ in $(1s rocprofsys-Jacobi_hip.inst-output/<TIMESTAMP>/instrumentation/*.txt); do echo $f; cat $f; echo "###i#+

Currently rocprof-sys will instrument by default only the functions with >1024 instructions, so you
may need to change it by using -i #inst or by adding --function-include function_name to select

the functions you are interested in. Check more options using rocprof-sys-instrument --help or by
reading the rocprof-sys documentation.

Let’s instrument the most important Jacobi kernels.
rocprof-sys-instrument --function-include 'Jacobi_t::Run' 'Jacobilteration' -o ./Jacobi_hip.inst -- ./Jacobi_hip

The output should show that only these functions have been instrumented:

[rocprof-sys] [exe] Finding instrumentation functions...

[rocprof-sys] [exe] 1 instrumented funcs in Jacobilteration.hip
[rocprof-sys] [exe] 1 instrumented funcs in JacobiRun.hip
[rocprof-sys] [exe] 1 instrumented funcs in Jacobi_hip

This can also be verified with:

$ cat rocprofsys-Jacobi_hip.inst-output/<TIMESTAMP>/instrumentation/instrumented.txt

StartAddress AddressRange #Instructions Ratio Linkage Visibility Module Function
0x226440 332 71 4.68 unknown unknown Jacobilteration.hip Jacobilteration
0x224ad0 677 146 4.64 unknown unknown JacobiRun.hip Jacobi_t::Run
0x226370 205 38 5.39 unknown unknown Jacobi_hip __device_stub__

101

https://rocm.docs.amd.com/projects/rocprofiler-systems/en/latest/index.html
https://rocm.docs.amd.com/projects/rocprofiler-systems/en/latest/index.html

Run instrumented binary

Now that we have a new application binary where the most important functions are instrumented, we can
profile it using rocprof-sys-run under the mpirun environment.

mpirun -np 1 rocprof-sys-run -- ./Jacobi_hip.inst -g 1 1

Check the command line output generated by rocprof-sys-run , it contains some useful overviews and
paths to generated files. Observe that the overhead to the application runtime is small. If you had
previously set ROCPROFSYS_PROFILE=true , inspect wall_clock-0.txt which includes information on

the function calls made in the code, such as how many times these calls have been called (COUNT) and the
time in seconds they took in total (SUM).

In many cases, simply checking the wall_ _clock files might be sufficient for your profiling!

If it is not, continue by visualizing the trace.

Visualizing traces using Perfetto

Copy generated perfetto-trace-0.proto file to your local machine, and using the Chrome browser open
the web page https://ui.perfetto.dev/:

Click Open trace file and select the perfetto-trace-0.proto file. Below, you can see an example

of how the trace file would be visualized on Perfetto :

<« ¢ R = rfetto.dev/v46. /# fview Lcache | 672-7b1a6915af44 * O a i

Jacobi_t-Jacobi_t-Top Level it
CreateMesh: nit InitializeDatazit

iphlemset hphlemcpy hipMemcpy

[==

Figure 1: jacobi_ hip-perfetto_ screenshot

If there is an error opening trace file, try using an older Perfetto version, e.g., by opening the web page
https://ui.perfetto.dev/v46.0-35b3d9845 /#!/.

Additional features

Flat profiles
Append advanced option ROCPROFSYS_FLAT_PROFILE=true to ~/.rocprofsys.cfg or prepend it to

the mpirun command:

102

https://ui.perfetto.dev/
https://ui.perfetto.dev/v46.0-35b3d9845/#!/

ROCPROFSYS_FLAT_PROFILE=true mpirun -np 1 rocprof-sys-run -- ./Jacobi_hip.inst -g 1 1

wall_clock-0.txt file now shows overall time in seconds for each function.

Note the significant total execution time for hipMemcpy and Jacobi_t::Run calls.

Hardware counters
To see a list of all the counters for all the devices on the node, do:
rocprof-sys-avail --all

Select the counter you are interested in, and then declare them in your configuration file (or prepend to your
mpirun command):

ROCPROFSYS_ROCM_EVENTS = VALUUtilization,FetchSize

Run the instrumented binary, and you will observe an output file for each hardware counter specified. You
should also see a row for each hardware counter in the Perfetto trace generated by rocprof-sys

Note that you do not have to instrument again after making changes to the config file. Just running the
instrumented binary picks up the changes.

ROCPROFSYS_ROCM_EVENTS=VALUUtilization,FetchSize mpirun -np 1 rocprof-sys-run -- ./Jacobi_hip.inst -g 1 1
cat rocprof-sys-Jacobi_hip.inst-output/<TIMESTAMP>/rocprof-device-0-VALUUtilization-0.txt
Sampling

To reduce the overhead of profiling, one can use call stack sampling. Set the following in your configuration
file (or prepend to your mpirun command):

ROCPROFSYS_USE_SAMPLING = true
ROCPROFSYS_SAMPLING_FREQ = 100

Execute the instrumented binary, inspect sampling* files and visualize the Perfetto trace:
mpirun -np 1 rocprof-sys-run -- ./Jacobi_hip.inst -g 1 1

1ls rocprofsys-Jacobi_hip.inst-output/<TIMESTAMP>/* | grep sampling

Profiling multiple MPI processes

Run the instrumented binary with multiple MPI ranks. Note separate output files for each rank, including
perfetto-trace—*.proto and wall_clock-*.txt files.

mpirun -np 2 rocprof-sys-run -- ./Jacobi_hip.inst -g 2 1

Inspect output text files. Then visualize perfetto-trace-*.proto filesin Perfetto . Note that one
can merge multiple trace files into a single one using simple concatenation:

cat perfetto-trace-*.proto > merged.proto

Next steps
Try to use rocprof-sys to profile GhostExchange examples.

Finally, try to profile your own application!

Stream Overlap Example
This example is based on example 2 from Chapter 6 of the HIP Book: “Accelerated Computing with HIP”,

by Yifan Sun, Trinayan Baruah, and David R. Kaeli. The example demonstrates how to overlap data transfer
and computation using HIP streams. The included directories step through different versions of the example.

103

https://github.com/amd/HPCTrainingExamples/tree/main/MPI-examples/GhostExchange

Each directory contains a README.md file that includes a description of the version and instructions for
building and running the example.

This multi-streamed example is traced with ROCm Systems Profiler, formerly known as Omnitrace. ROCm
Systems Profiler is now available in ROCm 6.2.0+ version package directly and does not need to be
installed separately anymore. The figures included in the figs directory, however, are generated using

Omnitrace v.1.11.3 . The command line trace instructions are included in the README.md file in each
directory.

Folder 0-Orig

This is the original version of the example. It demonstrates the basic structure of the example and provides a
starting point for the other versions. The memory copies and kernel execution are done together sequentially
in each of the multiple streams.

Folder 1-split-copy-compute-hw-queues

This version of the example splits the host to device (and vice versa) memory copies and the kernel execution
into separate loops over multiple streams. This allows for overlap of memory copies across across multiple
streams in addition to overlap of kernel computations over multiple streams. This also enables overlap of
data copies and kernel computations.

This example also exploits the environment variable controlling the GPU maximum hardware queues (
GPU_MAX_HW_QUEUES) to achieve better performance for a multi-streamed application.

Folder 2-pageable-mem

This version of the example uses pageable memory for data transfers instead of pinned memory. This example
is to demonstrate how pageable memory degrades performance of a multi-streamed application. Ideally,
pinned memory should be used for data transfers in a multi-streamed application wherever possible (depending
on available memory resources).

Self-guided tour of the Stream Overlap example

The interested reader can follow these steps sequentially to understand the performance implications of use
of multiple streams to overlap data transfers and kernel computations. The results shared in folder figs
are obtained from running the example on an AMD Instinct MI1250 single GCD.

1. Build the baseline example in 0-0rig directory. The build and run instructions can be found in the

README.md file in the directory.

2. Then run the example using multiple streams. Specifically choose 1, 2, and 4 streams and observe the
performance improvements. Specifically note if the reduction in runtime scales linearly with the number
of streams. See the figures in figs/streams[1,2,4] _noQ_seq_copy.png for reference.

3. Increase the number of streams to 8 and observe the performance degradation. This is because the GPU
has a limited hardware resources and increasing the number of streams beyond the GPU’s capability
will degrade performance. See the figure in figs/streams8_noQ_seq_copy.png for reference.

4. Switch to 1-split-copy-compute-hw-queues directory and build and run the example. Observe
the performance improvements if any. Ideally, the performance improvement is only marginal. See the
figure in figs/streams8_noQ_split_copy.png for reference.

5. Set the environment variable GPU_MAX_HW_QUEUES to 8 and observe the performance improvements.
This is because the default number of hardware queues is 4. Increasing the number of hardware
queues will improve the performance of a multi-streamed application, especially when the number of
streams is more than the default number of hardware queues. Note that, the performance improve-
ment is possible if the GPU resource is not yet fully saturated, for example, with limited register

104

https://rocm.docs.amd.com/projects/rocprofiler-systems/en/latest/index.html#rocm-systems-profiler-documentation

pressure, or limited shared memory usage. The performance improvement is clearly visible in the figure
figs/streams8_Q_split_copy.png .

6. [Optional] Switch to 2-pageable-mem directory and build and run the example. Observe the
performance degradation due to use of pageable memory for data transfers. Ideally, pinned memory
should be used for data transfers in a multi-streamed application

7. Repeat the above steps for a different GPU and observe the performance implications.

ROCprof-compute

In this directory, users can find a variety of examples aimed at showcasing some of the most important
features of ROCprof-compute. For each example, an initial implementation labeled problem will be
modified in order to show an improvement in performance using the ROCprof-compute tools. The improved
implementation will be reffered to as solution . Please refer to the single sub-directories README.md
files for details.

Exercise 1: Launch Parameter Tuning

Simple kernel implementing a version of yAx, to demonstrate effects of Launch Parameters on kernel execution
time.

Client-side installation instructions are available in the official rocprof-compute documentation, and provide
all functionality demonstrated here.

If your system has an older version of ROCprof-compute, please refer to the archived READMEs in the
archive directory and use a ROCm version lesser than 6.0.0 .

Background: Acronyms and terms used in this exercise

yAx: a vector-matrix-vector product, yAx, where y and x are vectors, and A is a matrix
FP(32/16): 32- or 16-bit Floating Point numeric types

FLOPs: Floating Point Operations Per second

HBM: High Bandwidth Memory is globally accessible from the GPU, and is a level of memory above the L2
cache

Results on M1210

In this section, we show results obtained running this exercise on a system with MI210s, on a recent commit
of ROCprof-compute version 2.0.0 and ROCm 6.0.0 . Any ROCprof-compute version 2.0.0
or greater is incompatible with versions of ROCm less than 6.0.0 .

Initial Roofline Analysis:

The roofline model is a way to gauge kernel performance in terms of maximum achievable bandwidth and
floating-point operations. It can be used to determine how efficiently a kernel makes use of the available
hardware. It is a key tool in initially determining which kernels are performing well, and which kernels should
be able to perform better. Below are roofline plots for the yAx kernel in problem.cpp:

105

Roofline Type Roofline Legend

Kernel Names and Markers

-1 0 1

. yax(double*, double¥*, double*, int, int, double*)

FP32/FP64

106

Roofline Type Roofline Legend

Kernel Names and Markers

-1 0 1

. yax(double*, double¥*, double*, int, int, double*)

FP16/INTS

These plots were generated by running:
rocprof-compute profile -n problem_roof_only --roof-only --kernel-names -- ./problem.exe

The plots will appear as PDF files in the ./workloads/problem_roof_only/MI200 directory, if generated
on MI200 hardware.

We see that the kernel’s performance is not near the achievable bandwidth possible on the hardware, which
makes it a good candidate to consider optimizing.

Exercise instructions:

From the roofline we were able to see that there is room for improvement in this kernel. One of the first
things to check is whether or not we have reasonable launch parameters for this kernel.

To get started, build and run the problem code:

make
./problem.exe

(simulated output)
yAx time: 2911 ms

The runtime of the problem should be very slow, due to sub-optimal launch parameters. Let’s confirm this
hypothesis by looking at the rocprof-compute profile. Start by running:

107

rocprof-compute profile -n problem --no-roof -- ./problem.exe

This command requires rocprof-compute to run your code a few times to collect all the necessary
hardware counters. - -n problem names the workload, meaning that the profile will appear in the

./workloads/problem/MI200/ directory, if you are profiling on an MI200 device. - --no-roof turns
off the roofline, which will save some profiling time by avoiding the collection of achievable bandwidths and
FLOPs on the device. - Everything after the -- is the command that will be profiled.

After the profiling data is collected, we can view the profile by using this command:
rocprof-compute analyze -p workloads/problem/MI200 --dispatch 1 --block 7.1.0 7.1.1 7.1.2

This allows us to view nicely formatted profiling data directly in the command line. The command given
here has a few arguments that are noteworthy: - -p workloads/problem/MI200 must point to the

output directory of your profile run. For the above rocprof-compute profile command, this will be

workloads/problem/MI200 . - --dispatch 1 (filters kernel statistics by dispatch ID. In this case kernel
0 was a “warm-up” kernel, and kernel 1 is what the code reports timings for. - --block displays only the
requested metrics, in this case we want metrics specific to Launch Parameters: - 7.1.0 is the Grid Size -

7.1.1 is the Workgroup Size - 7.1.2 is the Total Wavefronts Launched

The output of the rocprof-compute analyze command should look something like this:

O N E S N DR,
I '/ N/ LN N D /2 N NN 2N
[G0 2 G A 0 I B GO I l_____ G I G 2 I 0 B) Y O Y R4
[N__Z/ N /70 NC_Z/1] N N/ b a2/ NN
[_1 [_1
Analysis mode = cli
[analysis] deriving ROCprof-compute metrics...
0. Top Stats
0.1 Top Kernels
| | Kernel_Name Count | Sum(ns) | Mean (ns) Median(ns)

| 0 | yax(double*, double*, double*, int, int,
| | double*) [clone .kd]

| | Dispatch_ID | Kernel_Name | GPU_ID |

1 | yax(double*, double*, double*, int, int, double*) [clone .kd] | 2 |

7. Wavefront
7.1 Wavefront Launch Stats

| Metric_ID | Metric | Avg | Min | Max | Unit

I
Tt vorkgrom ise | 6000 | 60.00 | 54.00 | Work 1oems 1
I_;i1.2 :_;otal Wavef;;;;;_:_ 4.08_: 4.;;_:_ 4.06_: Wavefront;_I

Looking through this data we see: - Workgroup Size (7.1.1) is 64 threads, which corresponds with the

108

size of a wavefront. - Total Wavefronts (7.1.2) shows that we are launching only 4 Wavefronts.

We can definitely get better performance by adjusting the launch parameters of our kernel. Either try out

some new values for the launch bounds, or run the provided solution to see its performance:

cd solution
make
./solution.exe

(simulated output)

yAx time: 70 ms

We get much better performance with the new launch parameters. Note that in general it can be difficult to
find the most optimal launch parameters for a given kernel due to the many factors that impact performance,
so determining launch parameters experimentally is usually necessary.

We should also confirm that our updated launch parameters are reported by rocprof-compute, we need to run:

rocprof-compute profile -n solution --no-roof -- ./solution.exe

This command is the same as before, except the workload name has changed to

profile command has completed, run:

solution

. Once the

rocprof-compute analyze -p workloads/solution/MI200 --dispatch 1 --block 7.1.0 7.1.1 7.1.2

Again, this command largely uses the same arguments as before, except for the workload name. The output

should look something like this:

Analysis mode = cli

[analysis] deriving ROCprof-compute metrics...

0. Top Stats
0.1 Top Kernels

| | Kernel_Name

| Count

|
NN N
N T D T T I Y R4
[_1 /7 N INC N\
[_I
| Sum(ns) | Mean (ns)

| 0 | yax(doublex, double*, doublex, int, int, |

| | doublex*) [clone .kd]

1.00 | 69512860.00 | 69512860.00 |

| | Dispatch_ID | Kernel_Name

GPU_ID |

| 0| 1 | yax(double*, double*,

7. Wavefront
7.1 Wavefront Launch Stats

| Metric_ID | Metric

—_—— [——

| 7.1.0 | Grid Size

—_—— [— |-
| 7.1.1 | Workgroup Size

Avg | Min |
——————————— |

131072.00 | 131072.00 |
|

64.00 | 64.00 |
|

109

131072.00

64.00

| 7.1.2

2048.00 |

| Total Wavefronts |

2048.00 |

2048.00 | Wavefronts |

Looking through this data we see: - Workgroup Size (7.1.1) corresponds to the first argument of the block
launch parameter - Total Wavefronts (7.1.2) corresponds to the first index of the grid launch parameter -

Grid size (7.1.0) is Workgroup Size (7.1.1) times Total Wavefronts (7.1.2)

ROCprof-compute Command Line Comparison Feature:

On releases newer than ROCprof-compute 1.0.10, the comparison feature of rocprof-compute can be

used to quickly compare two profiles. To use this feature, use the command:

rocprof-compute analyze -p workloads/problem/MI200 -p solution/workloads/solution/MI200 --dispatch 1 --block 7.1.0

This feature sets the first -p argument as the baseline, and the second as the com

parison workload. In

this case, problem is set as the baseline and is compared to solution. The output should look like:

N E] (N P

I/ N/ N L N [NP NP ONE L L N

[T G0 2GR M I G 2 A DN GRG0 2 A 0 B) Y Y ARV 4

I N___/ ___| .__/1_1 ___/I_I | 2N T D I OV GO I VO G

I_1 I_1
Analysis mode = cli
[analysis] deriving ROCprof-compute metrics...
0. Top Stats
0.1 Top Kernels
| | Kernel_Name | Count | Count | Abs Diff | Sum(ns) | Sum(ns)
————— el el el e Bt
| 0 | yax(double*, double*, double*, int, int, | 1.00 | 1.0 (0.0%) | 0.00 | 751342314.00 | 69512860.0 (-¢
| |

| double*) [clone .kd]

0.2 Dispatch List

Dispatch_ID | Kernel_Name

7. Wavefront
7.1 Wavefront Launch Stats

| Metric_ID | Metric | Avg | Avg | Abs Diff | Min | Min | E
T P sos00 | 1310720 (oi100. 010 | 19001500 1 39600 | 1310720 (o1100-0m | 208
U711 | verkgom Size | o000 | 000 G0m A U e R
T T ront vveteomee | 00 | m0gs.0 Gortooot | most.o0 | 200 | a0am0 Giie b | i

Note that the comparison workload shows the percentage difference from the baseline.

used to quickly compare filtered stats to make sure code changes fix known issues.

110

This feature can be

More Kernel Filtering:

For this exercise, it is appropriate to filter the rocprof-compute analyze command with the
—-—dispatch 1 argument. This --dispatch 1 argument filters the data shown to only include the
kernel invocation with dispatch ID 1, or the second kernel run during profiling.

However, there is another way to filter kernels that may be more applicable in real use-cases. Typically real
codes launch many kernels, and only a few of them take most of the overall kernel runtime. To see a ranking
of the top kernels that take up most of the kernel runtime in your code, you can run:

rocprof-compute analyze -p workloads/problem/MI200 --list-stats

This command will output something like:

N E S (N DR

I/ N/ N N Lo NP NP ONE L 2N

I G0 2y G D T A (G0 I A DO G I G 2 D B) Y Y R4

I N___/ N___| .__/1_1 ___/I_I |V) I T Y (O GO B VI G

I_1 [_1

Analysis mode = cli

[analysis] deriving ROCprof-compute metrics...
Detected Kernels (sorted descending by duration)

| | Kernel_Name

_____ |——- — — — —_—

| 0 | yax(doublex, double*, doublex, int, int, doublex*) [clone .kd] |
Dispatch list

| | Dispatch_ID | Kernel_Name | GPU_ID |
----- |- |
| 0| 0 | yax(doublex, double*, double*, int, int, double*) [clone .kd] | 2 |
----- [-==—mmmmmm | - - - -l-

|1 1 | yax(double*, double*, double*, int, int, double*) [clone .kd] | 2 |
Using ROCprof-compute versions greater than 2.0.0 , --list-stats will list all kernels launched by your

code, in order of runtime (largest runtime first). The number displayed beside the kernel in the output can be
used to filter rocprof-compute analyze commands. Note that this will display aggregated stats
for kernels of the same name, meaning that the invocations could differ in terms of launch parameters,
and vary widely in terms of work completed. This filtering is accomplished with the -k argument:

rocprof-compute analyze -p workloads/problem/MI200 -k O --block 7.1.0 7.1.1 7.1.2
Which should show something like:
/ _l

NS U N N /N NN
D111 O L O

b NCCZ/)] VR VY D B O I
Analysis mode = cli
[analysis] deriving ROCprof-compute metrics...

0. Top Stats
0.1 Top Kernels

111

| | Kernel_Name | Count | Sum(ns) | Mean(ns) | Median(ns) | Pct |
170 1 yaxaoaiior, dobtor, doivior, nt 1mt, | 2.00 | 1501207029.00 | Te0s0sEL.50 | 7600351150 | 100,00 |
| | double*) [clone .kd] | I | I | |
I___ | Dispa;;;_ID | Kern;;:Name o o _I_ GPU_ID |
o T 3 | yaxaoston, dovion, dodvlos. tmt. int, dovion) Toione + 1 21
) T T yeraitor, avinton, doitior, i, ne, doion oo = | 21

7. Wavefront
7.1 Wavefront Launch Stats

Min | Max | Unit |

| 256.00 | 256.00 | 256.00 | Work items |

| Metric_ID | Metric | Avg |
—mmmmmm—mos [-—=———mmm - |-==————- |--
| 7.1.0 | Grid Size

-—== [-==——mmmmm - |- -

| 7.1.1 | Workgroup Size | 64.00 |
-—== [-==—mmmmm - |—====--- |--
| 7.1.2 | Total Wavefronts | 4.00 |

64.00 |

64.00 | Work items |

4.00 | 4.00 | Wavefronts |

Note that the ‘count’ field in Top Stat is 2 here, where filtering by dispatch ID displays a count of 1, indicating

that filtering with -k

returns aggregated stats for two kernel invocations in this case. Also note that the

“Top Stats” table will still show all the top kernels but the rightmost column titled “S” (think “Selected”)
will have an asterisk beside the kernel for which data is being displayed. Also note that the dispatch list

displays two entries rather than the one we see when we filter by

Solution Roofline

--dispatch 1

We’ve demonstrated better performance than problem.cpp in solution.cpp, but could we potentially do better?
To answer that we again turn to the roofline model:

112

Roofline Type Roofline Legend

Kernel Names and Markers

-1 0 1

. yax(double*, double¥*, double*, int, int, double*)

FP32/FP64

113

Roofline Type Roofline Legend

Kernel Names and Markers

-1 0 1

. yax(double*, double¥*, double*, int, int, double*)

FP16/INTS

These plots were generated with:
rocprof-compute profile -n solution_roof_only --roof-only --kernel-names -- ./solution.exe

The plots will appear as PDF files in the ./workloads/solution_roof_only/MI200 directory, if generated
on MI200 hardware.

We see that the solution is solidly in the bandwidth-bound regime, but even still there seems to be room for
improvement. Further performance improvements will be a topic for later exercises.

Roofline Comparison

114

Roofline Type Problem Roofline

5 41425 GFLOP/s —— HBM-FP32
N // / 21036 GFLOP/s — L2-FP32
—— L1-FP32
10k — LDS-FP32
3 Peak VALU-FP32
S N Peak MFMA-FP32
g e aill
=~ 1000 -
% * ail2
™ > ® ai_hbm
Y
S 2
S
9 100
o
E 5
—_
o
t 2
9]
o 10
5
2
1
L] ®
5
0.01 0.1 1 10 100 1000

Arithmetic Intensity (FLOPs/Byte)
FP32/FP64

115

Roofline Type Problem Roofline

, 166613 GFLOP/s — HBM-FP16
164812 GFLOP/s
100k [i —— L2-FP16
5 —— L1-FP16
, —— LDS-FP16
Lok Peak MFMA-FP16
= ai Il
0 > ai 12
(7] _
a
% 2 ® ai_ hbm
d 1000 HBM-I8
o 5 L2-18
v , GB/s —— L1418
8 100 1 GB/s —— LDS-I8
€ 5026 GB/S Peak MFMA-I8
£
& 2 1388 GB/s
10
5
2
1 [] []
5
0.01 0.1 1 10 100 1000

Arithmetic Intensity (FLOPs/Byte)
FP16/INTS8

We see that the solution has drastically increased performance over the problem code, as shown by the
solution points moving up closer to the line plotted by the bandwidth limit.

Note: on statically generated roofline images, it is possible for the L1, L2, or HBM points to overlap and
hide one another.
Summary and Take-aways

Launch parameters should be the first check in optimizing performance, due to the fact that they are usually
easy to change, but can have a large performance impact if they aren’t tuned to your workload. It is difficult
to predict the optimal launch parameters for any given kernel, so some experimentation may be required to
achieve the best performance.

Results on MI300A

In this section, we show results obtained running this exercise on a system with MI300A, using ROCm
6.2.1 and the associated ROCprof-compute, version 6.2.1

Roofline Analysis:

At present (September 28th 2024), rooflines are disabled on MI300A.

116

Exercise Instructions:

As for the MI210 case, build and run the problem code:

make
./problem.exe

(simulated output)

yAx time: 540 ms

Once again, we launch the following command:

rocprof-compute profile -n problem --no-roof -- ./problem.exe

Followed by:

rocprof-compute analyze -p workloads/problem/MI300A_A1 --dispatch 1 --block 7.1.0 7.1.1 7.1.2

Then inspect the output:

U N E S B SRR
'/ N/ __1 "N/ N /o _NE NN 2N
[D T G D T G0 R DO G T G s s D T O O Y Y4
I N___/ N___| __/1_1 N___/I_I N Y% D T T Y 2 VN I VO G
[_1 I_I

INFO Analysis mode = cli

INFO [analysis] deriving ROCprof-compute metrics...
0. Top Stats
0.1 Top Kernels
| | Kernel_Name | Count | Sum(ns) | Mean(ns) | Median(ns) | Pct |
----- |-—- -—- -—- - |-——- |-- -1 e e ntteil Kttt
| 0 | yax(doublex, double*, doublex, int, int, | 1.00 | 541264224.00 | 541264224.00 | 541264224.00 | 100.00 |
| | doublex) [clone .kd] | | | | | |
0.2 Dispatch List
| | Dispatch_ID | Kernel_Name | GPU_ID |
————— el B i Bttty
| 0| 1 | yax(doublex*, double*, double*, int, int, double*) [clone .kd] | 4 |
7. Wavefront
7.1 Wavefront Launch Stats
| Metric_ID | Metric | Avg | Min | Max | Unit
- |-—==——m |-=—==—== | -===——== |- -1 -—-
| 7.1.0 | Grid Size | 256.00 | 256.00 | 256.00 | Work items |
-------------- |-—==————— | e e
| 7.1.1 | Workgroup Size | 64.00 | 64.00 | 64.00 | Work items |
- | -—————m |- |- |- | -————
| 7.1.2 | Total Wavefronts | 4.00 | 4.00 | 4.00 | Wavefronts |

As for the MI210 case, the workgroup size is 64 and the number of Wavefronts launched is 4.

To see improved performance, we turn to the code in the solution directory:

117

cd solution
make
./solution.exe

(simulated output)
yAx time: 9.7 ms

For the MI210 case, the compute time was about 42 times smaller when going from problem to solution
. For the MI300A case, we see it is about 70 times smaller.

To visually confirm the updated launch parameters in the solution code, run:

rocprof-compute profile -n solution --no-roof -- ./solution.exe
rocprof-compute analyze -p workloads/solution/MI300A_A1 --dispatch 1 --block 7.1.0 7.1.1 7.1.2

Then see the number of Wavefronts now being 2048:

U R E [I S
I '/ N/ LN/ N D /o N NN 2 2N
[T G0 2 G D I G 2 Y DO G G J T Y D Y I Y R4
I_b N___/ N___| __/1_1 ___/I_I |\ U VYN D U O S R VU I VO VO
I_1 I_1
INFO Analysis mode = cli
INFO [analysis] deriving ROCprof-compute metrics...
0. Top Stats
0.1 Top Kernels
| | Kernel_Name | Count | Sum(ns) | Mean(ns) | Median(ns) | Pct |
----- [--- - - - [---- |-- I-- [-- -1 -——=
| 0 | yax(double*, double*, double*, int, int, | 1.00 | 9482864.00 | 9482864.00 | 9482864.00 | 100.00 |
| | doublex) [clone .kd] | | I | I |
0.2 Dispatch List
| | Dispatch_ID | Kernel_Name | GPU_ID |
————— el Bl
| 0| 1 | yax(doublex*, double*, double*, int, int, double*) [clone .kd] | 4 |
7. Wavefront
7.1 Wavefront Launch Stats
| Metric_ID | Metric | Avg | Min | Max | Unit |
- [-=————m—m |- |-- e [-==—————
| 7.1.0 | Grid Size | 131072.00 | 131072.00 | 131072.00 | Work items |
--------------] Bl R Kottt B
| 7.1.1 | Workgroup Size | 64.00 | 64.00 | 64.00 | Work items |
- [-==——mm - |-===—=——=- [-==—=—m- |-=———mm e | -
| 7.1.2 | Total Wavefronts | 2048.00 | 2048.00 | 2048.00 | Wavefronts |

ROCprof-compute Command Line Comparison Feature:
We can compare the performance of problem and solution using rocprof-compute analyze

rocprof-compute analyze -p workloads/problem/MI300A_A1/ -p solution/workloads/solution/MI300A_A1/ --dispatch 1 --bl

118

|
' '/ _N/ __1I "N '/ N /o__/ NP NN N
1 T D T G 0 T O O G T K D G G J D U I O Y A4
I N___/ N___| __/1_1 N___/I_I N N2 e NN\
[_1I [_1l
INFO Analysis mode = cli
INFO [analysis] deriving ROCprof-compute metrics...
0. Top Stats
0.1 Top Kernels
| | Kernel_Name | Count | Count | Abs Diff | Sum(ns) | Sum(ns)
----- |-—- - - - |-—-- |-- |-- |-- -
| 0 | yax(double*, double*, doublex, int, int, | 1.00 | 1.0 (0.0%) | 0.00 | 541264224.00 | 9482864.0 (-9¢€
| | doublex) [clone .kd] | | | | |
0.2 Dispatch List
| | Dispatch_ID | Kernel_Name | GPU_ID |
————— |-———— e
| 0| 1 | yax(doublex*, double*, double*, int, int, double*) [clone .kd] | 4 |
7. Wavefront
7.1 Wavefront Launch Stats
| Metric_ID | Metric | Avg | Avg | Abs Diff | Min | Min | Ma
- | == |-——————- |——————— |-———————- |- |-
| 7.1.0 | Grid Size | 256.00 | 131072.0 (51100.0%) | 130816.00 | 256.00 | 131072.0 (51100.0%) | 256.C
-------------- e ol [e e
| 7.1.1 | Workgroup Size | 64.00 | 64.0 (0.0%) | 0.00 | 64.00 | 64.0 (0.0%) | 64.C
-—== |-—————m |-—===—-- |-==——— |-—=—————- |- el B ettt ettt
| 7.1.2 | Total Wavefronts | 4.00 | 2048.0 (51100.0%) | 2044.00 | 4.00 | 2048.0 (51100.0%) | 4.C

Note that the new execution time for solution isabout 1.75% of the original execution time for problem

More Kernel Filtering:

Run the following command to once again see a ranking of the top kernels that take up most of the kernel
runtime:

cd ..
rocprof-compute analyze -p workloads/problem/MI300A_A1/ --list-stats
N N E S N DR
I '/ N/ LN N D /2 N NN L 2N
I O G0 2 I GV 0 I A G0 I A DA GRG0 2y 0) Y Y R4
[NV U Ryl D B A B | N N/ b a2/ NN
| |

INFO Analysis mode = cli
INFO [analysis] deriving ROCprof-compute metrics...

119

Detected Kernels (sorted descending by duration)

| | Kernel Name

Dispatch list

| | Dispatch_ID | Kernel_Name | GPU_ID |
----- |—===mm - - - - -1-

| 0| 0 | yax(doublex, double*, double*, int, int, double*) [clone .kd] | 4 |
----- === | - - -—= -—= |
|1 1 | yax(doublex*, double*, double*, int, int, double*) [clone .kd] | 4 |

To see aggregated stats for the yax kernel, run
rocprof-compute analyze -p workloads/problem/MI300A_A1/ -k O --block 7.1.0 7.1.1 7.1.2

Which will show an output similar to this one:

N A E Y N S
'/ N/ __1 "N/ N /o _NE NN 2N
1 T T D T G D T A Y O G T I N G G J D N I Y R4
I_1 N___/ N___| .__/1_1 ___/I_l AN VY2 D T T U 20 W I W N
[_1 I_I
INFO Analysis mode = cli
INFO [analysis] deriving ROCprof-compute metrics...
0. Top Stats
0.1 Top Kernels
| | Kernel_Name | Count | Sum(ns) | Mean(ns) | Median(ns) | Pct |
----- |-—- -—- -—- -—- |-——- |-- il B Bt et B
| 0 | yax(double*, double*, double*, int, int, | 2.00 | 1083496775.00 | 541748387.50 | 541748387.50 | 100.00 |
| | doublex) [clone .kd] | | | | | |
0.2 Dispatch List
| | Dispatch_ID | Kernel_Name | GPU_ID |
----- e I
| 0| 0 | yax(doublex, double*, double*, int, int, double*) [clone .kd] | 4 |
----- |- | - - - -—- -I-
|1 1 | yax(double*, double*, double*, int, int, double*) [clone .kd] | 4 |
7. Wavefront
7.1 Wavefront Launch Stats
| Metric_ID | Metric | Avg | Min | Max | Unit
—————————————— |-—==————— | o e e
| 7.1.0 | Grid Size | 256.00 | 256.00 | 256.00 | Work items |
- | -—————m |- |- |- | -———m—m
| 7.1.1 | Workgroup Size | 64.00 | 64.00 | 64.00 | Work items |
| |

120

| 7.1.2 | Total Wavefronts | 4.00 | 4.00 | 4.00 | Wavefronts |

Exercise 2: LDS Occupancy Limiter

Simple kernel implementing a version of yAx, to demonstrate the downside of allocating a large amount of
LDS, and the benefit of using a smaller amount of LDS due to occupancy limits.

Background: Acronyms and terms used in this exercise

Wavefront: A collection of threads, usually 64.

Workgroup: A collection of Wavefronts (at least 1), which can be scheduled on a Compute Unit (CU)

LDS: Local Data Store is Shared Memory that is accessible to the entire workgroup on a Compute Unit (CU)
CU: The Compute Unit is responsible for executing the User’s kernels

SPI: Shader Processor Input, also referred to as the Workgroup Manager, is responsible for scheduling
workgroups on Compute Units

Occupancy: A measure of how many wavefronts are executing on the GPU on average through the duration
of the kernel

PoP: Percent of Peak refers to the ratio of an achieved value and a theoretical or actual maximum. In terms
of occupancy, it is how many wavefronts on average were on the device divided by how many can fit on the
device.

yAx: a vector-matrix-vector product, yAx, where y and x are vectors, and A is a matrix

<1i>FP(32/16) : 32- or 16-bit Floating Point numeric types</1li>

<1li>FLOPs: Floating Point Operations Per second

<1i>HBM: High Bandwidth Memory is globally accessible from the GPU, and is a level of memory

Results on M1210

Note: This exercise was tested on a system with MI210s, on rocprof-compute version 2.0.0 and ROCm
6.0.2 ROCprof-compute 2.0.0 is incompatible with ROCm versions lesser than 6.0.0

Initial Roofline Analysis

In this exercise we're using a problem code that is slightly different than where we left off in Exercise 1.
Regardless, to get started we need to get a roofline by running:

rocprof-compute profile -n problem_roof_only --roof-only --kernel-names -- ./problem.exe

The plots will appear as PDF files in the ./workloads/problem_roof_only/MI200 directory, if generated
on MI200 hardware.

For convenience, the resulting plots on a representative system are below: | Roofline Type | Roofline Legend |
Roofline Plot | | | |

121

Kernel Names and Markers

yax(double*, double*, ¢

| [FP32/FP64 |

122

Kernel Names and Markers

. yax(double*, double*, double*, int, int, double*)

| |[FP16/INTS |
|

We see that there looks to be room for improvement here. We’ll use rocprof-compute to see what the current
limiters are.

Exercise Instructions:

First, we should get an idea of the code’s runtime:

make
./problem.exe

(simulated output)
yAx time: 140 ms

This problem.cpp uses LDS allocations to move the x vector closer to the compute resources, a common
optimization. However, we see that it ends up slower than the previous solution that didn’t use LDS at all.
In kernels that request a lot of LDS, it is common to see that the LDS usage limits the occupancy of the
kernel. That is, more wavefronts cannot be resident on the device, because all of them need more LDS than
is available. We need to confirm this hypothesis, let’s start by running:

rocprof-compute profile -n problem --no-roof -- ./problem.exe

The usage of rocprof-compute profile arguments can be found here, or by running rocprof-compute profile --help

This rocprof-compute profile command will take a minute or two to run, as rocprof-compute must
run your code a few times to collect all the hardware counters.

123

Darfartmancas (CEIOD/ear)

https://rocm.github.io/rocprof-compute/profiling.html

Note: For large scientific codes, it can be useful to profile a small representative workload if
possible, as profiling a full run may take prohibitively long.

Once the profiling run completes, let’s take a look at the occupancy stats related to LDS allocations:
rocprof-compute analyze -p workloads/problem/MI200 --dispatch 1 --block 2.1.15 6.2.7

The metrics we're looking at are: - 2.1.15 Wavefront occupancy — a measure of how many wavefronts, on
average, are active on the device - 6.2.7 SPI: Insufficient CU LDS - indicates whether wavefronts are not
able to be scheduled due to insufficient LDS

The SPI section (6.2) generally shows what resources limit occupancy, while Wavefront occupancy (
2.1.15) shows how severely occupancy is limited in general. As of ROCprof-compute version 2.0.0
, the SPI ‘insufficient’ fields are a percentage showing how frequently a given resource prevented the SPI
from scheduling a wavefront. If more than one field is nonzero, the relative magnitude of the nonzero fields
correspond to the relative severity of the corresponding occupancy limitation (a larger percentage means a
resource limits occupancy more than another resource with a smaller percentage), but it is usually impossible
to closely correlate the SPI ‘insufficient’ percentage with the overall occupancy limit. This could mean you
reduce a large percentage in an ‘insufficient’ resource field to zero, and see overall occupancy only increase by
a comparatively small amount.

Background: A note on occupancy’s relation to performance

Occupancy has a fairly complex relation to achieved performance. In cases where the device is not saturated
(where resources are available, but are unused) there is usually performance that can be gained by increasing
occupancy, but not always. For instance, adversarial data access patterns (see exercise 4-Strided Access)

can cause occupancy increases to result in degraded performance, due to overall poorer cache utilization.

Typically adding to occupancy gains performance up to a point beyond which performance degrades, and
this point may have already been reached by an application before optimizing.

The output of the rocprof-compute analyze command should look similar to this:

N K] (N P

I '/ N/ N N D Lo NP NN L 2N

1 G0 2 G 0 2 G0 o R DA (R G T G0 2 e 0 O e Y Y B

I N___/ ___| .__/1_1 ___/I_I U 2N W T I (O CAVPO B VA W

I_1 I_1

Analysis mode = cli

[analysis] deriving ROCprof-compute metrics...
0. Top Stats
0.1 Top Kernels

| | Kernel_Name Count | Sum(ns) | Mean(ns) | Median(ns)

| 0 | yax(double*, double*, double*, int, int,
| | doublex*) [clone .kd]

2. System Speed-of-Light

124

————————— e L e EEEEE
1.00 | 176224652.00 | 176224652.00 | 176224652.00 | 100.00 |

2.1 Speed-of-Light

| Metric_ID | Metric | Avg | Unit | Peak | Pct of Peak |
215 | evetront Occupancy | 103,00 | Havetronts | 337800 | 3.10 |
gj_&orkgroup M;;;ger (SPI) B B B)

6.2 Workgroup Manager - Resource Allocation

I_&;tric_ID I_;etric B | ;;; | Min | Ma;_I Unit___I

U627 | Tneutticions au 108 | 79,01 | 7901 | 70,01 1 Per |

Looking through this data we see: - Wavefront occupancy (2.1.15) is 3%, which is very low - Insufficient
CULDS (6.2.7) contains a fairly large percentage, which indicates our occupancy is currently limited by

LDS allocations.

There are two solution directories, which correspond to two ways that this occupancy limit can be addressed.

First, we have
solution:

cd solution-no-1ds
make
./solution.exe

(simulated output)

yAx time: 70 ms

solution-no-1lds , which completely removes the LDS usage. Let’s build and run this

We see that the runtime is much better for this solution than the problem, let’s see if removing LDS did

indeed increase occupancy:

rocprof-compute profile -n solution --no-roof -- ./solution.exe

(output omitted)

Once the profile command completes, run:

rocprof-compute analyze -p workloads/solution/MI200 --dispatch 1 --block 2.1.15 6.2.7

The output should look something like:

R A
N N /

D1 T O |
IR

___/I_I \

Analysis mode = cli

[analysis] deriving ROCprof-compute metrics...

0. Top Stats
0.1 Top Kernels

| | Kernel_Name

|
__/ _\I SN ONL L 2N
)| T T O Y B4
ANEY2 D T T O A2 NN I VN W
[_|
| Count | Sum(ns) | Mean(ns) | Median(ns)

| 0 | yax(double*, double*, doublex, int, int, |

| | doublex) [clone .kd]

125

1.00 | 69513618.00 | 69513618.00 |

| | Dispatch_ID | Kernel_Name | GPU_ID |

1 | yax(doublex*, double*, double*, int, int, double*) [clone .kd] | 8 |

2. System Speed-of-Light
2.1 Speed-of-Light

| Metric_ID | Metric | Avg | Unit | Peak | Pct of Peak |

| 2.1.15 | Wavefront Occupancy | 451.15 | Wavefronts | 3328.00 | 13.56 |

6. Workgroup Manager (SPI)
6.2 Workgroup Manager - Resource Allocation

| Metric_ID | Metric

0.00 | 0.00 | 0.00 | Pct |

Looking through this data we see: - Wave occupancy (2.1.15) is 10% higher than in problem.cpp -
Insufficient CU LDS (6.2.7) is now zero, indicating solution-no-1ds is not occupancy limited by LDS
allocations.

Can we get some runtime advantage from using smaller LDS allocations?

This is the solution implemented in the solution directory:

cd ../solution
make
./solution.exe

(simulated output)

yAx time: 50 ms

This solution, rather than removing the LDS allocation, simply reduces the amount of LDS requested to
address the occupancy limit. This gives us the benefit of having some data pulled closer than it was in
solution-no-1ds which is validated through the speedup we see. But is this solution still occupancy
limited by LDS?

rocprof-compute profile -n solution --no-roof -- ./solution.exe

(output omitted)

Once the profile command completes, run:

rocprof-compute analyze -p workloads/solution/MI200 --dispatch 1 --block 2.1.15 6.2.7

The output should look something like:

S

I '/ N/ 1V ONE L N /o N T NN

LT O T O [G G0 2 A O 2 I O

LN/ N1 N/ \

126

Analysis mode = cli

[analysis] deriving ROCprof-compute metrics.

0. Top Stats
0.1 Top Kernels

| | Kernel_Name

| 0 | yax(double*, double*, double*, int, int,

| | double*) [clone .kd]

Sum(ns) |

Mean(ns) |

1.00 | 51238856.00 | 51238856.00 |

0.2 Dispatch List

GPU_ID |

8 |

2. System Speed-of-Light
2.1 Speed-of-Light

| Metric_ID

| Metric |

Avg | Unit
R | -=mmmm R e | =mmmmm e
| Wavefront Occupancy | 494.05 | Wavefronts | 3328.00

Pct of Peak

| 14.85

6. Workgroup Manager (SPI)
6.2 Workgroup Manager - Resource Allocation

| Metric_ID

| Metric |

| 6.2.7 | Insufficient CU LDS | 0.00

Looking at this data we see: - Wave Occupancy (2.1.15) is even higher than before - Insufficient CU LDS
(6.2.7) shows we are not occupancy limited by LDS allocations.

Pulling some data from global device memory to LDS can be an effective optimization strategy, if occupancy

limits are carefully avoided.

Solution Roofline

Let’s take a look at the roofline for

solution , which can be generated with:

rocprof-compute profile -n solution_roof_only --roof-only -- ./solution.exe

The plots will appear as PDF files in the
on MI200 hardware.

The plots are shown here: | Roofline Type | Roofline Legend | Roofline Plot | |

./workloads/problem_roof_only/MI200 directory, if generated

127

|
IFP32/FP64

Kernel Names and Markers

128

yax(double*, double*, double*, int, int, double*)

Performance (GFLOP/sec)

10k

1000

100

10

0.0

Kernel Names and Markers

. yax(double*, double*, double*, int, int, double*)

| |[FP16/INTS |
|

We see that there is still room to move the solution roofline up towards the bandwidth limit.

Roofline Comparison

129

Darfartmancas (CEIOD/ear)

Roofline Type

Problem Roofline

FP32/FP64

10k
‘G‘ 5
@
a
2
.
5 1000
Q
9] 5
c
(1]
£
5 2
t
& 100
5
2
10

0.01

0.1

1

/S S

10

41505 GFLOP/s ——— HBM-FP32

21084 GFLOP/s L2-FP32
—— L1-FP32
—— LDS-FP32

Peak VALU-FP32
Peak MFMA-FP32
e aill

o ail2

e ai_hbm

100 1000

Arithmetic Intensity (FLOPs/Byte)

130

Roofline Type Problem Roofline

2 leemicrons | — roureis
100k L —— L2-FP16
—— L1-FP16
5
—— LDS-FP16
, Peak MFMA-FP16
_ ai 11
® _
8 10k ai 12
% 5 ® ai hbm
= HBM-18
o 2 L2-18
§ 1000 — L118
5 . —— LDS-18
£ Peak MFMA-18
2 924GB/s
- 2
&
100 41 GB/s
. 5037 GB/s
‘1388 GB/s
10 [] L)
0.01 0.1 1 10 100 1000

Arithmetic Intensity (FLOPs/Byte)
FP16/INTS8

Again, we see that the solution’s optimizations have resulted in the kernel moving up in the roofline, meaning
the solution executes more efficiently than the problem.
Summary and Take-aways

Using LDS can be very helpful in reducing global memory reads where you have repeated use of the same
data. However, large LDS allocations can also negatively impact performance by limiting the amount of
wavefronts that can be resident in the device at any given time. Be wary of LDS usage, and check the SPI
stats to ensure your LDS usage is not negatively impacting occupancy.

Results on MI300A

In this section, we show results obtained running this exercise on a system with MI300A, using ROCm
6.2.1 and the associated ROCprof-compute, version 6.2.1

Roofline Analysis:

At present (September 28th 2024), rooflines are disabled on MI300A.

As for the MI210 case, build and run the problem code:

make
./problem.exe

(simulated output)

131

yAx time: 7.27 ms

Unlike the MI210 case, the runtime of problem is already smaller than it was for the previous solution
on example 1-LaunchParameters

Once again, we launch the following command to collect complete profiling data for analysis:
rocprof-compute profile -n problem --no-roof -- ./problem.exe
Followed by:
rocprof-compute analyze -p workloads/problem/MI300A_A1 --dispatch 1 --block 2.1.15 6.2.7
Then inspect the output:

N E S (N DR

I '/ N/ LN N D [/ N NN I __/ _\

T G0 2 I GV 0 I A I G0 I A DS Il O T O B OO I I N

I N___/ N___| .__/1_1 ___/I_I | U Y1 T D U OV GO I VO VO

I_1 [_1
INFO Analysis mode = cli
INFO [analysis] deriving ROCprof-compute metrics...

0. Top Stats
0.1 Top Kernels

| | Kernel_Name | Count | Sum(ns) Mean(ns) | Median(ns)
----- [-—— | | | |
| 0 | yax(double*, double*, double*, int, int, | 1.00 | 7241298.00 | 7241298.00 | 7241298.00
[| double*) [clone .kd] | | |
0.2 Dispatch List

| | Dispatch_ID | Kernel_Name | GPU_ID |
----- e ettt - - -= ol B
| 0| 1 | yax(doublex*, double*, double*, int, int, double*) [clone .kd] | 4 |

2. System Speed-of-Light
2.1 Speed-of-Light

Peak |

| Metric_ID

| 2.1.15

| Metric |

| Wavefronts | 7296.00 |

Pct of Peak |

6. Workgroup Manager (SPI)
6.2 Workgroup Manager - Resource Allocation

| Metric_ID | Metric

| 58.11

| Pct

The results are similar to the MI210 case, in terms of Wavefront Occupancy (2.447 , for MI210 it was

132

3.10%) and Insufficient CU LDS (around 58% , for MI210 it was 79%). Let us look first at the solution

that completely eliminates LDS usage:

cd solution-no-1ds
make
./solution.exe

(simulated output)

yAx time: 9.79 ms

As in the MI210 case, completely eliminating LDS usage makes the runtime worse.
Let’s run the following commands and inspect the output:

rocprof-compute profile -n solution --no-roof -- ./solution.exe

rocprof-compute analyze -p workloads/solution/MI300A_A1/ --dispatch 1 --block 2.1.15 6.2.7

Output:
N E S N PR
I '/ N/ LN N /o2 NP NN L 2N
I G0 2t GV D I A G0 I A DA G I G 2 0 A) Y Y V4
I_1 N/ N /12 N/ N) I D T N POV GO I VI W
[_1 [_1

INFO Analysis mode = cli

INFO [analysis] deriving ROCprof-compute metrics...
0. Top Stats
0.1 Top Kernels
| | Kernel_Name | Count | Sum(ns) | Mean(ns) | Median(ns) | Pct |
----- [--- - - - [-—-- [-- [-- [-- - -
| 0 | yax(double*, double*, double*, int, int, | 1.00 | 9484503.00 | 9484503.00 | 9484503.00 | 100.00 |
| | doublex) [clone .kd] | | I I I |
0.2 Dispatch List
| | Dispatch_ID | Kernel_Name | GPU_ID |
----- T el
| 0| 1 | yax(doublex*, double*, doublex, int, int, double*) [clone .kd] | 4 |
2. System Speed-of-Light
2.1 Speed-of-Light
| Metric_ID | Metric | Avg | Unit I Peak | Pct of Peak |
-—=- [-- - o [-- [-- B B
| 2.1.15 | Wavefront Occupancy | 437.16 | Wavefronts | 7296.00 | 5.99 |
6. Workgroup Manager (SPI)
6.2 Workgroup Manager - Resource Allocation
| Metric_ID | Metric | Avg | Min | Max | Unit |

| 6.2.7 | Insufficient CU LDS |

0.00 | 0.00 |

0.00 | Pct

From the ouput above, we see that Insufficient CU LDS is now zero as expected, and that Wavefront

Occupancy has gone up to around 6% from 2.44%

these results with the code in the

cd ../solution
make
./solution.exe

(simulated output)

yAx time: 5.80 ms

that it was before for MI210. Next, let’s compare

solution directory: this implementation reduces the amount of LDS
requested to address the occupancy limit, but still uses some LDS to speed up memory accesses. First, run:

This shows that an appropriate reduction of LDS usage did improve the performance of the example. To see

the specific values of the metrics of interest, we run:

rocprof-compute profile -n solution --no-roof -- ./solution.exe
rocprof-compute analyze -p workloads/solution/MI300A_A1 --dispatch 1 --block 2.1.15 6.2.7

With output:

D N I R DR
| '/ _\/ ' N/ N\ /__/ _ NI ' NN I __/ _\
1 T T D T G D T A O O G T K N G T G T T O D I I __/
I_1 N___/ N___| .__/1_1 ___/I_l AN VY2 D T O 20 W I W N
[_1l I_1l

INFO Analysis mode = cli

INFO [analysis] deriving ROCprof-compute metrics...
0. Top Stats
0.1 Top Kernels
| | Kernel_Name | Count | Sum(ns) Mean(ns) | Median(ns) | Pct |
————— |- | | e e
| 0 | yax(double*, double*, double*, int, int, | 1.00 | 5766574.00 | 5766574.00 | 5766574.00 | 100.00 |
| | double*) [clone .kd] | | | | |
0.2 Dispatch List
| | Dispatch_ID | Kernel_Name | GPU_ID |
----- === - - - - -1-
| 0| 1 | yax(doublex, double*, double*, int, int, double*) [clone .kd] | 4 |

2. System Speed-of-Light
2.1 Speed-of-Light

| Metric_ID

| 2.1.15

| Metric |

134

6. Workgroup Manager (SPI)
6.2 Workgroup Manager - Resource Allocation

| Metric_ID | Metric | Avg | Min | Max | Unit |

| 6.2.7 | Insufficient CU LDS | 0.00 | 0.00 | 0.00 | Pct |

We see that the example is still not occupancy limited by LDS allocations (Insufficient CU LDS is zero). The
Wavefront Occupancy has remained approximately the same. As seen above, the runtime has improved by
approximately 20% (going from 7.27 ms of problem.exe , to the current time of 5.8 ms).

Exercise 3: Register Occupancy Limiter

More complex yAx implementation to demonstrate a register limited kernel using an innocuous looking
function call. The register limit no longer shows up for recent versions of ROCm on certain accelerators.
Nevertheless, this exercise is useful for learning how to find register limited kernels using ROCprof-compute
and asks you to imagine the limiter exists for the sake of the exercise. This is an example of how many things
influence performance bugs: they exist on hardware, with a software stack, at a certain time. They may
never exist outside that context.

Background: Acronyms and terms used in this exercise
VGPR: Vector General Purpose Register, holds distinct values for each thread in a wavefront
SGPR: Scalar General Purpose Register, holds a single value for all threads in a workgroup

AGPR: Accumulation vector General Purpose Register, used for Matrix Fused Multiply-Add (MFMA)
instructions, or low-cost register spills

Wavefront: A collection of threads, usually 64.

Workgroup: A collection of Wavefronts (at least 1), which can be scheduled on a Compute Unit (CU)

LDS: Local Data Store is Shared Memory that is accessible to the entire workgroup on a Compute Unit (CU)
CU: The Compute Unit is responsible for executing the User’s kernels

SPI: Shader Processor Input, also referred to as the Workgroup Manager, is responsible for scheduling
workgroups on Compute Units

Occupancy: A measure of how many wavefronts are executing on the GPU on average through the duration
of the kernel

PoP: Percent of Peak refers to the ratio of an achieved value and a theoretical or actual maximum. In terms
of occupancy, it is how many wavefronts on average were on the device divided by how many can fit on the
device.

yAx: a vector-matrix-vector product, yAx, where y and x are vectors, and A is a matrix

FP(32/16) : 32- or 16-bit Floating Point numeric types</1li>

<1li>FLOPs: Floating Point Operations Per second

<1i>HBM: High Bandwidth Memory is globally accessible from the GPU, and is a level of memory

Results on M1210

Note: This exercise was tested on a system with MI210s, on rocprof-compute version 2.0.0 and ROCm
6.0.2 ROCprof-compute 2.0.0 is incompatible with ROCm versions lesser than 6.0.0

135

Initial Roofline Analysis

This kernel is slightly different from the one we used in previous exercises. Let’s see how well it measures up
in the roofline:

Roofline Type Roofline Legend

Kernel Names and Markers

-1 0 1

(] yax(double*, double*, double*, int, int, double*)

FP32/FP64

136

Roofline Type Roofline Legend

Kernel Names and Markers

-1 0 1

. yax(double*, double¥*, double*, int, int, double*)
FP16/INT8
You can generate these plots by running;:
rocprof-compute profile -n problem_roof_only --roof-only --kernel-names -- ./problem.exe

The plots will appear as PDF files in the ./workloads/problem_roof_only/MI200 directory, if generated
on MI200 hardware.

We see that the kernel is still a considerable amount below the maximum achievable bandwidth, so there
should still be room for improvement.

Exercise Instructions:

Let’s get an idea of the runtime of this code:

make
./problem.exe

(simulated output)
yAx time 71 ms

We see that this kernel seems to be on par with some of our other exercises, but let’s see what rocprof-compute
shows us:

rocprof-compute profile -n problem --no-roof -- ./problem.exe

(lots of output from this command)

137

rocprof-compute analyze -p workloads/problem/MI200 --dispatch 1 --block 2.1.15 6.2.5 7.1.5 7.1.6 7.1.7

e 2.1.15 Shows Wavefront occupancy
e 6.2.5 Shows Insufficient SIMD VGPRs — indicating if this kernel is occupancy limited by VGPR

usage

e 7.1.5-7 Shows the register usage: VGPRs, SGPRs, and AGPRs

S 4

I '/ N/ 1V ONE L N

1 T G0 2 G 0 J () G0 i B

[_1 N__Z/ Nl /12 NC_Z/ 1]
|

INFO Analysis mode =

cli

INFO [analysis] deriving ROCprof-compute metrics...

0. Top Stats
0.1 Top Kernels

| | Kernel_Name

| 0 | yax(double*, double*, double*, int, int,

|
_____ N NN
l_____ (AN TG 2y D M O O T N
______ JU_0 T T e/ N INC\
I_1l
| Count | Sum(ns) | Mean(ns) | Median(ns) | Pct |
| -======—= | -==—m—mmm = |-—==——mm——= |-———mm |-====—=
| 1.00 | 77266823.00 | 77266823.00 | 77266823.00 | 100.00 |
| | |

doublex*) [clone .kd]

0.2 Dispatch List

Dispatch_ID | Kernel_Name

double*, int, int, double*) [clone .kd]

| GPU_ID |
_| ___________
| 8 |

2. System Speed-of-Light

2.1 Speed-of-Light

| Metric_ID | Metric | Avg | Unit | Peak | Pct of Peak |
- [-- -== ol [-- [-- B B
| 2.1.15 | Wavefront Occupancy | 433.52 | Wavefronts | 3328.00 | 13.03 |
6. Workgroup Manager (SPI)

6.2 Workgroup Manager - Resource Allocation

| Metric_ID | Metric | Avg | Min | Max | Unit |
—————————————— e it et e Attt

| 6.2.5 | Insufficient SIMD VGPRs | 0.10 | 0.10 | 0.10 | Pct [

7. Wavefront

7.1 Wavefront Launch Stats

| Metric_ID | Metric | Avg | Min | Max | Unit

138

| 7.1.5 | VGPRs | 92.00 | 92.00 | 92.00 | Registers |
=== [-- Sl B |-——————- |-——————- | -———————=
| 7.1.6 | AGPRs | 132.00 | 132.00 | 132.00 | Registers |
-------------- e et el e Bttt
| 7.1.7 | SGPRs | 48.00 | 48.00 | 48.00 | Registers |

Looking at this data, we see: - Insufficient SIMD VGPRs (6.2.5) shows that we are slightly occupancy
limited by VGPRs - VGPRs (7.1.5) shows we are using a moderate amount of VGPRs and we are using
132 AGPRs (7.1.6), which can indicate low-cost register spills in the absence of MFMA instructions.

In problem.cpp, the limiter is due to a call to assert that checks if our result is zeroed out on device. To

make sure the problem is gone in solution.cpp, let’s look at the solution code:

cd solution
make
./solution.exe

(simulated output)

yAx time: 70 ms

Our runtime seems fairly similar with or without the assert , but we should also check that rocprof-compute

reports that our limiters are gone:
rocprof-compute profile -n solution --no-roof -- ./solution.exe

(omitted output)

rocprof-compute analyze -p workloads/solution/MI200 --dispatch 1 --block 2.1.15 6.2.5 7.1.5 7.1.6 7.1.7

The output of this command should look something like:

N E S R B
I/ N/ VNP L N D Lo/ NPT NP N L 2N
[T TG0 2 I G I 0 2 I I B G I l_____ (G G0 2 0 2 I Y
I_1 N/ N /12 N/ N N/ b a2 NN
(N [_I

INFO Analysis mode = cli

INFO [analysis] deriving ROCprof-compute metrics...
0. Top Stats
0.1 Top Kernels
| | Kernel_Name | Count | Sum(ns) | Mean(ns) |

| 0 | yax(double*, double*, doublex, int, int, | 1.00 | 71714804.00 | 71714804.00 |
| | doublex) [clone .kd] | | |

0.2 Dispatch List

2. System Speed-of-Light
2.1 Speed-of-Light

139

| Metric_ID | Metric | Avg | Unit | Peak | Pct of Peak |

| 2.1.15 | Wavefront Occupancy | 439.96 | Wavefronts | 3328.00 | 13.22 |

6. Workgroup Manager (SPI)

6.2 Workgroup Manager - Resource Allocation

| Metric_ID | Metric |

-——- |- - | |------ | ------- e
| 6.2.5 | Insufficient SIMD VGPRs | 0.00 | 0.00 | 0.00 | Pct I

7. Wavefront
7.1 Wavefront Launch Stats

| Metric_ID | Metric | Avg | Min | Max | Unit |
T e a0 | 3200 | 32,00 | megievers |
P
T s 196,00 1 9600 1| 96.00 | megisters 1

Looking at this data, we see: - Insufficient SIMD VGPRs (6.2.5) shows we are now not occupancy limited
by VGPR usage. - VGPRs (7.1.5) are down by 60, AGPRs (7.1.6) are down by 132, and SGPRs (
7.1.7) are up, showing more efficient register usage. - Wave Occupancy (2.1.26) shows our occupancy
is slightly increased.

More generally, you can use this command to look at all SPI “insufficient resource” stats in the same screen,
to determine if any resource is currently limiting occupancy. In fact, we can use this to ensure our problem
implementation no longer has any SPI-related occupancy limiters with the newer version of ROCm:

rocprof-compute analyze -p workloads/problem/MI200 --dispatch 1 --block 6.2

Which will show output similar to this (note, fields 6.2.4 to 6.2.8 show resources which currently
limit occupancy):

ol __ Y Y E S N PR

I/ N/ N N D /2 N NN L 2N

I O G0 2 I GV D I A G0 I A DA GRG0 2 0 B) Y Y R4

I N___/ N___| .__/1_1 ___/I_I |V /N B D T B OV GO I VI WO

[_1 [_1

Analysis mode = cli

[analysis] deriving ROCprof-compute metrics...
0. Top Stats
0.1 Top Kernels

| | Kernel_Name | Count | Sum(ns) | Mean(ns) | Median(ns)
———== [--- -== -== |-—-- [-- -l- - -
| 0 | yax(double*, double*, doublex, int, int, | 1.00 | 69960451.00 | 69960451.00 | 69960451.00

| | doublex) [clone .kd] | | |

140

0.2 Dispatch List

| | Dispatch_ID | Kernel_Name | GPU_ID |
————— === | - -—= -—= -—= |
| 0| 1 | yax(doublex*, double*, double*, int, int, double*) [clone .kd] | 8 |

6. Workgroup Manager (SPI)
6.2 Workgroup Manager - Resource Allocation

| Metric_ID | Metric | Avg | Min | Max | Unit |
o ieicheinted mans (rorkarons vamagesy | or0 | or0 | o0 e 1
PSS S S B A S
PSS T
o s s T o oo o e
Uomd | tasatticiom 51> wevesiore 1 000 | 0.0 | .00 | e 1
PSS T
Tome T i i s T oo oo | oo 1 per
Comr T it oo 1o T e o0 | 000 1 e
PSS T
ome |\ esinen oo wernere tae oo oo | o0 1 per
6210 | meaches 0 wavetroms tamte 1 o001 0.0 | 0.0 | e 1

Solution Roofline

With similar performance, we expect to see similar plots in the roofline for problem and solution:

141

Roofline Type Roofline Legend

Kernel Names and Markers

-1 0 1

. yax(double*, double¥*, double*, int, int, double*)

FP32/FP64

142

Roofline Type Roofline Legend

Kernel Names and Markers

-1 0 1

. yax(double*, double¥*, double*, int, int, double*)

FP16/INTS

You can generate these plots with:
rocprof-compute profile -n problem_roof_only --roof-only --kernel-names -- ./problem.exe

The plots will appear as PDF files in the ./workloads/problem_roof_only/MI200 directory, if generated
on MI200 hardware.

The plots are indistinguishable, which is further confirmation performance is now unchanged between problem
and solution. However, we see there is still room for improvement as this kernel is not getting the maximum
achievable bandwidth.

Roofline Comparison

143

Roofline Type

Problem Roofline

FP32/FP64

10k
) 5
)]
n
& 2
9
L
Q 1000
()]
I 5
[13]
£
S 2
=
)]
& 100
5
2
10

0.01

0.1
Arithmetic Intensity (FLOPs/Byte)

144

1

/S S

10

41597 GFLOP/s —— HBM-FP32

21081 GFLOP/s L2-Fp32
—— L1-FP32
—— LDS-FP32

Peak VALU-FP32
Peak MFMA-FP32
e aill

o ail2

e ai_hbm

100 1000

Roofline Type Problem Roofline

X 167356 GFLOP/s — HBM-FP16
165522 GFLOP/s
100k —— L2-FP16
—— L1-FP16
> —— LDS-FP16
, Peak MFMA-FP16
S e aill
§ 10k e ail
% 5 ® ai_hbm
- HBM-18
Q 2 L2-18
()] — -
8 1000 L1-18
5 —— LDS-18
£ 5 Peak MFMA-I8
e
< , 794 GB/s
o
100 56 GB/s
. 5055GB/s
[] L]
¢ 1388 GB/s
10
0.01 0.1 1 10 100 1000

Arithmetic Intensity (FLOPs/Byte)
FP16/INTS8

Summary and Take-aways

Function calls inside kernels can have surprisingly adverse performance side-effects. However, performance
issues in general may be subject to compiler versions or other environment details. Calling assert, printf and
even excessive use of math functions (e.g. pow, sin, cos) can limit performance in difficult-to-predict ways. If
you see unexpected resource usage, try eliminating or reducing the use of these sorts of function calls.

Results on MI300A

In this section, we show results obtained running this exercise on a system with MI300A, using ROCm
6.2.1 and the associated ROCprof-compute, version 6.2.1

Roofline Analysis:
At present (September 28th 2024), rooflines are disabled on MI300A.
As for the MI210 case, build and run the problem code:

make
./problem.exe

(simulated output)
yAx time: 10 ms

Let’s run the following commands to explore some metrics:

145

rocprof-compute profile -n problem --no-roof -- ./problem.exe

rocprof-compute analyze -p workloads/problem/MI300A_Al1 --dispatch 1 --block 2.1.15 6.2.5 7.1.5 7.1.6 7.1.7

Then explore the output:

O N E JE U N PR,
I/ N/ LN N D /o2 N NN 2N
I O G0 2t I GV D I A G0 I A DA GRG0 2 0 A) Y Y V4
I_1 N/ N /12 N/ N N/ T2 b a2/ NN
[_1 [_1

INFO Analysis mode = cli

INFO [analysis] deriving ROCprof-compute metrics...
0. Top Stats
0.1 Top Kernels
| | Kernel_Name | Count | Sum(ns) | Mean(ns) | Median(ns) | Pct |
----- [--- -—= - -== |-—-- [-- -l- - e
| 0 | yax(doublex, double*, doublex, int, int, | 1.00 | 10064928.00 | 10064928.00 | 10064928.00 | 100.00 |

|

| | doublex) [clone .kd] | | |

0.2 Dispatch List

| | Dispatch_ID | Kernel_Name | GPU_ID |
T T racaouier, dobior, doubier, int, ine, douoien fetoms | 4
;T_;ystem Spee;:;f-Light S o)

2.1 Speed-of-Light

I_é;tric_ID I_éetric B | _;;;_I_;;;;_______I__ Peak | _;;t of Peak I

I_;i1.15 :_&avefront O;;;pancy_:_;;2.15 :_&avefronts :_;296.08_: __________ ;T;;_I

6. Vorkgrowp Memager (SPD

6.2 Workgroup Manager - Resource Allocation

| MetricId | Metric | Avg | Min| Max | Umit |

(626 | Tasutractens 5100 vame | 0.06 | 0.06 | 0.06 | por 1

;T_&avefront o o o o)

7.1 Wavefront Launch Stats

I_&;tric_ID I_éetric | ___Avg | Min | Max | Unit______I

Cris v | 200 5200 | 5200 | Regieeers |

(7a6 | ams) 192,00 | 192,00 | 152.00 | Registers |

146

-------------- e e B B B
| 7.1.7 | SGPRs | 48.00 | 48.00 | 48.00 | Registers

As expected, there is minor limiting due to Insufficient SIMD VGPRs, which is similar to the MI210 case. A
similar scenario is seen when running solution:

cd solution
make
./solution.exe

(simulated output)
yAx time: 9.82 ms

The runtime is practically the same as the problem implementation. For performance metrics, let’s run:

rocprof-compute profile -n solution --no-roof -- ./solution.exe

rocprof-compute analyze -p workloads/solution/MI300A_A1 --dispatch 1 --block 2.1.15 6.2.5 7.1.5 7.1.6 7.1.7
With output:

N E S N DR

'/ N/ N N D Lo NPT NN L N

[T G0 2 G A 0 I B RGO I l_____ G G 2 A D) Y Y R4

I N___/ N___I .__/1_1 ___/I_I |V 2N I T (O GO I VA W

I_1 I_1
INFO Analysis mode = cli
INFO [analysis] deriving ROCprof-compute metrics...

0. Top Stats
0.1 Top Kernels

| | Kernel_Name | Count | Sum(ns) | Mean(ns) | Median(ns) | Pct |
————— |--- -== e e [-- [-- i et
| 0 | yax(double*, double*, double*, int, int, | 1.00 | 9794300.00 | 9794300.00 | 9794300.00 | 100.00 |
| | double*) [clone .kd] | | I | | |
0.2 Dispatch List

| | Dispatch_ID | Kernel_Name | GPU_ID |
----- [-===—mmm | -== -== -—= -l-

| 0| 1 | yax(double*, double*, double*, int, int, double*) [clone .kd] | 4 |
2. System Speed-of-Light
2.1 Speed-of-Light

| Metric_ID | Metric | Avg | Unit | Peak | Pct of Peak |
—————————————— e B e P

| 2.1.15 | Wavefront Occupancy | 430.69 | Wavefronts | 7296.00 | 5.90 |

6. Workgroup Manager (SPI)
6.2 Workgroup Manager - Resource Allocation

147

| Metric_ID | Metric | Avg | Min | Max | Unit |

| 6.2.5 | Insufficient SIMD VGPRs | 0.00 | 0.00 | 0.00 | Pct |

7. Wavefront

7.1 Wavefront Launch Stats

| Metric_ID | Metric | Avg | Min | Max | Unit |
i verme | 3200 1| 300 | 3200 | Regievers |
e T e oo om0 | 000 | egievers |
T serme | 112,00 | 112,00 | 112.00 | Regiocers 1

Just like the case of MI210, the Wavefront Launch Stats differ between problem and

did for MI210, let’s run:

cd .

rocprof-compute analyze -p workloads/problem/MI300A_A1 --dispatch 1 --block 6.2

With output:

solution . As we

Y ZR E S I D
I '/ N/ LN N D /o2 NP NN L 2N
I O G0 2 I GV 0 I A I G0 I A DA GRG0 2 Y A 0 B) Y O Y V4
) NV VR ROl D B VA | NN/ 2 b 2/ NCC NN
[_1 [_1

INFO Analysis mode = cli

INFO [analysis] deriving ROCprof-compute metrics...
0. Top Stats
0.1 Top Kernels
| | Kernel_Name | Count | Sum(ns) | Mean(ns) | Median(ns) | Pct |
----- [--- -—= -—= -—= |-===—1-- -l- - e
| 0 | yax(doublex, double*, doublex, int, int, | 1.00 | 10226783.00 | 10226783.00 | 10226783.00 | 100.00 |
| | doublex*) [clone .kd] | | | | | |
0.2 Dispatch List

| | Dispatch_ID | Kernel_Name | GPU_ID |
ot T yantaonmton, donstor, doutor, sut, ne, dousien felome | 4
;T_&orkgroup M;;;ger (SPI) N o)

6.2 Workgroup Manager - Resource Allocation

| Metric> | Metric 0 mel Min g Max | it |
I_éiQ.O :_&ot-schedul;;_Rate (Workgroup Manager;_:__;jgl_:__;jsi_:__;TBI_:_;;;____I

148

| 6.2.1 | Not-scheduled Rate (Scheduler-Pipe) : 0.03 : 0.03 : 0.03 : Pct |
Tomn T e rise Seat mame T oz | 0 | oo | e 1
oma | soraen seens mave. N e e
Tome e e T T
TP R T 006 | 006 | 006 | per 1
Uome | tmsatticiom smm sorme 1 o0 | o0 | o0 | e 1
S P
Toms | Teeiticioms o0 perriers oo oo oo 1 e
om0 | meaches 00 workerom amte | o001 o0 | o0 | e 1
PSS T

Exercise 4: Strided Data Access Patterns (and how to find them)

This exercise uses a simple implementation of a yAx kernel to show how difficult strided data access patterns
can be to spot in code, and demonstrates how to use rocprof-compute to begin to diagnose them.

Background: Acronyms and terms used in this exercise

L1: Level 1 Cache, the first level cache local to the Compute Unit (CU). If requested data is not found in the
L1, the request goes to the L2

L2: Level 2 Cache, the second level cache, which is shared by all Compute Units (CUs) on a GPU. If requested
data is not found in the L2, the request goes to HBM

HBM: High Bandwidth Memory is globally accessible from the GPU, and is a level of memory above the L2
cache

CU: The Compute Unit is responsible for executing the User’s kernels

yAx: a vector-matrix-vector product, yAx, where y and x are vectors, and A is a matrix
FP(32/16): 32- or 16-bit Floating Point numeric types

Background: What is a “Strided Data Access Pattern”?

Strided data patterns happen when each thread in a wavefront has to access data locations which have a lot
of space between them. For instance, in the algorithm we’ve been using, each thread works on a row, and
those rows are contiguous in device memory. This scenario is depicted below: [image](striding. PNG*“/> Here
the memory addresses accessed by threads at each step of the computation have a lot of space between them,
which is suboptimal for memory systems, especially on GPUs. To fix this, we have to re-structure the matrix
A so that the columns of the matrix are contiguous, which will result in the rows striding, as seen below:
[image](no_stride. PNG”/> This new data layout has each block of threads accessing a contiguous chunk of
device memory, and will use the memory system of the device much more efficiently. Importantly, the only
thing that changed is the physical layout of the memory, so the result of this computation will be the same as
the result of the previous data layout.

149

Results on M1I210

Note: This exercise was tested on a system with MI210s, on rocprof-compute version 2.0.0 and ROCm
6.0.2 ROCperf-compute 2.0.0 is incompatible with ROCm versions lesser than 6.0.0

Initial Roofline Analysis

To start, we want to check the roofline of problem.exe , to make sure we are able to improve it. These
plots can be generated with:

rocprof-compute profile -n problem_roof_only --roof-only --kernel-names -- ./problem.exe

The plots will appear as PDF files in the ./workloads/problem_roof_only/MI200 directory, if generated
on MI200 hardware.

They are also provided below for easy reference:

Roofline Type Roofline Legend

Kernel Names and Markers

. yax(double*, double*, double*, int, int, double*)

FP32/FP64

150

Roofline Type Roofline Legend

Kernel Names and Markers

-1 0 1

. yax(double*, double¥*, double*, int, int, double*)

FP16/INTS

We have plenty of space to improve this kernel, the next step is profiling.

Exercise Instructions:

To start, let’s build and run the problem executable:

make
./problem.exe

(simulated output)
yAx time: 70 ms

From our other experiments, this time seems reasonable. Let’s look closer at the memory system usage with
rocprof-compute:

rocprof-compute profile -n problem --no-roof -- ./problem.exe
(omitted output)
rocprof-compute analyze -p workloads/problem/MI200 --dispatch 1 --block 16.1 17.1

Previous examples have used specific fields inside metrics, but we can also request a group of
metrics with just two numbers (i.e. 16.1 vs. 16.1.1)

These requested metrics are: - 16.1 L1 memory speed-of-light stats - 17.1 L2 memory speed-of-light
stats

151

The speed-of-light stats are a more broad overview of how the memory systems are used throughout execution
of your kernel. As such, they’re great statistics for seeing if the memory system is generally being used
efficiently or not. Output from the analyze

command should look like this:

S N E S (N DR
o b oNE L N Lo/ NP NP ONE L 2N
- SN D R A G0 T R DO (G G I B T 0 T A I Y 4
__ (A B B A N 2N W D T Y (O GO I VA G
I_1 [_1
Analysis mode = cli
[analysis] deriving ROCperf-compute metrics...
0. Top Stats
0.1 Top Kernels
| Kernel_Name | Count | Sum(ns) | Mean(ns) | Median(ns) | Pct |
- - e [-- -l- == e
| 0 | yax(double*, double*, double%, int, int, | 1.00 | 70270856.00 | 70270856.00 | 70270856.00 | 100.00 |
| |

double*) [clone .kd]

0.2 Dispatch List

GPU_ID |

8 |

16. Vector L1 Data Cache
16.1 Speed-of-Light

| Metric_ID | Metric | Avg | Unit |
reo e mae 1 000 | per of peak 1
Tt oo | ea | per ot ek 1
1_1; 1.2 :_;tilization_:_87.71_:_;;t of ;;;;_I
tos | oeateseing | 2500 | por of peak 1
I;?_LQ Cache o o

17.1 Speed-of-Light

I_é;tric_ID I_éetric o | Avg
I_I;.1.o :_;tilization___ :_ 98.6;_
P e
P .
it | Lorabrie nesd B

152

-------------- i Bttt el et
| 17.1.4 | L2-Fabric Write and Atomic BW | 0.00 | Gb/s

Looking at this data, we see: - L1 Cache Hit (16.1.0) is 0%, so the kernel’s memory requests are never
found in the L1. - L2 Cache Hit (17.1.2) is 93.46%, so most requests are found in the L2, with about 7%
needing to go out to HBM. - We are never finding data in the L1 and generating a lot of requests to the L2,

so restructuring our data accesses should provide better performance

Since our implementation of yAx simply uses 1 for all values in y, A, and x, we do not have to change how
we populate our data. Since A is implemented as a flat array, we don’t need to change our allocation either.
>1In real-world use-cases, these considerations add non-trivial development overhead, so data access patterns

may be non-trivial to change.

To observe the performance effects of a different data access pattern, we simply need to change our indexing

scheme. Let’s see how this performs by running solution :

cd solution
make
./solution.exe

(simulated output)

yAx time: 12 ms

We see the runtime here is significantly better than our previous kernel, but we need to check how the caches

behave now:

rocprof-compute profile -n solution --no-roof -- ./solution.exe

(output omitted)

rocprof-compute analyze -p workloads/solution/MI200 --dispatch 1 --block 16.1 17.1

The output from this analyze command should look like:

O N E S N DR

I '/ N/ N N D /2 NP NN L 2N

I O G0 2 GV D I A I G0 I A DA GRG0 2 0 B O Y O Y V4

I_b N___/ N___| __/1_1 ___/I_I N N/ T b a2 NN

[_1 [_1

Analysis mode = cli

[analysis] deriving ROCperf-compute metrics...

0. Top Stats

0.1 Top Kernels

| | Kernel_Name | Count | Sum(ns) | Mean(ns) |
----- [--- -== -== |-—-- [-- -l- -
| 0 | yax(doublex, double*, doublex, int, int, | 1.00 | 12364156.00 | 12364156.00 |

| | doublex) [clone .kd] | | |

12364156.00 | 100.00 |

0.2 Dispatch List

GPU_ID |

153

16. Vector L1 Data Cache
16.1 Speed-of-Light

| Metric_ID | Metric | Avg | Unit |
tono | Hie tave | 49,95 | Por of peak 1
tont | bamtwigen | 12,29 | per of pewk 1
I_I; 1.2 :_;tilization_:_QS.12_:_;;t of pea;_I
Tt | oateeing | 2500 | por of peak 1
17. L2 Cache

17.1 Speed-of-Light

| Metric_ID | Metric | Avg
e venimen T ame
I_I;.l 1 :_gandwidth o _:_ 10.0;_
e U me e T o
[oono
I_l;.1.4 :_£2—Fabric w;;;e and Atomic Bw_:_ 0.0;_

Looking at this data, we see: - L1 Cache Hit (16.1.0) is around 50%, so half the requests to the L1 need
to go to the L2. - L2 Cache Hit (17.1.2) is 0.52%, so almost all the requests to the L2 have to go out to
HBM. - L2-Fabric Read BW (17.1.3) has increased significantly, due to the increase in L2 cache misses
requiring HBM reads.

Solution Roofline Analysis

We should check where our new kernel stands on the roofline. These plots can be generated with:

rocprof-compute profile -n solution_roof_only --roof-only --kernel-names -- ./solution.exe

The plots will appear as PDF files in the

on MI200 hardware.

They are also provided below for easy reference:

154

./workloads/problem_roof_only/MI200 directory, if generated

Roofline Type Roofline Legend

Kernel Names and Markers

-1 0 1

. yax(double*, double¥*, double*, int, int, double*)

FP32/FP64

155

Roofline Type Roofline Legend

Kernel Names and Markers

-1 0 1

. yax(double*, double¥*, double*, int, int, double*)

FP16/INTS

We appear to be very close to being bound by the HBM bandwidth from the fp32 roofline. To get more
performance we need to look closer at our algorithm.

Roofline Comparison

156

Roofline Type

Problem Roofline

FP32/FP6

10k
‘G 5
@
o
& 2
Q
[V
O 1000
Q
I 5
(1]
£
S 2
=
Q
a 100
5
2
10

0.01

0.1

1

/S S

10

41500 GFLOP/s —— HBM-FP32

21080 GFLOP/s L2-FP32
— L1-FP32
—— LDS-FP32

Peak VALU-FP32
Peak MFMA-FP32
e aill

o ail2

e ai_hbm

100 1000

Arithmetic Intensity (FLOPs/Byte)

157

Roofline Type Problem Roofline

X 166937 GFLOP/s —— HBM-FP16
165102 GFLOP/s
— L1-FP16
> —— LDS-FP16
, Peak MFMA-FP16
S e aill
ﬁ 10k e ail2
% 5 ® ai_hbm
= HBM-I8
9 2 L2-18
Q — -
8 1000 L1-18
5 — LDS-I18
£ 5 Peak MFMA-I8
(@]
b 923 GB/s
Q 2
o
100 38 GB/s
. 5035GB/s
[] L
¢ 1388 GB/s
10
0.01 0.1 1 10 100 1000

Arithmetic Intensity (FLOPs/Byte)
FP16/INTS8

We see that the HBM roofline point moves up, while the L1/L2 points move up and to the right from problem
to solution. This means that our arithmetic intensity is increasing for the caches, so we are moving less data
through the caches to do the same computation.

Summary and Take-aways

This exercise illustrates the at times insidious nature of strided data access patterns. They can be difficult to
spot in code, but profiling more readily shows when adversarial access patterns occur, by showing poor cache
hit rates, low cache bandwidth, and potentially low utilization. Data access patterns can be non-trivial to
change, so these sorts of optimizations can involve significant development and validation overhead.

Results on MI300A

Note: Roofline is not available on MI300A at the time of this writing

For MI300A, if we run the problem.exe and solution.exe, we see different performance.
Running the problem:

./problem.exe

Shows a runtime like this:

9.64 milliseconds

While running solution:

158

./solution.exe

Shows a runtime like this:

12.17 milliseconds

Now, if we use rocprof-compute to profile these executables we see much the same stats for MI300A as MI200:
rocprof-compute analyze -p workloads/problem/MI300A_A1 --dispatch 1 --block 16.1 17.1

Shows

S N K S (N P

I '/ N/ LN N D /o2 N NN L 2N

I G0 2 I GV 0 I A G0 I A DA GRG0 2 0 B) Y Y V4

I N___/ N___| .__/1_1 ___/I_I | U YN T (O GO I VO S

[_1 [_1
INFO Analysis mode = cli
INFO [analysis] deriving ROCperf-compute metrics...

0. Top Stats
0.1 Top Kernels

| | Kernel_Name | Count | Sum(ns) | Mean(ns) | Median(ns) | Pct |
----- [--- -== -—= el R B [-- [-- - |-
| 0 | yax(double*, double*, double*, int, int, | 1.00 | 9599042.00 | 9599042.00 | 9599042.00 | 100.00 |
| | doublex) [clone .kd] | | I | I |
0.2 Dispatch List

| | Dispatch_ID | Kernel_Name | GPU_ID |
————— e e - el e

| 0| 1 | yax(doublex*, double*, double*, int, int, double*) [clone .kd] | 4 |

16. Vector L1 Data Cache

16.1 Speed-of-Light

| Metric_ID | Metric | Avg | Unit |
- [-- -l- ol -—=

| 16.1.0 | Hit rate | 0.00 | Pct of peak |
- [-- ol et [===

| 16.1.1 | Bandwidth | 23.36 | Pct of peak |
-------------- [-—=—— | | -

| 16.1.2 | Utilization | 85.90 | Pct of peak |
- [-- -l- ol -—=

| 16.1.3 | Coalescing | 25.00 | Pct of peak |
17. L2 Cache
17.1 Speed-of-Light

| Metric_ID | Metric | Avg | Unit |
-------------- [-——— o | e |

| 17.1.0 | Utilization | 96.87 | Pct |

159

| 17.1.1 | Bandwidth | 55.52
I_I;.l.Q :_;it Rate o :_ 93.6;_
1| Larevrie newd B o0,
710 Toeabeae feive amd weomie a0 | o001

While analyzing the solution with:

rocprof-compute analyze -p workloads/solution/MI300A_A1 --dispatch 1 --block 16.1 17.1

Shows:
S N K S (N P
I '/ N/ LN N D /o2 N NN L N
I G0 2 I GV 0 I A G0 I A DA GRG0 2 0 B) Y Y V4
I N___/ N___| .__/1_1 ___/I_I U Y T (O GO I VO G
[_1 [_1

INFO Analysis mode = cli

INFO [analysis] deriving ROCperf-compute metrics...
0. Top Stats
0.1 Top Kernels
| | Kernel_Name | Count | Sum(ns) | Mean(ns) | Median(ns) | Pct |
----- [--- - - el el -l- - e
| 0 | yax(double*, double*, double*, int, int, | 1.00 | 12104495.00 | 12104495.00 | 12104495.00 | 100.00 |

| | |

| | doublex*) [clone .kd] | |

0.2 Dispatch List S o o

I___ | Dispa;;;_ID | Kern;i:Name o o _I_ GPU_ID |
o 1T yencaminton, dvinton, dwivion, 1nt, 1at, dousion) Loioms w1 1 sl
;gT_Vector L1 ;;;a Cache S o)

16.1 Speed-of-Light

| Metric 10 | Metric | fvg | Umit |

I_lg 1.0 :_;it rate _:_ 75.00 | Pct of pe;é_I

o1 1 senamam | 463 1 7en of pesk |

Clo2 1 Duttisesion | 10000 1 per o poak |

I_lg 1.3 :_;oalescing _:_ 25.00 | Pct of pe;é_I

;;T_LQ Cache T o o o)

160

17.1 Speed-of-Light

| Metric_ID | Metric | Avg | Unit |
e Vo T e 1 b 1
[P o e
1_1;.1.2 :_;it Rate _:_ O.Sé_:_;;;____I
s errie nea 0.0 1 Gore 1
I_I;.1.4 :_LQ—Fabric W;;;e and Atomic BW :_ 0.01_:_5;;;___I

So we see a slowdown despite increasing our L1 hit rate (

16.1.0) by a large amount. Let’s see how the

runtime compares to the number of cycles required for problem and solution, as well as atomic latencies per

channel for both approaches:

rocprof-compute analyze -p workloads/problem/MI300A_A1 -p workloads/solution/MI300A_A1 --dispatch 1 --block 7.2.0 7

Which shows:

R N K I N S

'/ N/ __L "N/ N /o _NE NN N

{1 D 2 G D T G0 R DA G T G M D 2 I O Y Y4

I_1 N___/ N___| .__/1_1 ___/I_l |V V2N U R O VN W VO

[_1 I_I
INFO Analysis mode = cli
INFO [analysis] deriving ROCperf-compute metrics...

0. Top Stats

0.1 Top Kernels

| | Kernel_Name | Count | Count | Abs Diff | Sum(ns)
----- |-—- -—= -—= i ittt Bty |-- |--

| 0 | yax(double*, double*, doublex, int, int, | 1.00 | 1.0 (0.0%) | 0.00 | 9599042.00
| | double*) [clone .kd] | I | I
0.2 Dispatch List

| | Dispatch_ID | Kernel_Name | GPU_ID |
————— el e -—= -—= |-
| 0| 1 | yax(double*, double*, double*, int, int, double*) [clone .kd] | 4 |
7. Wavefront
7.2 Wavefront Runtime Stats

| Metric_ID | Metric | Avg | Avg | Abs Diff |
-——== |-- -—= -—=- -] -—= el Bl B
| 7.2.0 | Kernel Time (Nanosec) | 9599042.00 | 12104495.0 (26.1%) | 2505453.00 | 9599042
-——= R |-——=————- | - el Bt |-——=————-
| 7.2.1 | Kernel Time (Cycles) | 19350602.00 | 25141619.0 (29.93%) | 5791017.00 | 19350602

161

| 12104495.0 (26.1

.00 | 12104495.0 (

17. L2 Cache
17.2 L2 - Fabric Transactions

C

| Metric_ID | Metric | Avg | Avg | Abs Diff | Min | Min

| Max | Max | Unit |

-—== [-- e | -————- -1 -1 -——= [-- -=1--
| 17.2.11 | Atomic Latency | 6406.73 | 9547.67 (49.03%) | 3140.94 | 6406.73 | 9547.67 (49.03%) | 6406.73 |

Atomic Latency 17.2.11 shows that our solution is more stressful on atomics, likely due to our more
highly optimized cache access. Fixing striding ironically caused our threads to issue atomics more quickly,
degrading our performance!

To fix this, we can attempt to mitigate contention by doing what is called a “shuffle reduction” on each
wavefront. This utilizes a HIP intrinsic called __shfl_down to reduce numbers across threads in a wavefront

without requiring atomics. These implementations can be found in mi300a_problem and mi300a_ solution‘
The code contained in those subdirectories simply implements this shuffle reduction, which allows both
problem and solution to only have the first thread of each wavefront issue the atomic add, rather than all
threads.

Let’s run mi300a_ problem.exe and mi300a_ solution.exe to see if this addresses our problem:
./mi300a_problem.exe

shows:

yAx time: 9.577708 milliseconds

While

./mi300a_solution.exe

Shows:

yAx time: 12.381036 milliseconds

Strangely, this seems to have little effect on our runtimes. The reader may notice that these problems are
running very quickly, and the reader would be right. The mi300a_ problem.exe and mi300a_ solution.exe both
provide an argument to test different problem sizes. Since we assume our matrix in question is square (for the
time being this is an arbitrary assumption — the kernel is capable of handling rectangular matrices as well),
increasing the argument by one increases the problem size nonlinearly. Let’s try running at problem size 15:

./mi300a_problem.exe 15

Shows

yAx time: 312.857488 milliseconds
And

./mi300a_solution.exe 15

Shows

yAx time: 25.878859 milliseconds

It appears that at a smaller problem size, this kernel is more bounded by atomic contention than efficient cache
memory usage. It is important to test different problem sizes to ensure that a run of a code being profiled is
representative, otherwise the limiters shown in profiling may point optimizations in the wrong direction for a
full scale run. As proof of this, you can try manually setting the problem.cpp and solution.cpp problem size
to 15, and see that they run in a similar amount of time to mi300a_ problem and mi300a_ solution. At scale,
the memory bandwidth dominates this specific kernel.

162

Exercise 5: Algorithmic Optimizations

A simple yAx kernel, and more efficient, but more complex yAx kernel to demonstrate algorithmic improve-
ments.

Background: Acronyms and terms used in this exercise

L1: Level 1 Cache, the first level cache local to the Compute Unit (CU). If requested data is not found in the
L1, the request goes to the L2

L2: Level 2 Cache, the second level cache, which is shared by all Compute Units (CUs) on a GPU. If requested
data is not found in the L2, the request goes to HBM

HBM: High Bandwidth Memory is globally accessible from the GPU, and is a level of memory above the L2
cache

CU: The Compute Unit is responsible for executing the User’s kernels

yAx: a vector-matrix-vector product, yAx, where y and x are vectors, and A is a matrix
FP(32/16): 32- or 16-bit Floating Point numeric types

Background: yAx Algorithmic Improvement Explanation

Our approach up to this point could be described as having each thread sum up a row, as illustrated below:
[image](threadrows.PNG*/> However, this is not efficient in the way the parallelism is expressed. Namely,
we could add up all the partial sums for each row in parallel. This would make our approach to be: give a
rows to wavefronts, and have the threads inside each wavefront sum up partial sums in parallel. Then, we
reduce the partial sums atomically with shared memory, before completing the computation and reducing the
final answer using global atomics. This approach expresses more of the parallelism that is available, and
would look something like the figure below: [image](wavefrontrow.PNG”/> The expressed parallelism in each
approach roughly corresponds to the number of red arrows in each figure.

Results on M1210:

Note: This exercise was tested on a system with MI210s, on rocprof-compute version 2.0.0 and ROCm
6.1.2 ROCprof-compute 2.0.0 is incompatible with ROCm versions lesser than 6.0.0
Initial Roofline Analysis

We should start by doing a roofline to see where the problem executable stands. These plots can be generated
with:

rocprof-compute profile -n problem_roof_only --roof-only --kernel-names -- ./problem.exe

The plots will appear as PDF files in the ./workloads/problem_roof_only/MI200 directory, if generated
on MI200 hardware.

They are also provided below for easy reference:

163

Roofline Type Roofline Legend

Kernel Names and Markers

-1 0 1

. yax(double*, double¥*, double*, int, int, double*)

FP32/FP64

164

Roofline Type Roofline Legend

Kernel Names and Markers

-1 0 1

. yax(double*, double¥*, double*, int, int, double*)

FP16/INTS

The performance of this kernel looks pretty close to being HBM bandwidth bound. In the case of algorithmic
optimizations, there may not be obvious evidence other than a suspicion that poor usage of hardware resources
may be improved by changing the overall approach. In this case, we should be able to make better usage of
both L1 and L2 resources by using wavefronts more efficiently to better parallelize our computation.

Exercise Instructions:

To start, let’s profile problem.exe :

make
./problem.exe

(simulated output)
yAx time 12 ms

This should be in line with our last solution. From the last exercise, we saw this output from
rocprof-compute analyze for this kernel:

'/ _\/ N N
[T GO I I ¢ [0 2 I I GO I B [G A G0 2 A B B B
[N___/ \ SV U B N4 B N\

Analysis mode = cli

165

[analysis] deriving

ROCprof-compute metrics...

0. Top Stats
0.1 Top Kernels

| | Kernel_Name

| 0 | yax(double*,

| | double*) [clone .kd]

double*, doublex, int, int, 1.00 | 12364156.00 | 12364156.00

0.2 Dispatch List

| | Dispatch_ID | Kernel_Name | GPU_ID |

1 | yax(double*, double*, double*, int, int, double*) [clone .kd] | 8 |

16. Vector L1 Data Cache

16.1 Speed-of-Light

| Metric_ID | Metric | Avg | Unit |
oo | i tave | 49,95 | Por of pewk 1
ton | Demeramn | 1226 | per of peak |
ot | eitisesion | 95.12 | Por of peak 1
613 | cortesoing | 25.00 | Per of pemk 1
l;j_LQ Cache o o T o i

17.1 Speed-of-Light

| Metric_ID | Metric | Avg | Unit |
-—== |-~ -—= -1- e B
| 17.1.0 | Utilization | 98.56 | Pct |
—————————————— et Rttt
| 17.1.1 | Bandwidth | 10.03 | Pct |
-—== |-~ e |- | -———————
| 17.1.2 | Hit Rate | 0.52 | Pct |
-—== |-~ -—= |- e B
| 17.1.3 | L2-Fabric Read BW | 694.86 | Gb/s |
—————————————— et]
| 17.1.4 | L2-Fabric Write and Atomic BW | 0.00 | Gb/s |

Looking at this data

again, we see: - L1 Cache Hit (16.1.0) is about 50%, which is fairly low for a “well

performing” kernel. - L2 Cache Hit (17.1.2) is about 0%, which is very low to consider this kernel “well

performing”.

This data indicates that we should be able to make better usage of our memory system, so let’s apply the
algorithmic optimization present in solution.cpp

cd solution

166

make
./solution.exe

(simulated output)
yAx time: 7.7 ms

It should be noted again that algorithmic optimizations are usually the most expensive optimizations to
implement, as they usually entail re-conceptualizing the problem in a way that allows for a more efficient
solution. However, as we see here, algorithmic optimization can result in impressive speedups. A better
runtime is not proof that we are using our caches more efficiently, we have to profile the solution:

rocprof-compute profile -n solution --no-roof -- ./solution.exe
(output omitted)
rocprof-compute analyze -p workloads/solution/MI200 --dispatch 1 --block 16.1 17.1

The output for the solution should look something like:

Y N I S N S
I/ N/ __1 "N N D /o N NN 2 2N
[G T A G D 2 I I R GO I l_____ G T G J D T I O Y 4
[_1 N___/ N___| __/1_1 N___/I_I |\ U VYN O R O VPN I VO V|
[_1 [_1

INFO Analysis mode = cli

INFO [analysis] deriving ROCprof-compute metrics...
0. Top Stats
0.1 Top Kernels
| | Kernel_Name | Count | Sum(ns) | Mean(ns) | Median(ns) | Pct |
----- |-—- -—- -—- -—=|--- |-- |-- |-- il B
| 0 | yax(double*, double*, double*, int, int, | 1.00 | 7774568.00 | 7774568.00 | 7774568.00 | 100.00 |
| | double*) [clone .kd] | | | | | |
0.2 Dispatch List
| | Dispatch_ID | Kernel_Name | GPU_ID |
----- |- | - -—- - -—- -1-
| 0| 1 | yax(double*, double*, double*, int, int, double*) [clone .kd] | 2 |

16. Vector L1 Data Cache
16.1 Speed-of-Light

| Metric_ID | Metric | Avg | Unit |
tono | hie tave | 7062 | Por of peak 1
tont | bamtwiaeh | 39.06 | Per of pewk 1
1_1;.1.2 :_;tilization_:_97.85_:_;;t of pea;_I
1615 | comtescing | 25.00 | et of pea |

167

17. L2 Cache
17.1 Speed-of-Light

| Metric_ID | Metric | Avg | Unit |
o | veitsmerion ores | pee 1
I A | ome per
P o mee)
it | Loravrie nesd B8 it0.07 | Gove 1
1_1;.1.4 :_£2—Fabric w;;;e and Atomic BW_:_ 0.8;_:_6;;;___I

Looking at this data, we see: - L1 Cache Hit (16.1.0) shows 71.52%, which is an increase of 1.43x over
49.98% for problem. - L2 Cache Hit (17.1.2) shows 21.23%, which is an increase of 40x over 0.52% for
problem. - L2-Fabric Read BW (17.1.3) shows 1110.67 Gb/s, an increase of 1.6x over 694.86 Gb/s for
problem.

Notice that the ratio between the runtimes in this case: 12/7.7 = 1.56x, which aligns closely with the
L2-Fabric Read BW increases, suggesting this kernel is bounded primarily by memory bandwidth.

Solution Roofline Analysis

As a final step, we should check how this new implementation stacks up with the roofline. These plots can be
generated with:

rocprof-compute profile -n solution_roof_only --roof-only --kernel-names -- ./solution.exe

The plots will appear as PDF files in the ./workloads/solution_roof_only/MI200 directory, if generated
on MI200 hardware.

They are also provided below for easy reference:

168

Roofline Type Roofline Legend

Kernel Names and Markers

-1 0 1

. yax(double*, double¥*, double*, int, int, double*)

FP32/FP64

169

Roofline Type Roofline Legend

Kernel Names and Markers

-1 0 1

. yax(double*, double¥*, double*, int, int, double*)

FP16/INTS

As the ROCprof-compute stats indicate, we are more efficiently using the L1 cache, which shows in the
roofline as a decrease in Arithmetic Intensity for that cache layer. We have a high hit rate in L1, with a
comparatively lower hit rate in L2, and we were able to increase our L2-Fabric bandwidth for the same
problem size, more efficiently requesting data from HBM.

Roofline Comparison

The comparison of these two rooflines is fairly straightforward.

170

Roofline Type

Problem Roofline

FP32/FP64

10k
‘G 5
@
o
& 2
Q
[V
O 1000
Q
I 5
(1]
£
S 2
=
Q
a 100
5
2
10

0.01

0.1

1

/S S

10

41510 GFLOP/s —— HBM-FP32

21085 GFLOP/s L2-FP32
— L1-FP32
—— LDS-FP32

Peak VALU-FP32
Peak MFMA-FP32
e aill

o ail2

e ai_hbm

100 1000

Arithmetic Intensity (FLOPs/Byte)

171

Roofline Type Problem Roofline

X 166980 GFLOP/s — HBM-FP16
165154 GFLOP/s
100k —— L2-FP16
—— L1-FP16
> —— LDS-FP16
, Peak MFMA-FP16
S ai I1
ﬁ 10k ai_I2
% 5 ® ai_hbm
= HBM-18
9 2 L2-18
Q — -
3 1000 L1-18
= —— LDS-18
£ 5 Peak MFMA-I8
£
Q
o
100
5037 GB/S
¢ 1388 GB/s
10
0.01 0.1 1 10 100 1000

Arithmetic Intensity (FLOPs/Byte)
FP16/INTS8

We see now that the optimization we apply in this example makes the kernel get very close to the HBM
bandwidth-bound line. The fact that our kernel falls under the bandwidth line also confirms our suspicion
that this kernel is, in fact, in the bandwidth bound regime.

Summary and Take-aways

This algorithmic optimization is able to work more efficiently out of the L1 and L2. Algorithmic optimizations
are all but guaranteed to have significant development overhead, but finding a more efficient algorithm can
have large impacts to performance. If profiling reveals inefficient use of the memory hardware, it could be
worth thinking about alternative algorithms.

Results on MI300A

Under construction. ..

To run the rocprofv3 trace decoder

ROCprof Trace Decoder

The hands-on exercises will go through how to collect trace decoder output. For how to install the ROCProf
trace decoder on pre-ROCm 7.0 versions. See the instructions at https://github.com/amd/HPCTrainingDock

172

in the HPCTrainingDock/tools/scripts/rocprofiler-sdk__setup.sh script. This script will install the rocprofiler-
sdk, aqlprofile and rocprof-trace-decoder packages into a separate directory and then prepend those paths
before the ROCm paths.

Setting up environment

If the ROCProf trace decoder is installed with a module, load the appropriate module. With the ROCm 7.0
version, the ROCProf trace decoder will be integrated into ROCm software.

module load rocprofiler-sdk
All of these exercises are from the AMD HPC Training Examples which can be retrieved with the following:
git clone https://github.com/amd/HPCTrainingExamples

The examples will be either in the HPCTrainingExamples/HIP or HPCTrainingExamples/rocprof-tracedecoder
directories.

Basic test — vectorAdd
cd HPCTrainingExamples/HIP/vectorAdd

make vectoradd
./vectoradd
rocprofv3 --att -d tracedecoder_vectorAdd -- ./vectoradd

Transfer the files in the tracedecoder_vectorAdd directory to your local machine and read them into
ROCprof Compute Viewer

Cleaning up afterwards

make clean
rm -rf tracedecoder_vectorAdd

ROCprofiler Compute Viewer

The trace decoder data can be viewed in a separate program called ROCprofiler Compute Viewer. There are
pre-built binaries for Microsoft Windows and source code that can be compiled for others systems.

Now start up the ROCprof Compute Viewer.
Untar the data on your local system.

tar -xzvf tracedecoder_ vectorAdd.tgz Open up the data file by using the import tab at the upper left. Select
one of the ui_output_agent™* files in the tracedecoder_vectorAdd directory.

This will open up the Instructions view with the source and ISA windows.
Further exploration:

e Open up the summary view and see an overview of the kernel operation.
e Open up the Wave States to see the timeline view of the instructions
¢ Go to the HotSpot Timeline view to see the instructions used during the kernel
e FExamine the Compute Unit timeline view to see the compute units operation
— Use the WaveView zoon setting on the control panel on the left to zoom in and out to see all of
the timeline or zoom in to a specific part.

Saxpy

cd HPCTrainingExamples/HIP/saxpy

173

make saxpy
. /saxpy
rocprofv3 --att -d tracedecoder_saxpy -- ./saxpy

Transfer the files in tracedecoder_saxpy to your local machine and read them into ROCprof Compute
Viewer

Cleaning up afterwards

make clean
rm -rf tracedecoder_saxpy

Matrix multiply - hip version
cd HPCTrainingExamples/HIP/dgemm

mkdir build && cd build

cmake -DCMAKE_BUILD_TYPE=RelWithDebInfo ..

make

bin/dgemm -m 8192 -n 8192 -k 8192 -i 3 -r 10 -4 0,1,2,3 -o dgemm.csv

rocprofv3 --att -d tracedecoder_dgemm_hip -- bin/dgemm -m 8192 -n 8192 -k 8192 -i 3 -r 10 -4 0,1,2,3 -o dgemm.csv

Transfer the files in tracedecoder_dgemm_hip to your local machine and read them into ROCprof Compute
Viewer

Cleaning up afterwards

make clean

rm -rf tracedecoder_dgemm_hip
cd ..

rm -rf build

Matrix multiply library test (DGEMM)

cd HPCTrainingExamples/rocprof-tracedecoder

make
rocprofvd --att -att-perfcounters "SQ_INSTS_LDS SQ_INSTS_VMEM SQ_INSTS_VMEM_WR SQ_INSTS_VMEM_RD" -d tracedecoder_dg

Transfer files in tracedecoder_dgemm_library to your local system

Cleaning up afterwards

113

make clean rm -rf tracedecoder_ dgemm_ library

Example of How to Use the Scripts in the HPCTrainingDock

Begin by cloning the repo and getting to the “rocm™ directory:
git clone https://github.com/amd/HPCTrainingDock.git cd HPCTrainingDock/rocm/scripts

We will consider the script to install the latest rocm-afar drop with the latest [amdflang compiler] (https://rocm.k
The first thing to do is to run the script with the “--help” option to see what are the input flags for the script

./flang-new__setup.sh —help
The output will be similar to this:

./flang-new__setup.sh: line 4: rocminfo: command not found Usage: WARNING: when specifying —install-path
and —module-path, the directories have to already exist because the script checks for write permissions —amdgpu-
gfxmodel [AMDGPU__GFXMODEL | default autodetected —module-path [MODULE_PATH | default
/etc/lmod/modules/ROCm/amdflang-new —install-path [UNTAR_DIR_INPUT | default /opt/rocmplus-6.0

174

—rocm-version [ROCM__VERSION] default 6.2.0 —build-flang-new | BUILD_FLANGNEW | default 0 —afar-

number [AFAR_ NUMBER | default 8248 —flang-release-number [FLANG_RELEASE_NUMBER]| default
7.0.5 —help: print this usage information

Note from the above output that there is a message saying that “rocminfo™ has not been found: it is used to autodet
From the above list of commands, the “--module-path” will specify the destination of a lua module file that will be
if [-d "$UNTAR_DIR"]; then

don't use sudo if user has write access to install path

if [-w ${UNTAR_DIR} 1; then

sSubo=""
else

echo "WARNING: using an install path that requires sudo"
fi
else
if install path does not exist yet, the check on write access will fail

echo "WARNING: using sudo, make sure you have sudo privileges"
fi

Note above that in case the directory exists and the user has write access, “SUDO=""" so no “sudo” will be used.
To check what is the latest drop, visit [this](https://repo.radeon.com/rocm/misc/flang/) website: as of September 1

We will install the script in our home directory and use the latest drop, with ROCm version 6.4.3. To do so, we fir
mkdir -p $SHOME/flang-new__install mkdir -p $HOME/flang-new__module
Then execute the script (let's assume we are considering an MI300A so gfx942):

./flang-new__setup.sh —amdgpu-gfxmodel gfx942 —install-path SHOME/flang-new__install
—module-path $HOME /flang-new__module —rocm-version 6.4.3
—build-flang-new 1 —afar-number 8473 —flang-release-number 7.1.1

The output you can expect after executing the above command is:

——— Starting flang-new Install with
ROCM__VERSION: 6.4.3 BUILD_FLANGNEW: 1 Archive will be untarred in: /home/sysadmin/flang-

new_install ARCHIVE NAME is rocm-afar-8473-drop-7.1.1 FULL_ARCHIVE NAME is rocm-
afar-8473-drop-7.1.1-ubuntu ARCHIVE_DIR is rocm-afar-7.1.1 INSTALL DIR or UNTAR_DIR is

/home/sysadmin/flang-new__install Looking for the file: https://repo.radeon.com/rocm/misc/flang/rocm-
afar-8473-drop-7.1.1-ubuntu.tar.bz2 ===

If you now do "module avail® you should see

- /ete/lmod/modules/ROCm

amdclang/19.0.0-6.4.3 hipfort/6.4.3 rocm/6.4.3 rocprofiler-sdk/6.4.3 amdflang-
new/rocm-afar-7.1.1 opencl/6.4.3 rocprofiler-compute/6.4.3 (D) rocprofiler-systems/6.4.3 (D) “

175

	AMD Accelerator Cloud (AAC)
	Login Instructions
	SSH-Key Generation
	Login with SSH-Key
	Login with password
	Login Troubleshooting
	Directories and Files

	Container Environment
	Explore Modules

	Slurm Information
	Training Examples Repo

	Programming Model Exercises – Managed Memory and Single Address Space (APU)
	CPU Code baseline
	Standard GPU Code example
	Managed Memory Code
	APU Code – Single Address Space in HIP
	OpenMP APU or single address space
	RAJA Single Address Code
	Kokkos Unified Address Code

	Introduction to OpenMP Offloading
	OpenMP C Build systems: make and cmake
	Make
	CMake

	OpenMP CXX Build systems: make and cmake
	Make
	CMake

	OpenMP Fortran Build systems: make and cmake
	Make
	CMake

	First OpenMP C offload:
	Part 1: Unified shared memory
	Part 2: Impact of USM
	Part 3: Map clauses

	First Fortran OpenMP offload: Porting saxpy step by step and explore the discrete GPU and APU programming models:
	Part 1: Porting with unified shared memory enabled
	Part 2: explore the impact of unified shared memory
	Part 3: with map clauses

	Real World OpenMP Language Constructs
	OpenMP Single Line Compute Constructs:
	CPU version

	OpenMP Single Line Compute Constructs:
	CPU version

	OpenMP complex compute constructs in C
	Full combined compute directive
	Target directive
	Teams clause
	Split multi-level directive

	OpenMP complex compute constructs in Fortran
	Reduction exercise:
	Porting exercise: reduction
	Part 2: Port with map clause

	Porting exercise reduction of multiple scalars in one kernel
	Porting exercise reduction of multiple scalars in one kernel
	Porting exercise reduction into an array
	Porting exercise reduction of multiple scalars in one kernel
	C Code – Porting device routine exercises
	Part 1: Fortran with interface blocks
	Part 2: Fortran with modules
	C++ member function
	C++ member function external
	C++ virtual methods
	Exercise: mapping of different datatypes
	OpenMP Offloading for C++ Codes that use Classes
	The usm Sub-directory
	The explicit Sub-directory

	Submodule test – does the Fortran compiler support the new submodules feature in the Fortran 2008 standard (extension in 2003)

	Introduction to HIP Exercises
	HIP/basic_examples Documentation
	Table of Contents

	Find the error
	Add the device-to-host data transfer
	Complete the square elements kernel
	Complete the matrix multiply kernel
	Complete the matrix multiply kernel
	hipify the CUDA pingpong code
	Complete the matrix multiply with shared memory

	Porting Applications to HIP
	Hipify Examples
	Exercise 1: Manual code conversion from CUDA to HIP (10 min)
	Exercise 2: Code conversion from CUDA to HIP using HIPify tools (10 min)

	HIPifly Example: Vector Addition
	Full OpenMP Application Code
	OpenMP Application Calling a HIP Kernel
	APU Programming Model Version
	HIP application calling an OpenMP Kernel
	OpenMP and HIP Kernels in the Same Source File

	Running a Fortran to HIP interop example
	Explicit Memory Management
	Unified Shared Memory

	Kokkos examples
	Stream Triad
	Step 1: Build a separate Kokkos package
	Step 2: Modify Build
	Step 3: Add Kokkos views for memory allocation of arrays
	Step 5: Add Kokkos timers
	6. Run and measure performance with OpenMP
	Portability Exercises

	C++ Standard Parallelism on AMD GPUs
	hipstdpar_saxpy_foreach example
	hipstdpar_saxpy_transform example
	hipstdpar_saxpy_transform_reduce example
	Traveling Salesperson Problem
	hipstdpar_shallowwater_orig.sh
	hipstdpar_shallowwater_ver1.sh
	hipstdpar_shallowwater_ver2.sh
	hipstdpar_shallowwater_stdpar.sh
	Mix and Match

	Advanced OpenMP presentation
	Memory Pragmas
	One solution that miminizes data transfer
	Unified Shared Memory
	Unified Shared Memory with backwards compatibility
	APU Code – Unified Address in OpenMP

	Kernel Pragmas

	Advanced HIP
	Optimizing DAXPY HIP
	Inputs
	Build Code
	Run exercises
	Things to ponder about
	Notes

	Register Exercises
	Register Pressure - ROCm Blogs

	Register pressure in AMD CDNA™2 GPUs
	HIP Transpose Examples
	Transpose Read Contiguous
	Transpose Write Contiguous
	Tiled Matrix Transpose
	Transpose from the rocblas library

	GPU Aware MPI
	Point-to-point and collective
	OSU Benchmark
	Ghost Exchange example
	RCCL Test

	MPI Example: Ghost Exchange with OpenMP
	Features of the various versions
	Overview of the implementation
	Original version of Ghost Exchange
	Version 1 – Adding OpenMP target offload to original CPU code

	HIP-Python
	Obtaining Device Properties
	Getting Device Attributes
	Accessing HIP Streams using HIP-Python
	Calling hipBLAS from Python using HIP-Python
	Using Unified Shared Memory for hipBLAS using HIP-Python
	Calling hipFFT from Python using HIP-Python
	Unified Shared Memory version of calling hipFFT HIP-Python
	Calling RCCL from Python using HIP-Python
	Unified Shared Memory with RCCL using HIP-Python
	Cython example
	Compiling and Launching Kernels
	Kernels with arguments
	numba-HIP

	CuPy Examples
	Simple introduction example to CuPy for AMD GPUs

	MPI4Py examples
	Exploring MPI communication with MPI4Py

	AMD AI Assistant using retrieval augmented generation (RAG)
	Ollama
	System with a limited number of users
	System with a large number of users

	ROCgdb
	Saxpy Debugging

	Rocprofv3 Exercises for HIP
	Jacobi
	Setup environment
	Compile and run one case
	Let's profile HIP
	Let's create statistics
	Where are the kernels?
	Create pftrace file for Perfetto and Visualize
	Hardware Counters
	Tips

	Rocprofv3 Exercises for OpenMP
	Setup environment
	Build and run
	Basic rocprov3 profiling
	Available options
	First kernel information
	Create statistics
	Visualizing traces using Perfetto

	Additional features
	Hardware Counters

	Next steps

	ROCm™ Systems Profiler aka rocprof-sys
	Environment setup
	Build and run
	rocprof-sys config
	Instrument application binary
	Run instrumented binary
	Visualizing traces using Perfetto
	Additional features
	Flat profiles
	Hardware counters
	Sampling
	Profiling multiple MPI processes

	Next steps

	Stream Overlap Example
	Folder 0-Orig
	Folder 1-split-copy-compute-hw-queues
	Folder 2-pageable-mem
	Self-guided tour of the Stream Overlap example

	ROCprof-compute
	Exercise 1: Launch Parameter Tuning
	Results on MI210
	Initial Roofline Analysis:
	Exercise instructions:
	ROCprof-compute Command Line Comparison Feature:
	More Kernel Filtering:
	Solution Roofline
	Roofline Comparison
	Summary and Take-aways

	Results on MI300A
	Roofline Analysis:
	Exercise Instructions:
	ROCprof-compute Command Line Comparison Feature:
	More Kernel Filtering:

	Exercise 2: LDS Occupancy Limiter
	Results on MI210
	Initial Roofline Analysis
	Exercise Instructions:
	Solution Roofline
	Roofline Comparison
	Summary and Take-aways

	Results on MI300A
	Roofline Analysis:

	Exercise 3: Register Occupancy Limiter
	Results on MI210
	Initial Roofline Analysis
	Exercise Instructions:
	Solution Roofline
	Roofline Comparison
	Summary and Take-aways

	Results on MI300A
	Roofline Analysis:

	Exercise 4: Strided Data Access Patterns (and how to find them)
	Results on MI210
	Initial Roofline Analysis
	Exercise Instructions:
	Solution Roofline Analysis
	Roofline Comparison
	Summary and Take-aways

	Results on MI300A

	Exercise 5: Algorithmic Optimizations
	Results on MI210:
	Initial Roofline Analysis
	Exercise Instructions:
	Solution Roofline Analysis
	Roofline Comparison
	Summary and Take-aways

	Results on MI300A

	ROCprof Trace Decoder
	Setting up environment
	Basic test – vectorAdd

	ROCprofiler Compute Viewer
	Saxpy
	Matrix multiply - hip version
	Matrix multiply library test (DGEMM)

