
ROCprof-sys

GPU and CPU Timeline Profiling

Presenter: Bob Robey

Oct 21-23, 2025

AMD @ Tsukuba University



2 |

[Public]

AMD has three GPU profiling tools

librocprofiler-sdk library - tracing and profiling infrastructure for developing tools

rocprofv3 
GPU tracing and counter collection

rocprof-sys
GPU and CPU tracing

rocprof-compute
GPU kernel performance analysis

Oct 21-23, 2025 AMD @ Tsukuba University



3 |

[Public]

ROCm Systems Profiler (rocprof-sys)

• Profiling and comprehensive tracing of applications on CPU and GPU

• Several data collection modes: sampling, dynamic instrumentation, binary rewrite, causal profiling, etc.

• Collect CPU and GPU metrics

• Visualization format: protobuf files (.proto) viewed in Perfetto

$ rocprof-sys-run --profile --trace --include ompt -- <app with arguments>

Oct 21-23, 2025 AMD @ Tsukuba University



4 |

[Public]

Create run-time config 
(optional, one-time only)

rocprof-sys-avail -G

Instrument binary 
(optional but 

recommended)

rocprof-sys-instrument 
-o app.inst -- <app>

Collect trace

rocprof-sys-run -- 
./app.inst

(or)

mpirun -np 4 rocprof-
sys-run -- ./app.inst

Typical rocprof-sys workflow

• rocprof-sys documentation: https://rocm.docs.amd.com/projects/rocprofiler-systems/en/latest/index.html

• Run-time configuration parameters: https://rocm.docs.amd.com/projects/rocprofiler-systems/en/latest/how-

to/configuring-runtime-options.html

Oct 21-23, 2025 AMD @ Tsukuba University

https://rocm.docs.amd.com/projects/rocprofiler-systems/en/latest/index.html
https://rocm.docs.amd.com/projects/rocprofiler-systems/en/latest/index.html
https://rocm.docs.amd.com/projects/rocprofiler-systems/en/latest/index.html
https://rocm.docs.amd.com/projects/rocprofiler-systems/en/latest/how-to/configuring-runtime-options.html
https://rocm.docs.amd.com/projects/rocprofiler-systems/en/latest/how-to/configuring-runtime-options.html
https://rocm.docs.amd.com/projects/rocprofiler-systems/en/latest/how-to/configuring-runtime-options.html
https://rocm.docs.amd.com/projects/rocprofiler-systems/en/latest/how-to/configuring-runtime-options.html
https://rocm.docs.amd.com/projects/rocprofiler-systems/en/latest/how-to/configuring-runtime-options.html
https://rocm.docs.amd.com/projects/rocprofiler-systems/en/latest/how-to/configuring-runtime-options.html
https://rocm.docs.amd.com/projects/rocprofiler-systems/en/latest/how-to/configuring-runtime-options.html
https://rocm.docs.amd.com/projects/rocprofiler-systems/en/latest/how-to/configuring-runtime-options.html
https://rocm.docs.amd.com/projects/rocprofiler-systems/en/latest/how-to/configuring-runtime-options.html


5 |

[Public]

rocprof-sys: Configuration file

Create a config file in $HOME:

Modify the config file to tune runtime settings:

<snip>

<snip>

Declare which config file to use by setting the environment:

$ rocprof-sys-avail -G $HOME/.rocprofsys.cfg

$ export ROCPROFSYS_CONFIG_FILE=$HOME/.rocprofsys.cfg

Contents of the config file

Oct 21-23, 2025 AMD @ Tsukuba University



6 |

[Public]

Generating a new executable/library with instrumentation built-in:

rocprof-sys: Binary rewrite

Binary Rewrite
$ rocprof-sys-instrument [options] -o <new-name-of-exec> 
-- <CMD> <ARGS>

This new binary will have instrumented functions

$ rocprof-sys-instrument -o Jacobi_hip.inst --
./Jacobi_hip

Path to new instrumented binary

Subroutine Instrumentation
Default instrumentation is main function and functions of 1024 

instructions and more (for CPU)

To instrument routines with 500 or more cycles, add option "-i 500" 

(more overhead)

Oct 21-23, 2025 AMD @ Tsukuba University



7 |

[Public]

Generating a new executable/library with instrumentation built-in:

Run the instrumented binary:​

rocprof-sys: Run instrumented binary

Binary Rewrite
$ rocprof-sys-instrument [options] -o <new-name-of-exec> 
-- <CMD> <ARGS>

$ rocprof-sys-instrument -o Jacobi_hip.inst --
./Jacobi_hip

To instrument routines with 500 or more instructions, add option "-i 
500"

Binary rewrite is recommended for runs with multiple ranks as 

rocprof-sys produces separate output files for each rank

Generates traces for application run

$ mpirun -np 1 rocprof-sys-run -- ./Jacobi_hip.inst -g 1 
1

Path to your output trace is printed by rocprof-sys-run:

Oct 21-23, 2025 AMD @ Tsukuba University



8 |

[Public]

rocprof-sys: Kernel durations

$ cat rocprofsys-Jacobi_hip.inst-output/2025-01-21_07.40/wall_clock-0.txt

Enable ROCPROFSYS_PROFILE in your config file

then re-run. Alternatively, prepend ROCPROFSYS_PROFILE=true to the mpirun command:

…

ROCPROFSYS_PROFILE                                    = true
…

Call Stack

Durations

Oct 21-23, 2025 AMD @ Tsukuba University



9 |

[Public]

rocprof-sys: Kernel durations – flat profile

ROCPROFSYS_PROFILE      = true
ROCPROFSYS_FLAT_PROFILE  = true

Edit your config file (or prepend to your mpirun command):

Use flat profile to see aggregate duration of kernels and 

functions

Oct 21-23, 2025 AMD @ Tsukuba University



10 |

[Public]

Visualizing trace (1/3)

Use Perfetto
Copy perfetto-trace-0.proto to your laptop, go to https://ui.perfetto.dev/, click "Open trace file", select perfetto-trace-0.proto

Traces of CPU functions

CPU metrics

Oct 21-23, 2025 AMD @ Tsukuba University

https://ui.perfetto.dev/


11 |

[Public]

Visualizing trace (2/3)

Zoomed in

Use Perfetto
Zoom in to investigate regions of interest

Oct 21-23, 2025 AMD @ Tsukuba University



12 |

[Public]

Flow Events

Select metrics of interest to view 

close together

GPU characteristics

Use Perfetto
Zoom in to investigate regions of interest

Visualizing trace (3/3)

Oct 21-23, 2025 AMD @ Tsukuba University



13 |

[Public]

rocprof-sys: Study overlap between compute & communication

Oct 21-23, 2025 AMD @ Tsukuba University



14 |

[Public]

rocprof-sys: Study concurrent kernels (Stream_Overlap)

• Example of GPU kernels launched into multiple HIP streams

cd /path/to/HPCTrainingExamples/HIP/Stream_Overlap/0-Orig
mkdir build; cd build; cmake ..; make –j

./compute_comm_overlap <nstreams> <block size (optional, default: 64)>
rocprof-sys-instrument -o compute_comm_overlap.inst -- compute_comm_overlap
rocprof-sys-run -- ./compute_comm_overlap.inst <nstreams>

Good overlap between multiple streams saves multifold total compute time

Oct 21-23, 2025 AMD @ Tsukuba University



15 |

[Public]

rocprof-sys: Sampling CPU call-stack (1/2)

• ROCPROFSYS_USE_SAMPLING = true; ROCPROFSYS_SAMPLING_FREQ = 100 (100 samples per second)

• Alternatively run with rocprof-sys-sample

Scroll down all the way in Perfetto to see the sampling output

Each sample shows the 

call stack at that time

Oct 21-23, 2025 AMD @ Tsukuba University



16 |

[Public]

rocprof-sys: Sampling CPU call-stack (2/2)

Zoom in call-stack sampling

Sampling data is annotated with (S)

Oct 21-23, 2025 AMD @ Tsukuba University



17 |

[Public]

rocprof-sys: Network performance profiling (in ROCm 6.4)

• First identify NIC information: rocprof-sys-avail -H -r net

|---------------------------------|---------|-----------|---------------------------------|

|        HARDWARE COUNTER         | DEVICE  | AVAILABLE |             SUMMARY             |

|---------------------------------|---------|-----------|---------------------------------|

...

| net:::hsn0:rx:byte              |   CPU   |   true    | hsn0 receive byte               |

| net:::hsn0:rx:packet            |   CPU   |   true    | hsn0 receive packet             |

| net:::hsn0:rx:error             |   CPU   |   true    | hsn0 receive error              |

• Set up parameters for profiling:

ROCPROFSYS_NETWORK_INTERFACE=hsn0

ROCPROFSYS_PAPI_EVENTS=net:::hsn0:rx:byte net:::hsn0:rx:packet net:::hsn0:tx:byte net:::hsn0:tx:packet

ROCPROFSYS_TIMEMORY_COMPONENTS=wall_clock network_stats

• Requires CPU sampling to be enabled (limitation to be removed soon):
   ROCPROFSYS_USE_SAMPLING=true

Collecting PAPI counters requires  

/proc/sys/kernel/perf_event_paranoid to be <= 2

Oct 21-23, 2025 AMD @ Tsukuba University



18 |

[Public]

rocprof-sys: Network performance profiling (in ROCm 6.4) contd.

• Overhead can be reduced by increasing sampling frequency and reducing number of events collected

 ROCPROFSYS_SAMPLING_FREQ=500

• More details in rocprof-sys documentation: Network performance profiling

A track per network counter collected

Oct 21-23, 2025 AMD @ Tsukuba University

https://rocm.docs.amd.com/projects/rocprofiler-systems/en/docs-6.4.0/how-to/nic-profiling.html


19 |

[Public]

rocprof-sys: Tips & tricks

• If rocprof-sys does nothing – check app or environment

• Did you forget to add “--” between rocprof-sys-* and <app>?

• In a Slurm environment, sometimes incorrect order of loading libraries at runtime causes unexpected behavior

• If application fails when running with sbatch, try profiling interactively using srun

• Perfetto visualization has known limitations

• Max file size 4GB

• To visualize large .proto files (approx. >1GB), load into memory first using Perfetto’s trace_processor

• If the latest Perfetto UI does not work, try the older version https://ui.perfetto.dev/v46.0-35b3d9845/#!/ 

• Disable options not useful for your analysis (e.g., ROCPROFSYS_SAMPLING_CPUS=none)

• To collect OpenMP® traces add --include ompt argument to rocprof-sys-run

Oct 21-23, 2025 AMD @ Tsukuba University

https://ui.perfetto.dev/v46.0-35b3d9845/#!/
https://ui.perfetto.dev/v46.0-35b3d9845/#!/
https://ui.perfetto.dev/v46.0-35b3d9845/#!/


20 |

[Public]

Additional features

• Dynamic runtime instrumentation to instrument dependent libraries too

• ROCPROFSYS_USE_KOKKOSP=true supports Kokkos profiling

• rocprof-sys-causal for causal profiling (experimental)

• User API to control instrumentation

• Initial Fortran OpenMP® offload tracing available, full support coming in ROCm 7.1

• Changelog and release notes for reference: https://github.com/ROCm/rocm-

systems/blob/develop/projects/rocprofiler-systems/CHANGELOG.md

Oct 21-23, 2025 AMD @ Tsukuba University

https://github.com/ROCm/rocm-systems/blob/develop/projects/rocprofiler-systems/CHANGELOG.md
https://github.com/ROCm/rocm-systems/blob/develop/projects/rocprofiler-systems/CHANGELOG.md
https://github.com/ROCm/rocm-systems/blob/develop/projects/rocprofiler-systems/CHANGELOG.md
https://github.com/ROCm/rocm-systems/blob/develop/projects/rocprofiler-systems/CHANGELOG.md
https://github.com/ROCm/rocm-systems/blob/develop/projects/rocprofiler-systems/CHANGELOG.md


21 |

[Public]

Summary

• rocprof-sys: Powerful tool to understand GPU + CPU activity

• Ideal for an initial look at how an application runs

• Analyze overlaps between CPU/GPU compute and communication

• Obtain a comprehensive trace with system characteristics

Oct 21-23, 2025 AMD @ Tsukuba University



22 |

[Public]

Hands-on exercises 

• Located in our HPC Training Examples repo: 

   https://github.com/amd/HPCTrainingExamples

• A table of contents for the READMEs if available at the top-level README in the repo

• rocprof-sys exercises: rocprofiler-systems/Jacobi/README.md or GhostExchange

• Log into the AAC node and clone the repo:                

  ssh <username>@aac6.amd.com -p 7000 -i <path_to_ssh_key> 

  git clone https://github.com/amd/HPCTrainingExamples.git

  module load rocm/6.4.0 rocprofiler-systems/6.4.0

   

Oct 21-23, 2025 AMD @ Tsukuba University

https://github.com/amd/HPCTrainingExamples
https://github.com/amd/HPCTrainingExamples/blob/main/README.md
https://github.com/amd/HPCTrainingExamples/tree/main/rocprofiler-systems/Jacobi
https://github.com/amd/HPCTrainingExamples/tree/main/rocprofiler-systems/Jacobi
https://github.com/amd/HPCTrainingExamples/tree/main/rocprofiler-systems/Jacobi
https://github.com/amd/HPCTrainingExamples/tree/main/MPI-examples/GhostExchange
https://github.com/amd/HPCTrainingExamples.git


23 |

[Public]

DISCLAIMERS AND ATTRIBUTIONS 
The information contained herein is for informational purposes only and is subject to change without notice. While every precaution has been taken 
in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to 
update or otherwise correct this information.  Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or 
completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement, 
merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described 
herein.  No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document.  Terms and limitations 
applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and 
Conditions of Sale. GD-18​

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE 
CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY 
APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, 
MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR 
ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY 
INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© 2025 Advanced Micro Devices, Inc.  All rights reserved.

AMD, the AMD Arrow logo, Radeon , Instinct , EPYC, Infinity Fabric, ROCm , and combinations thereof are trademarks of Advanced 
Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their 
respective companies.

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board
Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git 
Project, in the United States and/or other countries

Oct 21-23, 2025 AMD @ Tsukuba University




	Slide 1: ROCprof-sys GPU and CPU Timeline Profiling
	Slide 2: AMD has three GPU profiling tools
	Slide 3: ROCm Systems Profiler (rocprof-sys)
	Slide 4: Typical rocprof-sys workflow
	Slide 5: rocprof-sys: Configuration file
	Slide 6: rocprof-sys: Binary rewrite
	Slide 7: rocprof-sys: Run instrumented binary
	Slide 8: rocprof-sys: Kernel durations
	Slide 9: rocprof-sys: Kernel durations – flat profile
	Slide 10: Visualizing trace (1/3)
	Slide 11: Visualizing trace (2/3)
	Slide 12: Visualizing trace (3/3)
	Slide 13: rocprof-sys: Study overlap between compute & communication
	Slide 14: rocprof-sys: Study concurrent kernels (Stream_Overlap)
	Slide 15: rocprof-sys: Sampling CPU call-stack (1/2)
	Slide 16: rocprof-sys: Sampling CPU call-stack (2/2)
	Slide 17: rocprof-sys: Network performance profiling (in ROCm 6.4)
	Slide 18: rocprof-sys: Network performance profiling (in ROCm 6.4) contd.
	Slide 19: rocprof-sys: Tips & tricks
	Slide 20: Additional features
	Slide 21: Summary
	Slide 22: Hands-on exercises 
	Slide 23: DISCLAIMERS AND ATTRIBUTIONS 
	Slide 24

