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Role of ROCprof Compute Viewer and Trace Decoder?

Rocprofv3 enables basic profiling and hardware counters
Rocprof-sys gives a system level view including CPU, MPI, OpenMP®.and
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Rocprof-compute provides a detailed overview of the performance of
individual GPU kernels

What lines of code in the kernel are taking the most time?
Where are stalls happening?

What parts of the kernel are consuming resources such as LDS memory?
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ROCprof Compute Viewer — high-level view of kernels
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Summary View

From https://rocm.docs.amd.com/projects/rocprof-compute-viewer/ Instructions View

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

3 together we advance_



ROCprof Compute Viewer — Timeline views
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Instructions view — detail exploration

Color coding for blocks SALU ~ VMEM =LDS mJUMP mNEXT mIMMED m MATRIX

We begin with the instructions view in
the Rocprof Compute Viewer.

The lines of code from the kernel are
shown on the right.

Just to the left of the kernel line is a bar
indicating the resources used for that
line.

The assembler ISA for the source lines
is shown on the left. This can quickly
show whether a wide load instruction
has been used or what are the compute
instructions generated by the compiler.
Also shown is the hit count and latency
for each line

Clicking on a source code or ISA line
will reorient the other window to the
corresponding line and left align the top
timeline view of the compute unit.
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Quickstart Usage Walkthrough



Generating trace decoder data

Set up the environment — load the rocprofiler-sdk or rocm module depending on your system
module load rocprofiler-sdk

Build the HIP code that you want to profile
cd ../HIP/vectorAdd
make vectoradd

Generate the trace decoder data
rocprofv3 -d tracedecoder vectorAdd -- ./vectoradd

CLI Options
required to turn on trace decoder
needed for summary (and maybe source code?). Frequency number is from 1 to 32.
Compile debug to get the source code included

Tar up the directory specified for the data in the previous command

tar -czvf tracedecoder_vectorAdd.tgz tracedecoder vectorAdd
Copy the files to your local system

scp <hpc_system>:tracedecoder vectorAdd.tgz tracedecoder_ vectorAdd.tgz
Clean up afterwards

make clean

rm -rf tracedecoder_ vectorAdd
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ROCprof Compute Viewer

Untar the data that you have copied to your system
tar --xzvf tracedecoder vectorAdd.tgz

Now start up ROCprof Compute viewer on your local system

Use Import at the very top left and select one of the ui_output_agent* files in the tracedecoder_vectorAdd
directory. Center the source code window, select vectorAdd.hip and scroll down to find the kernel.

Select line 58 a[i] = b[i] + c][i];
and see what lines get
highlighted in the left window.
There is a very small rectangle
on the left of line showing
resource usage — we are not
using much in this kernel.

We compiled with -g -O2, so
the lines may not be exact.
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Summary View

Click on the Summary tab.

We can see that we are mostly
using VALU (Vector Arithmetic Logic
Unit) instructions

We are also mostly seeing
Stall/Wait states

We can conclude that we are
memory bandwidth bound and that
we could be doing a lot more
compute work in this kernel.

Based on this, let’s investigate the
wave state timeline to better
understand what is happening.
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Wave States Timeline

Click on the Wave States tab.
We see that it is mostly waits rather than stalls. This tells us that we are likely just waiting on data loads.
Compute (Exec) is low indicating that we could do more work.

Let’s jump to the Hotspot view to see if we can learn something there.
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Hotspot Timeline

We see an initial memory request and then fairly sparse activity.

With a more complex kernel, we should see where LDS usage, matrix and other instruction types occur.
Let’s switch to the Compute Unit view to get a big picture of what is going on at that level.
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Input Plots Options

Compute Unit Timeline
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Installation Instructions



Installing ROCprof Compute Viewer

Check for releases of HPC Compute Viewer
https://github.com/ROCm/rocprof-compute-viewer/releases

For Windows

, there is a pre-built version for download
Uses a Windows setup tool

To build from source, see

https://rocm.docs.amd.com/projects/rocprof-compute-

viewer/en/amd-mainline/install/installation.html#install-viewer

Linux®, Mac OS, Windows Subsystem for Linux (WSL) and

Windows® native
Uses Qt 50or 6
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@ Rocprof-Compute-Viewer-0.1.2-win64.exe

[7) Source code (zip)

m Source code (tar.gz)

ROCprof-Compute-Viewer Setup

Welcome to
ROCprof-Compute-Viewer Setup

Setup will guide you through the installation of
ROCprof-Compute-Viewer.

e all other applications

before starting Setup. will make it possible to update

s
relevant system files without having to reboot your
computer.

Click Next to continue.
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Setting up Trace Decoder

Nothing needed on ROCm 7.0+ !!
Trace Decoder is a part of ROCprofv3

We have installed on ROCm version 6.4.1 with some effort.
Install recent rocprofiler-sdk from source to a different location (/opt/rocmplus-6.4.1/rocprofiler-sdk)
Install aglprofile to same location
Install tracedecoder binary to same location
Set paths to the new rocprofiler-sdk directory before the standard ROCm location
Need to override default gfx codes since some do not exist before ROCm 7.0
Install to prior ROCm versions may break in the future
Cannot install prior to ROCm 6.2

May consider using a ROCm 7.0 container to get early access as well
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Setup pre-7.0 ROCm version step 1

Requires system have libdw installed

Setup script with these steps at
git clone https://github.com/AMD/HPCTrainingDock
File: HPCTrainingDock/tools/scripts/rocprofiler-sdk _setup.sh
Check script for latest instructions

Set INSTALL PATH to /opt/rocmplus-6.4.1/rocprofiler-sdk or other directory

Install trace decoder

wget https://github.com/ROCm/rocprof-trace-decoder/releases/download/0.1.2/rocprof-trace-decoder-manylinux-
2.28-0.1.2-Linux.tar.gz

tar -xzvf rocprof-trace-decoder-manylinux-2.28-0.1.2-Linux.tar.gz

mv rocprof-trace-decoder-manylinux-2.28-0.1.2-Linux/opt/rocm/1lib/librocprof-trace-decoder.so
$INSTALL PATH/1ib

rm -rf rocprof-trace-decoder-manylinux-2.28-0.1.2-Linux
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https://github.com/AMD/HPCTrainingDock

Setup pre-7.0 ROCm version step 2

Install rocprofiler-sdk

AMDGPU_GFXMODEL is set to “gfx90a;gfx942” to override default gfix model list. Use what you need

here.
git clone -b develop https://github.com/ROCm/rocm-systems.git rocm-systems-source

cmake -B rocprofiler-sdk-build A\
-DCMAKE_INSTALL PREFIX=${INSTALL_PATH} \
-DGPU_TARGETS=\"${AMDGPU_GFXMODEL}\" \
-DOPENMP_GPU_TARGETS=\"${AMDGPU_GFXMODEL}\" \
-DCMAKE_PREFIX PATH=/opt/rocm-${ROCM_VERSION} \

rocm-systems-source/projects/rocprofiler-sdk

cmake --build rocprofiler-sdk-build --target all --parallel 8
cmake --build rocprofiler-sdk-build --target install

rm -rf rocprofiler-sdk-source rocprofiler-sdk-build
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Setup pre-7.0 ROCm version step 3

Install aglprofile

cmake -B aqglprofile-build \
-DGPU_TARGETS="${AMDGPU_GFXMODEL}" \
-DCMAKE_PREFIX PATH=/opt/rocm-${ROCM_VERSION}/1lib:/opt/rocm-${ROCM VERSION}/include/hsa \
-DCMAKE_INSTALL PREFIX=$INSTALL_ PATH \
rocm-systems-source/projects/aqlprofile

cmake --build aqglprofile-build --target all --parallel 8
cmake --build aqlprofile-build --target install

rm -rf rocm-systems-source aqlprofile-build
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Omnistat
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Omnistat

Omnistat is primarily for HPC cluster administrators
Has both a system-wide and a user-mode

Metrics include:
GPU utilization
High-bandwidth memory (HBM) usage
GPU power
GPU temperature
GPU clock frequency
GPU memory clock frequency
Inventory information:
ROCm driver version
GPU type
GPU vBIOS version
Optional metrics
RAS information (error counts per GPU block)
GPU power caps
GPU throttling events
Host network traffic (received/transmitted)
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Sample output — GPU Usage Summary

+ GPU Usage Summary
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Omnistat: Where to get more information

AMD Research project and is not part of the ROCm software stack.
Online documentation

Source code

Uses either Prometheus client and server or VictoriaMetrics server for scalable collection of metrics
Uses Grafana for visualizing data
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Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions,

and typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons,
including but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product
releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any
computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to
update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes
from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS 1S.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY
APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILLAMD BE LIABLE TO ANY PERSON FOR
ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY
INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

AMD, the AMD Arrow logo, ROCm and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used
in this publication are for identification purposes only and may be trademarks of their respective companies.

© 2025 Advanced Micro Devices, Inc. All rights reserved.

Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git
Project, in the United States and/or other countries

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board

Windows is a registered trademark of Microsoft Corporation in the US and/or other countries.
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