Newer Tools:
ROCprof Trace Decoder
and Omnistat

Presenter: Bob Robey
Oct 21-23, 2025
AMD @ Tsukuba University

AMD 1

together we advance_

Role of ROCprof Compute Viewer and Trace Decoder?

Rocprofv3 enables basic profiling and hardware counters
Rocprof-sys gives a system level view including CPU, MPI, OpenMP®.and

v
A
A

CPUHIP API 2

TITTT
L

I

many others. i T
IR
m e i

ko sl 072025

A GPU28

)

A COPY1

Instr Buff

Rocprof-compute provides a detailed overview of the performance of
individual GPU kernels

What lines of code in the kernel are taking the most time?
Where are stalls happening?

What parts of the kernel are consuming resources such as LDS memory?

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

ROCprof Compute Viewer — high-level view of kernels

Instructions | Global Vi Summ
Summary View
Hardware Ut
Distribution
upancy = Kemel Dispatch Compute Unit
1386900 | 387000

. Idle
Stall/wait (83) ‘ Stall/Wait

Issue

Instruction

MFMA 5 VALU VMEM d;_wnte_lﬁ-’ v0, v178 offset:3276

| ,_n_minus_m + MAX_SEQ_LEN -1
ds_write_b32 v227, v176 offset:32768
itcnt Igkment(0)

FLAT Util LDS Util MFMA Util \ Util | VALU Util VMEM Util | S 3 SQ VALU MFMA _BUSY

SE D CU C 40 131584 :. Nonel and mask_n[None, :1.

SE0CU C 4 131584 attn_bias + pos_w
|| . q gk + attn_bias
_b32 v177, v231 offset:3276 b 6 elif ATTN_BIAS_TYPE == "separate"
nt Igkment(0) 216 62 attn_| = tl.load(

SEOCU2

SEO0CU

131584

w

SEOCU C - 131584

ds_write_b32
o

@

SEOCUG o b o % 131584 silu = fast_di
silu = tl.wher:
SEOCU 7 C 4 131584

-
i)

Wl W W w
o

-

1

wow
= =)
VRSN

wow
bt}
~ @

)

gkmcnt{0)

ww

~
&

Summary View

From https://rocm.docs.amd.com/projects/rocprof-compute-viewer/ Instructions View

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

3 together we advance_

ROCprof Compute Viewer — Timeline views

SALU =~ VMEM w DS mJUMP mNEXT mIMMED m MATRIX

Counters | Wave States | Holtspot Occupancy | Kernel Dispatches = Compute Unit | Utilization

Idle Exec Wait m Stall
100

84
67
50
33

L Hotspot Timeline

0
8051372 8062636 8073899 8085162 8096426 8107689 8118952 8130216

Counters | Wave States | Hotspot = Occupancy | Kernel Dispatches | Co nit | Utilizatio
0 0 (:1 39000
:)ol——l[[[[I T ERERT [I————IHUI [T
0- 1I—I[[L[11T ERERT [I—
ml———llm T [I————IHUI 11
1- 1%———_1[&[IR [L——_
Counters | Wave States | Hotspot |~ Occupancy | Kernel Dispatches | Compute Unit t;;wa.ns; ol—l[] ‘—‘ i [T
2 1I————_ﬂ LW [LIlLL[[l——*
M w————————————qmmom——————————————————mn
3- 1I—I[[L[11111 ——]| 01111 [I—

Wave States Timeline

Compute Unit Timeline

1196897 2333794 3590691 4787588 5984485 7181382 8378279

OCCU pancy Tlme“ne From https://rocm.docs.amd.com/projects/rocprof-compute-viewer/

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

Instructions view — detail exploration

Color coding for blocks SALU ~ VMEM =LDS mJUMP mNEXT mIMMED m MATRIX

We begin with the instructions view in
the Rocprof Compute Viewer.

The lines of code from the kernel are
shown on the right.

Just to the left of the kernel line is a bar
indicating the resources used for that
line.

The assembler ISA for the source lines
is shown on the left. This can quickly
show whether a wide load instruction
has been used or what are the compute
instructions generated by the compiler.
Also shown is the hit count and latency
for each line

Clicking on a source code or ISA line
will reorient the other window to the
corresponding line and left align the top
timeline view of the compute unit.

Oct 21-23, 2025

Instructions | Global View

Instruction

3456
10496
2472
)
attn_bias = attn_bias + pos_w
gk = gk + attn_bias
elif ATTI S E == "separate”

& mask_n[None, :1,
ds_write_|
ds_write

Module “math’ has no attribute "fast_dividef".
(-qk)) * (1.0 /] MAX EN)

0, v 7
Igkment(0) 216 26¢ 377 |def _ragged_hstu_attn_fwd_compute(# noga C901
Q.

From https://rocm.docs.amd.com/projects/rocprof-compute-viewer/

AMD @ Tsukuba University AMD ¢\

together we advance_

Quickstart Usage Walkthrough

Generating trace decoder data

Set up the environment — load the rocprofiler-sdk or rocm module depending on your system
module load rocprofiler-sdk

Build the HIP code that you want to profile
cd ../HIP/vectorAdd
make vectoradd

Generate the trace decoder data
rocprofv3 -d tracedecoder vectorAdd -- ./vectoradd

CLI Options
required to turn on trace decoder
needed for summary (and maybe source code?). Frequency number is from 1 to 32.
Compile debug to get the source code included

Tar up the directory specified for the data in the previous command

tar -czvf tracedecoder_vectorAdd.tgz tracedecoder vectorAdd
Copy the files to your local system

scp <hpc_system>:tracedecoder vectorAdd.tgz tracedecoder_ vectorAdd.tgz
Clean up afterwards

make clean

rm -rf tracedecoder_ vectorAdd

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

ROCprof Compute Viewer

Untar the data that you have copied to your system
tar --xzvf tracedecoder vectorAdd.tgz

Now start up ROCprof Compute viewer on your local system

Use Import at the very top left and select one of the ui_output_agent* files in the tracedecoder_vectorAdd
directory. Center the source code window, select vectorAdd.hip and scroll down to find the kernel.

Select line 58 a[i] = b[i] + c][i];
and see what lines get
highlighted in the left window.
There is a very small rectangle
on the left of line showing
resource usage — we are not
using much in this kernel.

We compiled with -g -O2, so
the lines may not be exact.

Oct 21-23, 2025 AMD @ Tsukuba University | AMDAQ

together we advance_

Summary View

Click on the Summary tab.

We can see that we are mostly
using VALU (Vector Arithmetic Logic
Unit) instructions

We are also mostly seeing
Stall/Wait states

We can conclude that we are
memory bandwidth bound and that
we could be doing a lot more
compute work in this kernel.

Based on this, let’s investigate the
wave state timeline to better
understand what is happening.

Oct 21-23, 2025

Instructions

Global View Summary Explorer

Hardware Utilization

Summary View

Peak

SEQCUO

SEOCU1

SEQOCU 2

SEOCU3

SEOCU4

SEQCU 5

SE0CU 6

22.9%
9.1% o0
0.0% 0.0% 0.0% 0.0% 1.5% : 1.0%
||
MFMA MFMAPeak VALU VALUPeak LDS VMEM FLAT scA MISC

Activity Distribution

Idle 4.1%
Stall/Wait 64.3%

Issue 316%

FLAT Util LDS Util MFMA Util MISC Util SCA Util VALU Util VMEM Util SQ BUSY_CU_CYCLES SQ_VALU_MFMA BUSY CYCLES SQ_ACTIVE_INST VALU SQ ACTIVEINST DS SQ_ACTIVE INST VMEM SQ_ACTIVE_INST =

3% 0% 0% 3% 15% 23% 0%
2% 0% 0% 1% 5% 10% 0%
1% 0% 0% 1% 5% 9% 0%
2% 0% 0% 1% 5% 9% 0%
1% () 0% 1% 5% 9% 0%
2% 0% 0% 1% 5% 9% 0%
1% 0% 0% 1% 5% 8% 0%
2% 0% 0% 1% 5% 9% 0%

AMD @ Tsukuba University

23296

30583

31770

31700

31772

30475

32220

31499

0

© o o ©o ©o o o

5337

2952

2736

2880

2808

2808

2736

2880

0

o o o ©o o ©o o©o

o] 742

492

456

480

468

468

456

© o o o o o o©o

480

AMDZU

together we advance_

Wave States Timeline

Click on the Wave States tab.
We see that it is mostly waits rather than stalls. This tells us that we are likely just waiting on data loads.
Compute (Exec) is low indicating that we could do more work.

Let’s jump to the Hotspot view to see if we can learn something there.

Counters

34
28
22
17

11

Oct 21-23, 2025

Hotspot QOccupancy Kernel Dispatches Compute Unit Utilization

M Exec M Wait Stall

’
| !’
(| INL ! Nyh quﬂther\ LM”L&“HLMALL.[\LJMU | ML

EYEE] 11467 17200 22034 28667 34401 40134

AMD @ Tsukuba University AMD ¢\

together we advance_

Hotspot Timeline

We see an initial memory request and then fairly sparse activity.

With a more complex kernel, we should see where LDS usage, matrix and other instruction types occur.
Let’s switch to the Compute Unit view to get a big picture of what is going on at that level.

Counters Wave States Hotspot

Occupancy Kernel Dispatches Compute Unit Utilization
m SMEM m SALU m FLAT VALU NEXT IMMED MSG

413K

275K

138K

o.ook_ N = I |

1 E] 5 7 Ck 11 13 15 17 19 21 23 25 27 29 31 EE 35 37 39 41 43 45 a7 49 51 53 55 57 59 61 63
Code line number
Instructions Global View Summary Explorer

Oct 21-23, 2025

AMD @ Tsukuba University

AMDZU

together we advance_

Input Plots Options

Compute Unit Timeline

‘ui_output_agent_19957_dispatch_1

Shader SIMD Slot WavelD

Click on Compute Unit. Then go over to the left control panel and = 0
change the WaveView zoom from 10 to 5 so that we can see the whole
t|mel|ne GlobalView zoom: 10 -
We clearly see the initial memory load requests in yellow and then niaboadic s
scattered VALU instructions in light blue.

Counters ~ Wave States ~ Hotspot =~ Occupancy = Kernel Dispatches =~ Compute Unit Utilization

SMo-00 e - im im — - mlm . - . jm :

Moo T (I I [- [[-

SM0-02 | | 1 |] | [| W |]

SM0-03 .-. I- ‘ I f I i I ‘ I I

SM0-04 I- | - | | I il] [l | 1]]]

Moo e 11— ~m - [1 -]

SM0-06 I:- | _- } I | I-: : [l | |

SM0-07 || 1 _ |] | [-

M 1-00 1 i i | I | I |

sM10 T [| | [I - | " |

Oct 21-23, 2025 AMD @ Tsukuba University AMDZ1

together we advance_

Installation Instructions

Installing ROCprof Compute Viewer

Check for releases of HPC Compute Viewer
https://github.com/ROCm/rocprof-compute-viewer/releases

For Windows

, there is a pre-built version for download
Uses a Windows setup tool

To build from source, see

https://rocm.docs.amd.com/projects/rocprof-compute-

viewer/en/amd-mainline/install/installation.html#install-viewer

Linux®, Mac OS, Windows Subsystem for Linux (WSL) and

Windows® native
Uses Qt 50or 6

Oct 21-23, 2025

AMD @ Tsukuba University

v Assets 3

@ Rocprof-Compute-Viewer-0.1.2-win64.exe

[7) Source code (zip)

m Source code (tar.gz)

ROCprof-Compute-Viewer Setup

Welcome to
ROCprof-Compute-Viewer Setup

Setup will guide you through the installation of
ROCprof-Compute-Viewer.

e all other applications

before starting Setup. will make it possible to update

s
relevant system files without having to reboot your
computer.

Click Next to continue.

AMDZU

together we advance_

https://github.com/ROCm/rocprof-compute-viewer/releases
https://github.com/ROCm/rocprof-compute-viewer/releases
https://github.com/ROCm/rocprof-compute-viewer/releases
https://github.com/ROCm/rocprof-compute-viewer/releases
https://github.com/ROCm/rocprof-compute-viewer/releases
https://github.com/ROCm/rocprof-compute-viewer/releases
https://rocm.docs.amd.com/projects/rocprof-compute-viewer/en/amd-mainline/install/installation.html#install-viewer
https://rocm.docs.amd.com/projects/rocprof-compute-viewer/en/amd-mainline/install/installation.html#install-viewer
https://rocm.docs.amd.com/projects/rocprof-compute-viewer/en/amd-mainline/install/installation.html#install-viewer
https://rocm.docs.amd.com/projects/rocprof-compute-viewer/en/amd-mainline/install/installation.html#install-viewer
https://rocm.docs.amd.com/projects/rocprof-compute-viewer/en/amd-mainline/install/installation.html#install-viewer
https://rocm.docs.amd.com/projects/rocprof-compute-viewer/en/amd-mainline/install/installation.html#install-viewer
https://rocm.docs.amd.com/projects/rocprof-compute-viewer/en/amd-mainline/install/installation.html#install-viewer
https://rocm.docs.amd.com/projects/rocprof-compute-viewer/en/amd-mainline/install/installation.html#install-viewer
https://rocm.docs.amd.com/projects/rocprof-compute-viewer/en/amd-mainline/install/installation.html#install-viewer
https://rocm.docs.amd.com/projects/rocprof-compute-viewer/en/amd-mainline/install/installation.html#install-viewer

Setting up Trace Decoder

Nothing needed on ROCm 7.0+ !!
Trace Decoder is a part of ROCprofv3

We have installed on ROCm version 6.4.1 with some effort.
Install recent rocprofiler-sdk from source to a different location (/opt/rocmplus-6.4.1/rocprofiler-sdk)
Install aglprofile to same location
Install tracedecoder binary to same location
Set paths to the new rocprofiler-sdk directory before the standard ROCm location
Need to override default gfx codes since some do not exist before ROCm 7.0
Install to prior ROCm versions may break in the future
Cannot install prior to ROCm 6.2

May consider using a ROCm 7.0 container to get early access as well

Oct 21-23, 2025 AMD @ Tsukuba University

AMDZU

together we advance_

Setup pre-7.0 ROCm version step 1

Requires system have libdw installed

Setup script with these steps at
git clone https://github.com/AMD/HPCTrainingDock
File: HPCTrainingDock/tools/scripts/rocprofiler-sdk _setup.sh
Check script for latest instructions

Set INSTALL PATH to /opt/rocmplus-6.4.1/rocprofiler-sdk or other directory

Install trace decoder

wget https://github.com/ROCm/rocprof-trace-decoder/releases/download/0.1.2/rocprof-trace-decoder-manylinux-
2.28-0.1.2-Linux.tar.gz

tar -xzvf rocprof-trace-decoder-manylinux-2.28-0.1.2-Linux.tar.gz

mv rocprof-trace-decoder-manylinux-2.28-0.1.2-Linux/opt/rocm/1lib/librocprof-trace-decoder.so
$INSTALL PATH/1ib

rm -rf rocprof-trace-decoder-manylinux-2.28-0.1.2-Linux

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

https://github.com/AMD/HPCTrainingDock

Setup pre-7.0 ROCm version step 2

Install rocprofiler-sdk

AMDGPU_GFXMODEL is set to “gfx90a;gfx942” to override default gfix model list. Use what you need

here.
git clone -b develop https://github.com/ROCm/rocm-systems.git rocm-systems-source

cmake -B rocprofiler-sdk-build A\
-DCMAKE_INSTALL PREFIX=${INSTALL_PATH} \
-DGPU_TARGETS=\"${AMDGPU_GFXMODEL}\" \
-DOPENMP_GPU_TARGETS=\"${AMDGPU_GFXMODEL}\" \
-DCMAKE_PREFIX PATH=/opt/rocm-${ROCM_VERSION} \

rocm-systems-source/projects/rocprofiler-sdk

cmake --build rocprofiler-sdk-build --target all --parallel 8
cmake --build rocprofiler-sdk-build --target install

rm -rf rocprofiler-sdk-source rocprofiler-sdk-build

Oct 21-23, 2025 AMD @ Tsukuba University

AMDZU

together we advance_

Setup pre-7.0 ROCm version step 3

Install aglprofile

cmake -B aqglprofile-build \
-DGPU_TARGETS="${AMDGPU_GFXMODEL}" \
-DCMAKE_PREFIX PATH=/opt/rocm-${ROCM_VERSION}/1lib:/opt/rocm-${ROCM VERSION}/include/hsa \
-DCMAKE_INSTALL PREFIX=$INSTALL_ PATH \
rocm-systems-source/projects/aqlprofile

cmake --build aqglprofile-build --target all --parallel 8
cmake --build aqlprofile-build --target install

rm -rf rocm-systems-source aqlprofile-build

Oct 21-23, 2025 AMD @ Tsukuba University

AMDZU

together we advance_

Omnistat

Oct 21-23, 202AMD @ Tsukuba University

Omnistat

Omnistat is primarily for HPC cluster administrators
Has both a system-wide and a user-mode

Metrics include:
GPU utilization
High-bandwidth memory (HBM) usage
GPU power
GPU temperature
GPU clock frequency
GPU memory clock frequency
Inventory information:
ROCm driver version
GPU type
GPU vBIOS version
Optional metrics
RAS information (error counts per GPU block)
GPU power caps
GPU throttling events
Host network traffic (received/transmitted)

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

Sample output — GPU Usage Summary

+ GPU Usage Summary

Mean GPU Utilization (%) GPU Utilization Heatmap

O = N W s 0O N

Card: 4 Card: 5

Max GPU Memory Utilization (%)
I I |
| | I I
I I I |
| | I I
I I I I

I

I

I

| | I
I I
I

O - N WA OO N

I

I

09:10 09:20 09:40 : : 10:10 10:20
.

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

21 together we advance_

22

Omnistat: Where to get more information

AMD Research project and is not part of the ROCm software stack.
Online documentation

Source code

Uses either Prometheus client and server or VictoriaMetrics server for scalable collection of metrics
Uses Grafana for visualizing data

Oct 21-23, 2025 AMD @ Tsukuba University

AMDZU

together we advance_

https://rocm.github.io/omnistat
https://rocm.github.io/omnistat
https://github.com/ROCm/omnistat
https://github.com/ROCm/omnistat

23

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions,

and typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons,
including but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product
releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any
computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to
update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes
from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS 1S.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY
APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILLAMD BE LIABLE TO ANY PERSON FOR
ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY
INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

AMD, the AMD Arrow logo, ROCm and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used
in this publication are for identification purposes only and may be trademarks of their respective companies.

© 2025 Advanced Micro Devices, Inc. All rights reserved.

Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git
Project, in the United States and/or other countries

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board

Windows is a registered trademark of Microsoft Corporation in the US and/or other countries.

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

	Slide 1: Newer Tools: ROCprof Trace Decoder and Omnistat
	Slide 2: Role of ROCprof Compute Viewer and Trace Decoder?
	Slide 3: ROCprof Compute Viewer – high-level view of kernels
	Slide 4: ROCprof Compute Viewer – Timeline views
	Slide 5: Instructions view – detail exploration
	Slide 6: Quickstart Usage Walkthrough
	Slide 7: Generating trace decoder data
	Slide 8: ROCprof Compute Viewer
	Slide 9: Summary View
	Slide 10: Wave States Timeline
	Slide 11: Hotspot Timeline
	Slide 12: Compute Unit Timeline
	Slide 13: Installation Instructions
	Slide 14: Installing ROCprof Compute Viewer
	Slide 15: Setting up Trace Decoder
	Slide 16: Setup pre-7.0 ROCm version step 1
	Slide 17: Setup pre-7.0 ROCm version step 2
	Slide 18: Setup pre-7.0 ROCm version step 3
	Slide 19: Omnistat
	Slide 20: Omnistat
	Slide 21: Sample output – GPU Usage Summary
	Slide 22: Omnistat: Where to get more information
	Slide 23: Disclaimer
	Slide 24

