Intr ction to rocprof-compute

Presenter: Bob Robey
AMD @ Tsukuba University
Oct 21-23, 2025

AMD ¢

together we advance_

AMD has three GPU profiling tools

rocprof-compute
kernel performance analysis

rocprofv3 rocprof-sys

GPU tracing and counter collection GPU and CPU tracing

rocprofiler-sdk
tracing and profiling infrastructure for developing tools

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

What is rocprof-compute?

« rocprof-compute is a GPU kernel performance analysis tool added to ROCm with version 6.3

 Previously (before ROCm 6.3) called Omniperf

* Most notable features:
* Roofline analysis to quantify performance of GPU kernels based on achievable hardware limits
» Kernel comparison to quantify code changes and confirm their impact on hardware
» Derived performance metrics that provide deep insight into kernel performance

« Support for speed of light and memory chart

AMDZU

together we advance_

Oct 21-23, 2025 AMD @ Tsukuba University

Background — What is roofline?

Attainable FLOPs/s =

min {

Machine balance:
Where

Five performance regions:

Unattainable compute
Unattainable bandwidth
Compute bound
Bandwidth bound

Poor performance

Oct 21-23, 2025

Unattainable performance
(greater than peak FLOPs/s) Peak FLOPS/S

e Compute Bound

(V5]
S~
[%5]
(a
@)
—
L
Q
o)
©
=
(]
]
<

1
Arithmetic Intensity (FLOPs/Byte)

AMD @ Tsukuba University

AMDZU

together we advance_

Visualize rooflines with rocprof-compute

rocprof-compute profile -n rooflines PDF --roof-only --kernel-names -- ./GhostExchange -x 1 -y 1 -i
20000 -j 20000 -h 2 -t -c -I 100

41345 GFLOP/s HBM-FP32
20862 GFLOP/s L2-FP32
L1-FP32
LDS-FP32
Peak VALU-FP32
Peak MFMA-FP32
ai_l1 Note: In some rocprof-
%

all2 compute versions FP32 and
blur b FP64 lines overlapping — this

is fixed in later versions.
12389 GB/s

)
@
(2]

€

o
O

—

L

O

S
@
G
c
@
£

2
[

o

0.01 0.1 1 10

Arithmetic Intensity (FLOPs/Byte)
Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

Get kernels info with rocprof-compute

To generate profiling data run:
rocprof-compute profile -n vl --no-roof -- ./GhostExchange -x 1 -y 1 -1 200 -j 200 -h 2 -t -c -I 100

You can then display the IDs of the kernels involved by doing:
rocprof-compute analyze --list-stats -p workloads/v1/MI300A Al/

Detected Kernels (sorted decending by duration)

Kernel Name

blur kernel I ldouble**, double**, int, int) [clone .kd]

has ID O

init core(double**, int, int, int, double) [clone .kd]
enforce _bcs left(double**, int, int) [clone .kd]
enforce_bcs_rght(double**, int, int, int) [clone .kd]
enforce bcs top(double**, int, int, int) [clone .kd]
enforce bcs bot(double®**, int, int) [clone .kd]
init core2(double**, int, int, int, int, int, int, int, int, int) [clone .kd]
__amd _rocclr_initHeap.kd

Oct 21-23, 2025 AMD @ Tsukuba University Qg::‘hlgﬁa svance.

Get kernel dispatch ID with rocprof-compute

The command below will also show you the IDs for each kernel dispatch. Let’'s consider blur:
rocprof-compute analyze --list-stats -p workloads/v1/MI300A A1/ | grep blur

(double**, double**, int, int) [clone .kd]
(double**, double®**, int, i
double®*#*, double®**, int, i
double®*#*, double®**, int, i
double®*#*, double®**, int, i
double®*#*, double®**, int, i
double®*#*, double®**, int, i clone .
double®*#*, double®**, int, i clone .

) , [clone .
: : [
: , [
: , [
: : [
: , [
: , [
double**, double®**, int, i [clone .
: , [
: , [
: : [
: , [
: , [
: : [
: , [

clone .
clone .
clone .
clone .

double®*#*, double®**, int, i clone .
double®*#*, double®**, int, i clone .
double®*#*, double®**, int, i clone .
double®*#*, double®**, int, i clone .
double®*#*, double®**, int, i clone .
double®*#*, double®**, int, i clone .

double®*#*, int, i clone .

MR R R RN R R R N RN RN NN NN

double®#,

The dispatch IDs correspond to the launch order of the kernels during the run

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

Compare different kernel implementations

Modify the blur and init core kernel grid size and block size at GhostExchange.hip:207 from:

dim3 grid((isize+63)/64, (jsize+3)/4, 1); dim3 block(64, 4, 1);
To:
dim3 grid((isize+255)/256, (jsize+3)/4, 1); dim3 block(256, 4, 1);

Then compile a generate the profiling data for this new version:
rocprof-compute profile -n v2 --no-roof -- ./GhostExchange -x 1 -y 1 -1 200 -j 200 -h 2 -t -c -I 100

You can compare the two versions by using rocprof-compute analyze:
rocprof-compute analyze -p workloads/v1/MI300A Al -p workloads/v2/MI300A Al --block 16.2 17.2

17. L2 LiLhe
17.2 - Fabric Transactions

356. 26

Read Latency

Not specifying any dispatch in the rocprof-compute analyze command above will show averaged values

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

Guided exercises

Launch parameters
LDS occupancy limiter
VGPR occupancy limiter

Strided data access pattern / representative problem size

AMDZU

together we advance_

Oct 21-23, 2025 AMD @ Tsukuba University

Guided exercises: Logistics/Preamble

git clone https://github.com/amd/HPCTrainingExamples.git
cd HPCTrainingExamples/rocprof-compute

Feel free to clone the above repo and start working through the exercises
The READMEs are comprehensive walkthroughs on their own, I'll provide highlights in the talk

The numbers shown in the READMEs were generated using MI210 and MI300A accelerators, and the accelerator
used is made clear in each case

To generate the output for these slides use rocprof-compute from ROCm 6.4.0
This is a module available to you on the training environment: module load rocprofiler-compute/6.4.0

WARNING: For educational purposes implementations in these exercises are not fully-optimized kernels

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

10 together we advance_

Guided exercises: Representative optimization tasks

The exercises are roughly in order of ease of development effort and performance impact:
Exercise 1: Verify reasonable launch parameters
Exercise 2: Attempt to cache data in shared memory
Exercise 3: Determining a source of unexpected resource usage
Exercise 4: Verifying efficient data access patterns and representative problem sizes

Though we use a simple HIP code, we have verified that rocprof-compute works with Fortran +
OpenMP® codes, and the material on these slides should apply to those codes as well

The underlying code kept simple (and barely mentioned) to emphasize the optimization techniques

These slides are intended as a “Cheat Sheet” starting point providing:
Commands to filter through output for common optimization concerns
Some optimization direction given certain output

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

Guided exercises: Optimizing yAx kernel

We’'ll be looking at a relatively simple kernel that solves the same problem in each exercise
yAXx is a vector-matrix-vector product that can be implemented in serial as:

double result = 0.0;
for (int 1 = 0; 1 < n; i++){
double temp = 0.0;
for (int j = 0; j < m; j++){
temp += A[i*m + j] * x[J];
}

result += y[i] * temp;

}
Where:
Ais a 1-D array of size n*m
X is an array of size m
y is an array of size n

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

12 together we advance_

Exercise 1: First things first, generate a roofline

Run this command to generate roofline plots and a legend for each kernel (in PDF form):

rocprof-compute profile -n problem_roof only --roof-only --kernel-names -- ./problem.exe
The files will appear in the . /workloads/problem roof only/MI300 A1l folder.
--roof-only generates PDF roofline plots, and does not generate any non-roofline profiling data
--kernel-names generates a separate PDF showing which kernel names correspond to which icons in the roofline

Rooflines are a useful tool in determining which kernels are good optimization targets
Only one perspective of performance, kernel runtime cannot be inferred from the roofline

Generated PDF roofline plots can have overlapping data points but should still be instructive
There are fixes to this, but they may be difficult to setup for different cluster installations
Generating the PDF plots from the command line interface should always work

Complete sets of roofline plots and commands can be found in the READMEs for each exercise

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

13 together we advance_

[
@
wn

0

a

9

[T

g
w
(&)
c
(1o}
=
_
o

£
_
[

a

Exercise 1: Roofline plots

41425 GFLOP/s
21036 GFLOP/s

19250°GRTs

922) GB/s
5026 GB/S

Very poor performance!

1388 GB/s

HBM-FP32
L2-FP32

L1-FP32
LDS-FP32

Peak VALU-FP32
Peak MFMA-FP32
ai 11

ai_|2

ai_hbm

Performance (GFLOP/sec)

19250°GB/s

9221 GB/s
5026 GB/s

1388 GB/s

166613 GFLOP/s
164812 GFLOP/s

HBM-FP16
L2-FP16
L1-FP16
LDS-FP16
Peak MFMA-FP16
ai 11

ai_|2

ai_hbm
HBM-I8

L2-18

L1-18

LDS-18

Peak MFMA-I8

Note: The L2 data point
@ s hidden behind the

HBM data point

0.1 1 10 100 . 0.1 1 10 100 1000
Arithmetic Intensity (FLOPs/Byte) Kernel Names and Markers Arithmetic Intensity (FLOPs/Byte)

=1

Kernel legend in
a separate PDF

yax(double*, double*, double*, int, int, double*)

AMDZU

together we advance_

Oct 21-23, 2025 , ,
¢ AMD @ Tsukuba University

Exercise 1: Prep to find kernel launch parameters

Launch parameters are given at the time of the kernel launch, as in lines 49 and 54

yax<<<grid,block>>>(y,A,x,n,m,result);
Where grid and block are the kernel yax’s launch parameters

In problem, grid = (4,1,1),and block = (64,1,1)
In solution, grid = (2048,1,1), and block = (64,1,1)

Sometimes launch parameters can be obfuscated by OpenMP® and other parallelism layers

rocprof-compute can easily show launch parameter information regardless of the code
You just need the dispatch ID — other forms of filtering may report aggregate launch parameters

To generate profiling data, use the commands:
rocprof-compute profile -n problem --no-roof -- ./problem.exe

rocprof-compute profile -n solution --no-roof -- ./solution.exe
--no-roof saves time by not generating roofline data — profile commands can take a while

Real benchmarks can take prohibitively long — use smaller representative problems when possible
Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

15 together we advance_

Exercise 1: CLI rocprof-compute comparisons are easy

rocprof-compute analyze

--dispatch 1 --block 7.1.0 7.1.1 7.1.2

Using as the , and as the

INFO Analysis mode = cli

INFO [analysis] deriving rocprofiler-compute metrics...
0. Top Stats
0.1 Top Kernels

T T
Kernel_Name Count || Count Abs Diff | Sum(ns) I Sum(ns) Mean(ns) | Mean(ns) Median(ns) | Median(ns) [Pct | Pct
0 yax(double*, double*, double*, int, int, 1.00 1.0 (0.0%) 0.00 543201153.00 9589864.0 (-98.23%) 543201153.00 9589864.0 (-98.23%) 543201153.00 9589864.0 (-98.23%) 100.00 100.0 (0.0%

double*) [clone .kd]

0.2 Dispatch List

Typically, difficult to pre-determine optimal launch

56.6x speedup

parameters, so some experimentation is often necessary

T
Dispatch_ID | Kernel_Name GPU_ID
0 1 | yax(double*, double*, double*, int, int, double*) [clone .kd] 4
7. Wavefront
7.1 Wavefront Launch Stats
T T T
Metric_ID Metric | Avg ” Avg || Abs Diff | Min | Min || Max | Max | Unit
7.1.0 Grid Size 256.00 131072.0 (51100.0%) 130816.00 256.00 131072.0 (51100.0%) 256.00 131072.0 (51100.0%) Work items
7.1. Workgroup Size 64.00 || 64.0 (0.0%) 0.00 64.00 | 64.0 (0.0%) 64.00 | 64.0 (0.0%) Work items
7.1. Total Wavefronts 4.00 2048.0 (51100.0%) 2044.00 4.00 2048.0 (51100.0%) 4.00 2048.0 (51100.0%) Wavefronts

Oct 21-23, 2025

AMD @ Tsukuba University

Increased launched wavefronts,
which increases grid size

AMDZU

together we advance_

Exercise 1: Comparing problem and solution roofline plots

Problem FP32 Roofline Plot

41425 GFLOP/s
21036 GFLOP/s

18250°GRs

922)GB/s
5026 GB/S

[
]
(2]

0

S

|

[T

<2
w
()
c
(18]}
=
o

=
]
a

1388 GB/

0.1 1 10 100
Arithmetic Intensity (FLOPs/Byte)

HBM-FP32
L2-FP32

L1-FP32
LDS-FP32

Peak VALU-FP32
Peak MFMA-FP32
ai_I1

ai_l2

ai_hbm

Performance (GFLOP/sec)

Solution FP32 Roofline Plot

41506 GFLOP/s

21080 GFLOP/s

20913 GR/s

9237 GB/s
5035 GBfs
388 GB/s

0.01 0.1 1 10 100

Arithmetic Intensity (FLOPs/Byte)

Generally, moving up and to the right is good

Oct 21-23, 2025

AMD @ Tsukuba University

HBM-FP32
L2-FP32

L1-FP32
LDS-FP32

Peak VALU-FP32
Peak MFMA-FP32
ai Il

ai_|2

ai_hbm

AMDZU

together we advance_

Exercise 1: It’s easy to check launch parameters

rocprof-compute analyze -p workloads/problem/MI300A Al --dispatch 1 --block 7.1.6 7.1.1 7.1.2
--block filters the output to only show launch parameters

Good launch parameters essential to a performant GPU kernel
Determining which parameters give the best performance usually requires experimenting

Can be difficult to track down where launch parameters are set in code (OpenMP® may decide)

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

Exercise 2: Diagnosing shared memory occupancy limiter

Using LDS (Local Data Store) shared memory to cache re-used data can be effective optimization strategy
Using too much LDS can restrict occupancy however, and reduce performance

LDS allocation example:
__shared _ double tmp[fully allocate 1lds];

Two solutions proposed in the exercises:
solution-no-1ds removes the LDS allocation, and thus the occupancy limiter

solution reduces the size of the LDS allocation, removes occupancy limiter, and is faster than solution-no-1ds
This is the solution used to generate the rocprof-compute output in the next slide

rocprof-compute makes it easy to determine if LDS allocations restrict occupancy

rocprof-compute profile -n problem --no-roof -- ./problem.exe
rocprof-compute profile -n solution --no-roof -- ./solution.exe
Oct 21-23, 2025 AMD @ Tsukuba University AMDZ1

19 together we advance_

https://github.com/amd/HPCTrainingExamples/tree/main/OmniperfExamples/2-LDSOccupancyLimit

Exercise 2: LDS occupancy limiter — relevant output

rocprof-compute analyze -p workloads/problem/MI300A Al -p workloads/solution/MI3@OA Al --dispatch 1 --block 2.1.15 6.2.7

INFO Analysis mode = cli
INFO [analysis] deriving rocprofiler-compute metrics...

0. Top Stats
0.1 Top Kernels
Kernel_Name Count | Count Abs Diff NITGE) NITGE) Mean(ns) Mean(ns) Median(ns) Median(ns) Pct Pct
0 | yax(double*, double*, double*, int, int, 1.00 1.0 (0.0%) 0.00 7225180.00 5736816.0 (-20.6%) 7225180.00 5736816.0 (-20.6%) 7225180.00 5736816.0 (-20.6%) 100.00 100.0 (0.0%)
double*) [clone .kd]
0.2 Dispatch List 1 26X Speedup
Dispatch_ID | Kernel_Name GPU_ID
(2] 1 | yax(double*, double*, double*, int, int, double*) [clone .kd] | 4

2. System Speed-of-Light
2.1 Speed-of-Light

Metric_ID Metric Avg | Avg Abs Diff | Unit Peak | Peak Pct of Peak | Pct of Peak + ~3% OCCUpanCy (Overa”)

2.1.15 Wavefront Occupancy | 175.66 | 418.68 (138.35%) 3.33 | Wavefronts | 7296.00 | 7296.0 (0.0%) 2.41 | 5.74 (138.31%)

6. Workgroup Manager (SPI)
6.2 Workgroup Manager - Resource Allocation

Metric D | Metric Ave | Ave Abs DIFf | Min | Min | Max | Max wit | Sharp decrease in Workgroup Manager stat
6.2.7 Insufficient CU LDS | 57.33 | 0.8 (-100.0%) -57.33 | 57.33 | 0.0 (-100.0%) ‘ 57.33 | 0.0 (-100.0%) | Pct
Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

20 together we advance_

Exercise 2: Use SPI stats to determine if LDS limits occupancy

Occupancy limiters can negatively impact performance
Occupancy increases don'’t always correspond to increased performance

Workgroup Manager (SPI — Shader Processor Input) stats in rocprof-compute indicate whether a kernel
resource limits occupancy

You can get the Workgroup Manager stat for LDS for a single kernel with dispatch ID 1:
rocprof-compute analyze -p workloads/problem/MI300 Al --dispatch 1 --block 2.1.15 6.2.7

Note:

In rocprof-compute, the Workgroup Manager “insufficient resource” stats are percentages, meaning:

The magnitude of these fields does not necessarily indicate how severely occupancy is impacted
Changes to the Workgroup Manager stat do not directly translate to changes to overall occupancy, necessarily

If two fields are nonzero, the larger number indicates that resource is limiting occupancy more

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

21 together we advance_

Exercise 3: Diagnosing a register occupancy limiter

Seemingly innocuous function calls inside kernels can lead to unexpected performance characteristics
The solution simply removes the assert

Admittedly the occupancy limit is very minor, but this is a good excuse to look at register usage.

The types of registers on AMD GPUs are:
VGPRs (Vector General Purpose Registers): registers that can hold distinct values for each thread in the wavefront

SGPRs (Scalar General Purpose Registers): uniform across a wavefront. If possible, using these is preferable

AGPRs (Accumulation vector General Purpose Registers): special-purpose registers for MFMA (Matrix Fused
Multiply-Add) operations, or low-cost register spills

Using too many of one of these register types can impact occupancy and negatively impact performance

We use the same profile commands to get the profiling data:
rocprof-compute profile -n problem --no-roof -- ./problem.exe
rocprof-compute profile -n solution --no-roof -- ./solution.exe

N Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

23

Exercise 3: Register occupancy limiter — relevant output

rocprof-compute analyze -p workloads/problem/MI3@0A Al -p workloads/solution/MI3@0A Al --dispatch 1 --block 2.1.15 6.2.5 7.1.5 7.1.6 7.1.7

0. Top Stats
0.1 Top Kernels
T
Kernel_Name Count | Count Abs Diff sum(ns) Sum(ns) EERIGED) Mean(ns) Median(ns) | Median(ns) Pct | Pct
@ | yax(double*, double*, double*, int, int, 1.00 | 1.0 (0.0% 0.00 | 9993665.00 | 9666265.0 (-3.28% 9993665.00 | 9666265.0 (-3.28% 9993665.00 | 9666265.0 (-3.28% 100.00 | 100.0 (0.0%
((0.0%) (%) (%) (%) (@.07
double*) [clone .kd]
0.2 Dispatch List .
conitteds Minor speedup
2. System Speed-of-Light
2.1 Speed-of-Light
T T 1
Metric_ID Metric Avg | Avg Abs Diff | Unit E] Peak | Pct of Peak | Pct of Peak |
1 1 1
, .. .

2.1.15 Wavefront Occupancy | 430.98 | 427.36 (-0.84%) -0.05 | Wavefronts | 7296.60 | 7296.0 (0.0%) 5.91 | 5.86 (-0.85%) Similar occupancies
6. Workgroup Manager (SPI)
6.2 Workgroup Manager - Resource Allocation

T T T T . .
Metric_ID Metric Avg | Avg Abs Diff Min | Min | Max | Max | unit M|n0r Change in Workgroup
T i
6.2.5 Insufficient SIMD VGPRs 0.06 | 0.0 (-99.7%) -0.06 | 0.06 | 0.8 (-99.7%) 0.06 | 0.0 (-99.7%) ||Pct Manager Stat
Exact values might be slightly different,
"""""""""""""""" but conclusionstaythesame """
7. Wavefront
7.1 Wavefront Launch Stats
| T

Metric_ID Metric Avg | Avg Abs Diff Min | Min Max | Max | Unit

7.1.5 VGPRs 92.00 | 32.0 (-65.22%) -60.00 | 92.00 | 32.0 (-65.22%) 92.00 | 32.0 (-65.22%) | Registers Fewel" VGPRS

7.1.6 AGPRs 132.00 | 0.0 (-100.0%) -132.00 | 132.00 | 0.0 (-100.0%) 132.00 | 0.0 (-100.0%) registers | NNO AGPRS

7.1.7 SGPRs 48.00 | 112.0 (133.33%) 64.00 48.00 | 112.0 (133.33%) 48.00 | 112.0 (133.33%) | Registers More SGPRS

AMD @ Tsukuba University AMDZ1

Oct 21-23, 2025

together we advance_

Exercise 3: Register occupancy limiter — takeaways

In this case the occupancy limit is very minor

Seemingly innocuous function calls inside kernels can lead to unexpected performance characteristics
Asserts, and even excessive use of math functions in kernels can degrade performance
Can be difficult to construct clear examples of this, anecdotally

AGPR usage in the absence of MFMA instructions can indicate degraded performance
Spilling registers to AGPRs, due to running out of VGPRs

To determine if any Workgroup Manager “insufficient resource” stats are nonzero, you can do:
rocprof-compute analyze -p workloads/problem/MI300A Al --block 6.2

Note: This will report more than just all “insufficient resource” fields

Oct 21-23, 2025 AMD @ Tsukuba University Qg:?hgvil advance

24

Exercise 4: Data access patterns important for performance

The way in which threads access memory has a big impact on performance
If you increase occupancy and performance decreases, memory access patterns could be the culprit

“Striding” in global memory has adverse effects on kernel performance, especially on GPUs
“Strided data access patterns” lead to poor utilization of cache memory systems

These access patterns can be difficult to spot in the code
They are valid methods of indexing data

May be less applicable to OpenMP® codes, but still useful to know what to look for
This example is more exaggerated than a reasonable code would be

Using rocprof-compute can quickly show if a kernel’s data access is adversarial to the caches

Oct 21-23, 2025 AMD @ Tsukuba University

25

AMDZU

together we advance_

[Public]

Exercise 4: What is a “strided data access pattern”?
Thread O Thread 1 Thread 63

Data that each thread accesses at each step requires striding through

Matrix A memory, which leads to sub-optimal memory system usage.

Threads

Oct 21-23, 2025 AMD @ Tsukuba University AMDA

26 together we advance_

[Public]

Exercise 4: Strided data access patterns NS

Increasing the locality of data accesses of nearby
threads allows for more efficient memory usage

/Note: This is the same computation as before, only
data layout has changed

Threads

>

—_—

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ
27 together we advance_

28

Exercise 4: Diagnose a strided data access pattern

This exercise’s setup makes it very easy to change the data access pattern
Generally, these optimizations can have nontrivial development overhead
Re-conceptualizing the data’s structure can be difficult

All the solution does is re-work the indexing scheme to better use caches
No required change to underlying data, because all the values in y, A, and x are set to 1

Importantly, highly contended atomics on the same global memory address is bad coding practice. This
code example does that, production codes should avoid this pattern (foreshadowing)

To get started run:
rocprof-compute profile -n problem --no-roof -- ./problem.exe
rocprof-compute profile -n solution --no-roof -- ./solution.exe

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

Exercise 4: Strided data access pattern — relevant output

rocprof-compute analyze -p workloads/problem/MI300A Al -p workloads/solution/MI3@OA Al --dispatch 1 --block 16.1 17.1

0. Top Stats
0.1 Top Kernels
Kernel_Name Count | Count Abs Diff Sum(ns) | Sum(ns) Mean(ns) | Mean(ns) Median(ns) | Median(ns) Pct | Pct
0 yax(double*, double*, double*, unsigned 1.00 1.9 (0.0%) 0.00 9541187 .00 12304272.0 (28.96%) 9541187.00 12304272.0 (28.96%) 9541187 .00 12304272.0 (28.96%) 100.00 100.0 (O.
long long, unsigned long long, double*)
[clone .kd]
__ 0
16. Vector L1 Data Cache ~30% Slowdown?!
16.1 Speed-of-Light
Metric_ID Metric Avg | Avg Abs Diff | Unit
[[| | | . .
16.1.0 Hit rate | e.e1 | 75.0 (1061717.66%) | 74.99 | Pct of peak | + ~75% IN |_1 hlt
1 1 1 1 1
16.1.1 Bandwidth 23.50 4.56 (-80.62%) -18.95 Pct of peak
16.1.2 Utilization 85.08 96.69 (13.65%) 11.61 Pct of peak
16.1.3 Coalescing 25.00 | 25.0 (0.0%) 0.00 | Pct of peak . .
The solution better uses the L1, which
should result in speedup. Why is the
. y .
17. L2 Cache solution slower? Let's check atomic
. peed-of-Light
Metric_ID Metric Avg | Avg Abs Diff | Unit IEitEBr](:)/
17.1.0 Utilization 98.80 98.57 (-0.23%) -0.23 Pct
17.1.1 Bandwidth 55.85 2.73 (-95.12%) -53.13 Pct
17.1.2 Hit Rate 93.66 | 0.68 (-99.28%) -92.99 | Pct L2 Cache Hit
17.1.3 L2-Fabric Read BW 912.60 | 698.54 (-23.46%) -214.097 | Gb/s decreases Sharply
17.1.4 L2-Fabric Write and Atomic BW 0.01 | 0.01 (-0.0%) -0.00 | Gb/s

Oct 21-23, 2025

29

AMD @ Tsukuba University

AMDZU

together we advance_

Exercise 4: Atomic latency — relevant output

rocprof-compute analyze -p workloads/problem/MI300A Al -p workloads/solution/MI3@0OA Al --dispatch 1 --block 17.2.11

0. Top Stats
0.1 Top Kernels

Kernel_Name Count | Count Abs Diff Sum(ns) | Sum(ns) Mean(ns) | Mean(ns) Median(ns) | Median(ns) Pct | Pct

0 yax(double*, double*, double*, unsigned 1.00 1.9 (0.9%) 0.00 9541187 .00 12304272.0 (28.96%) 9541187.00 12304272.0 (28.96%) 9541187.00 12304272.0 (28.96%) 100.00 100.0 (O.

long long, unsigned long long, double*)

[clone .kd]
0.2 Dispatch List 300/ Sl d

~
Dispatch_ID | Kernel_Name GPU_ID 0 ()\AI ()\Alr]
0 1 | yax(double*, double*, double*, unsigned long long, unsigned long long, double*) 4
[clone .kd]
17. L2 Cache
17.2 L2 - Fabric Transactions
Metric_ID Metric Avg | Avg Abs Diff Min | Min i Max i Max Unit
I I
T T
17.2.11 Atomic Latency 6289.38 10098.1 (60.56%) 3808.72 6289.38 10098.1 (60.56%) | 6289.38 | 10098.1 (60.56%) Cycles
. y . . .
Solution’s atomic latency is higher!
This kernel is bound by atomics, not
memory bandwidth
Oct 21-23, 2025 AMDZ

30

AMD @ Tsukuba University

together we advance_

31

Exercise 4: Why is atomic latency higher in solution?

In solution.cpp, we start hitting in the L1 cache, rather than having to go out to L2 for everything
This reduces our memory latency, thus increasing the contention and pressure of the atomics
This, coupled with the naive, atomic-heavy reduction strategy, means atomics are our limiter, not cache

This is the midpoint of the exercise, the lesson here is not: “use suboptimal cache access patterns”

Let’s try to optimize our reduction strategy to use a “shuffle reduction” to reduce the atomic contention
You can see how this is accomplished in mi300a_problem and mi300a_solution

Note: In a real code, optimizations of this type likely have much more development overhead
Need to change how the data structure is indexed everywhere, and reduction strategies can be costly to refactor

AMDZU

together we advance_

Oct 21-23, 2025 AMD @ Tsukuba University

32

Exercise 4: Atomic latency — relevant output

rocprof-compute analyze -p workloads/mi3@0a problem/MI300A Al -p workloads/mi3@0a_solution/MI300A Al --dispatch 1 -block 17.2.11

INFO Analysis mode = cli
INFO [analysis] deriving rocprofiler-compute metrics...

0. Top Stats
0.1 Top Kernels

T
Kernel_Name Count | Count Abs Diff Sum(ns) | Sum(ns) | Mean(ns) | Mean(ns) Median(ns) | Median(ns) Pct | Pct
| |
0 | yax(double*, double*, double*, unsigned 1.00 1.0 (0.0%) 0.00 9593149.00 12351549.0 (28.75%) 9593149.00 i 12351549.0 (28.75%) 9593149.00 12351549.0 (28.75%) 100.00 100.0 (O.
long long, unsigned long long, double*) |
[clone .kd]
0.2 Dispatch List 0 H
P , ~30% Slowdown, still?
Dispatch_ID | Kernel_Name GPU_ID
0|1 yax(double*, double*, double*, unsigned long long, unsigned long long, double*) 4
[clone .kd]
17. L2 Cache
17.2 L2 - Fabric Transactions
Metric_ID Metric Avg | Avg Abs Diff Min || Min Max | Max Unit
17.2.11 Atomic Latency | 6785.81 | 9603.13 (41.52%) 2817.32 | 6785.81 || 9603.13 (41.52%) | 6785.81 | 9603.13 (41.52%) || Cycles
. . . . L) L] .
Exact values might be slightly different, Solution’s atomic Iatency IS better, but
but conclusion stay the same : :
y still much higher!
Oct 21-23, 2025 AMDZ1

AMD @ Tsukuba University

together we advance_

Exercise 4: Why is atomic latency still higher in solution?

We already saw that solution uses the caches better, but this results in being bottlenecked by atomics
We’ve seen that reducing atomic contention a small amount does not solve this, why?

The atomic reduction is the bottleneck, and solution will always be slightly more contended than problem
As our problem size grows, cache access and data movement should be our bottleneck

This is the true lesson of this exercise: Profile a representative problem size!
Profiling problems that are too small may give you misleading optimization ideas

Let's run mi3@0a_problem and mi300a_solution with larger problem sizes:

rocprof-compute profile -n mi3@0a_problem 15 --no-roof -- ./mi3@0a problem 15
rocprof-compute profile -n mi3@0a_solution_15 --no-roof -- ./mi3@0a_solution 15
Oct 21-23, 2025 AMD @ Tsukuba University AMDZ1

33 together we advance_

Exercise 4: Larger Problem Size — Relevant Output

rocprof-compute analyze -p workloads/mi3@0a_problem_15/MI300A Al -p workloads/mi3@@a_solution_15/MI30@0A Al --dispatch 1 --block 16.1 17.1

0. Top Stats
0.1 Top Kernels
| |
Kernel_Name Count Count Abs Diff Sum(ns) Sum(ns) Mean(ns) | Mean(ns) | Median(ns) Median(ns) Pct Pc
1 |
I |
0 | yax(double*, double*, double*, unsigned 1.00 | 1.0 (0.0%) | @.00 309917571.00 | 25600803.0 (-91.74%) |/ 309917571.00 | 25600803.0 (-91.74%) | 309917571.00 | 25600803.0 (-91.74%) | 100.00 | 1€
long long, unsigned long long, double*) |
[clone .kd] | |
16. Vector L1 Data Cache ~1 2X Speedup
16.1 Speed-of-Light
| | |
Metric_ID Metric Avg | Avg ! Abs Diff ! Unit l
16.1.0 Hit rate 0.00 | 75.0 (26214512.5%) 75.00 | Pct of peak S|m||ar L1 performance to the small
16.1.1 Bandwidth 2.89 | 8.76 (202.8%) 5.87 | Pct of peak problem Size
16.1.2 Utilization | 81.82 | 98.35 (20.2%) 16.53 | Pct of peak
16.1.3 Coalescing | 25.00 | 25.6 (0.0%) 0.00 | Pct of peak We f|na||y see the speedup we expect when
using a better data access pattern
17. L2 Cache
17.1 Speed-of-Light
T
Metric_ID Metric Avg | Avg Abs Diff | Unit
17.1.0 Utilization 69.02 | 99.52 (44.19%) 30.50 | Pct
17.1.1 Bandwidth 6.88 | 5.22 (-24.14%) -1.66 | Pct
17.1.2 Hit Rate 89.30 | 0.32 (-99.64%) .08 | ree | L2 hit rate is greatly reduced, and L2
17.1.3 L2-Fabric Read BW 173.83 | 1342.9 (672.53%) 1169.07 | Gb/s bandW|dth iS greaﬂy increased
17.1.4 L2-Fabric Write and Atomic BW 0.01 | 0.0 (-9.0%) -0.00 | Gb/s
AMDZ1

Oct 21-23, 2025

AMD @ Tsukuba University

together we advance_

Exercise 4: Speed-of-Light cache access statistics

The command below will show high-level details about L1 and L2 cache accesses:
rocprof-compute analyze -p workloads/problem/MI300A Al --dispatch 1 --block 16.1 17.1

Ensuring better data locality will generally provide better performance
In this case, we start hitting in the L1 cache, rather than having to go out to L2 for everything

If you increase your cache efficiency but are running a small problem, you can check atomic latency:
rocprof-compute analyze -p workloads/problem/MI300A Al --dispatch 1 --block 17.2.11

Note: In a real code, optimizations of this type likely have much more development overhead
Need to change how the data structure is indexed everywhere

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

35 together we advance_

rocprof-compute tips

Filtering by kernel name and metrics during rocprof-compute profile will cut down on profiling time
rocprof-compute profile -k “<kernell>” “<kernel2>” filters two kernel names
Surrounding kernel name in quotes allows spaces to appear in your kernel search string
Rocprof-compute applies wildcard automatically, so only unique kernel names substring required

Use a subset of metrics for rocprof-compute profile to reduce the number of rocprof runs
rocprof-compute profile --block SQ SQC -n <workload name> -- ./benchmark.sh
rocprof-compute profile --help displays all block strings you can filter by
Performance model doc goes over some of the meaning behind lower-level hardware units and metrics

rocprof-compute requires multiple app runs to collect hardware counters
Running with MPI is currently not supported, but this is being explored

Don’t know where to start? — Easy things to check:
Are all the CUs being used? — If not, more parallelism is required (for most of the cases)
Are all the VGPRs being spilled? — Try smaller workgroup sizes

Is the code Integer limited? — Try reducing the integer ops, usually in the index calculation
Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

36 together we advance_

https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/conceptual/performance-model.html
https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/conceptual/performance-model.html

37

Summary

rocprof-compute: a GPU kernel-level profiling tool that automatically collects many counters

Can create roofline analysis to understand kernel efficiency and distance to the theoretical peaks

Displays many kernel metrics, but to correctly interpret it good knowledge of the kernel required
Easy to start running it, but steep learning curve for the analysis

Supports standalone GUI, and CLI

Includes several features such as:
System Speed-of-Light Panel
Memory Chart Analysis Panel
Vector L1D Cache Panel
Shader Processing Input (SPI) Panel

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

Hands-on exercises

Located in our HPC Training Examples repo:
https://github.com/amd/HPCTrainingExamples

A table of contents for the READMEs if available at the top-level README in the repo

Relevant exercises for this presentation located in:
rocprof-compute directory
Omniperf-OpenMP directory

Instructions on how to run the rocprof-compute tests located in the specific example directories

Log into the AAC node and clone the repo:

ssh <username>@aac6.amd.com -p 7000 -i <path to ssh key>
git clone https://github.com/amd/HPCTrainingExamples.git
module load rocm/6.4.0 rocprofiler-compute/6.4.0

. Oct 21-23, 2025 AMD @ Tsukuba University

AMDZU

together we advance_

https://github.com/amd/HPCTrainingExamples
https://github.com/amd/HPCTrainingExamples/blob/main/README.md
https://github.com/amd/HPCTrainingExamples/tree/main/OmniperfExamples
https://github.com/amd/HPCTrainingExamples/tree/main/OmniperfExamples
https://github.com/amd/HPCTrainingExamples/tree/main/OmniperfExamples
https://github.com/amd/HPCTrainingExamples/tree/main/OmniperfExamples
https://github.com/amd/HPCTrainingExamples/tree/main/Omniperf-OpenMP
https://github.com/amd/HPCTrainingExamples/tree/main/Omniperf-OpenMP
https://github.com/amd/HPCTrainingExamples/tree/main/Omniperf-OpenMP
https://github.com/amd/HPCTrainingExamples/tree/main/Omniperf-OpenMP
https://github.com/amd/HPCTrainingExamples.git

DISCLAIMERS AND ATTRIBUTIONS

The information contained herein is for informational purposes only and is subject to change without notice. While every precaution has been taken in the preparation of this
document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this

information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and
assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of
AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this
document. Terms and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD's Standard Terms
and Conditions of Sale. GD-18

THIS INFORMATION IS PROVIDED ‘AS 1S.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND
ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT
WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM
THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git Project, in the United
States and/or other countries

© 2025 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo, Radeon™ Instinct™, EPYC, Infinity Fabric, ROCm™, and combinations thereof are trademarks of Advanced Micro Devices, Inc.
Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git Project, in the United
States and/or other countries

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

	Default Section
	Slide 1: Introduction to rocprof-compute
	Slide 2: AMD has three GPU profiling tools
	Slide 3: What is rocprof-compute?
	Slide 4: Background – What is roofline?
	Slide 5: Visualize rooflines with rocprof-compute
	Slide 6: Get kernels info with rocprof-compute
	Slide 7: Get kernel dispatch ID with rocprof-compute
	Slide 8: Compare different kernel implementations
	Slide 9: Guided exercises
	Slide 10: Guided exercises: Logistics/Preamble
	Slide 11: Guided exercises: Representative optimization tasks
	Slide 12: Guided exercises: Optimizing yAx kernel
	Slide 13: Exercise 1: First things first, generate a roofline
	Slide 14: Exercise 1: Roofline plots
	Slide 15: Exercise 1: Prep to find kernel launch parameters
	Slide 16: Exercise 1: CLI rocprof-compute comparisons are easy
	Slide 17: Exercise 1: Comparing problem and solution roofline plots
	Slide 18: Exercise 1: It’s easy to check launch parameters
	Slide 19: Exercise 2: Diagnosing shared memory occupancy limiter
	Slide 20: Exercise 2: LDS occupancy limiter – relevant output
	Slide 21: Exercise 2: Use SPI stats to determine if LDS limits occupancy
	Slide 22: Exercise 3: Diagnosing a register occupancy limiter
	Slide 23: Exercise 3: Register occupancy limiter – relevant output
	Slide 24: Exercise 3: Register occupancy limiter – takeaways
	Slide 25: Exercise 4: Data access patterns important for performance
	Slide 26: Exercise 4: What is a “strided data access pattern”?
	Slide 27: Exercise 4: Strided data access patterns
	Slide 28: Exercise 4: Diagnose a strided data access pattern
	Slide 29: Exercise 4: Strided data access pattern – relevant output
	Slide 30: Exercise 4: Atomic latency – relevant output
	Slide 31: Exercise 4: Why is atomic latency higher in solution?
	Slide 32: Exercise 4: Atomic latency – relevant output
	Slide 33: Exercise 4: Why is atomic latency still higher in solution?
	Slide 34: Exercise 4: Larger Problem Size – Relevant Output
	Slide 35: Exercise 4: Speed-of-Light cache access statistics
	Slide 36: rocprof-compute tips
	Slide 37: Summary
	Slide 38: Hands-on exercises
	Slide 39: DISCLAIMERS AND ATTRIBUTIONS
	Slide 40

