ROCprofv3
Basic Profiling and Timelines

Presenter: Bob Robey
Oct 21-23, 2025
AMD @ Tsukuba University

AMD 1

together we advance_

AMD has three GPU profiling tools

rocprof-compute
GPU kernel performance analysis

T T T T T

ot _

rocprofv3 rocprof-sys
GPU tracing and counter collection GPU and CPU tracing

librocprofiler-sdk library - tracing and profiling infrastructure for developing tools

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

AMD has three GPU profiling tools

rocprof-compute
GPU kernel performance analysis

T T T T T

ot _

rocprofv3 rocprof-sys
GPU tracing and counter collection GPU and CPU tracing

librocprofiler-sdk library - tracing and profiling infrastructure for developing tools

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

What is rocprofv3?

Performance analysis tool for ROCm based applications (single or multi process)

Main capabilities:

- GPU Hotspot analysis — identify performance bottlenecks
Device activity tracing — visualize HIP, HSA , GPU kernels, and data transfers in a GUI
Performance counter collection — analyze kernel performance further

Supports Python™ and OpenMP® offload profiling

Documented at: https://rocm.docs.amd.com/projects/rocprofiler-sdk/en/latest/how-to/using-rocprofv3.html

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

https://rocm.docs.amd.com/projects/rocprofiler-sdk/en/latest/how-to/using-rocprofv3.html
https://rocm.docs.amd.com/projects/rocprofiler-sdk/en/latest/how-to/using-rocprofv3.html
https://rocm.docs.amd.com/projects/rocprofiler-sdk/en/latest/how-to/using-rocprofv3.html
https://rocm.docs.amd.com/projects/rocprofiler-sdk/en/latest/how-to/using-rocprofv3.html
https://rocm.docs.amd.com/projects/rocprofiler-sdk/en/latest/how-to/using-rocprofv3.html
https://rocm.docs.amd.com/projects/rocprofiler-sdk/en/latest/how-to/using-rocprofv3.html
https://rocm.docs.amd.com/projects/rocprofiler-sdk/en/latest/how-to/using-rocprofv3.html

Running rocprofv3 with single and multiple processes

rocprofv3 requires double-hyphen (--) before the application to be executed:
$ rocprofv3 [<rocprofv3-options> ...] -- <application> [<application-args> ...]
$ rocprofv3d --runtime-trace -- ./myapp -n 1

For MPI applications or if using Slurm, place rocprofv3 inside the job launcher:
$ mpirun -np 4 rocprofv3 --runtime-trace -- ./mympiapp
Output files will be generated for each MPI process automatically

NOTE: rocprofv3 can run with MPI but it does not trace MPI calls

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

rocprofv3: Collecting application traces

rocprofv3 can collect a variety of trace event types and generate timelines /Can combine options in a run

| Trace Event | rocprofv3 Trace Mode
Collect HIP, Kernels, Memory Copy, Marker API --runtime-trace

GPU Kernels --kernel-trace

HIP API call --hip-trace

Host <-> Device Memory copies --hip-trace or --memory-copy-trace

User code markers --marker-trace
CPU HSA Calls --hsa-trace
Kokkos calls - -kokkos-trace

Collect HSA, HIP, Kernels, Memory Copy, Marker API --sys-trace

Pftrace output format (- -output-format pftrace) currently recommended

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

rocprofv3: Collecting GPU hotspots

$ rocprofv3 |--stats --kernel-trace|l|--truncate-kernels||--summary| -- <app with arguments>
Combine --stats Truncate kernel Print hotspot summary
with --kernel-trace names, remove args on the console

ROCPROFV3 SUMMARY :

NAME | DOMAIN | CALLS | DURATION (nsec) | AVERAGE (nsec) | PERCENT (INC) | MIN (nsec) | MAX (nsec) | STDDEV

e | e e e o] e S e e e e e | b
JacobiIterationKernel | KERNEL_DISPATCH | 1000 | 527366199 | 5.274e+05 | 40.714858 | 512643 | 548644 | 5.592e+03 |
NormKernell KERNEL_DISPATCH 1001 | 410842848 4.104e+05 | 31.718772 | 399042 | 418723 | .666e+03 |
KERNEL_DISPATCH 1000 | 329779380 3.298e+05 | .460336 | 323842 | 350722 | .095e+03 |
1.533e+04 | .183444 | 14400 | 16480 | .597e+02 |

7.699e+03 | .594994 | 7040 | 10080 | .180e+02 |

4.232e+03 | .327064 | 4000 | 5120 | .169e+02 |

6.880e+03 | .000531 | 6880 | 6880 | .000e+00 |

__amd_rocclr_copyBuffer
NormKernel2
__amd_rocclr_fillBufferAligned

KERNEL_DISPATCH
KERNEL_DISPATCH
KERNEL_DISPATCH

1001 | 7706765
1001 | 4236348
1| 6880

|

|

,			
LocallLaplacianKernel			
HaloLaplacianKernel	KERNEL_DISPATCH	1000	15328759

GPU kernel hotspots are also output in XXXXX_kernel stats.csv

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

7 together we advance_

rocprofv3: Collecting hardware counters

rocprofv3 can collect a number of hardware counters and derived counters
$ rocprofv3 -L

To collect, specify counters in an input file:
$ rocprofv3 -i rocprof counters.txt -- <app with args>
$ cat rocprof_counters.txt _____—0ne pass per pmc line
pmc: VALUUtilization VALUBusy FetchSize WriteSize MemUnitStalled

pmc: GPU_UTIL CU_OCCUPANCY MeanOccupancyPerCU MeanOccupancyPerActivecy Hardware limits on how
many counters can be

, , collected in one pass
Or specify on command line:

$ rocprofv3 --pmc VALUUtilization FetchSize -- <app with args>

In the <pid> counter collection.csv output file:
2,,218,2,43371,43371,16384,18,['NormKernell,128,1024,0,12,4,32, "FetchSize",131073.625000,116935428165636,116935428564998
2, 218,2,43371,43371,16384,18,['NormKernell},128,1024,0,12,4,32,|'"VALUUtilizatior" ,|99.962183],116935428165636,116935428564998

Value of metric

Dispatch ID One line per metric per kernel invocation

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

Traces from Fortran +

Visualizing application traces with Perfetto OpenMP® offload code

$ rocprofv3 --sys-trace --output-format pftrace -- <app with arguments>
This outputs a Pftrace file that can be visualized using Perfetto (https://ui.perfetto.dev/) in Chrome

(P Perfetto =

Navigation

[(5 Open trace file
IC] Open with legacy Ul

O) Record new trace

Current Trace

HIP and

1533299_results.pftrace (6 MB) HSA activity

== Show timeline

Download

A2
S Query (SQL) GPU activity
(A

Viz

Oct 21-23, 2025 ! AMDZ

AMD @ Tsukuba University Copy activity (H2D and D2H) togetherweadvance_

https://ui.perfetto.dev/

Perfetto: Navigating through traces

Zoom in to see individual events
Navigate trace using WASD keys

OpenMP® offload visualization shown here

Oct 21-23, 2025 AMD @ Tsukuba University

__omp_offloading_32_178dc__QMIlaplacian_..

AMDZU

together we advance_

Perfetto: Kernel information and flow events

Zoom and select a kernel, you can see the link to the HIP call launching the kernel
Try to open the information for the kernel (button at bottom right)

A Misc Global Tracks

Clock Snapshots

A _/Jacobi_hip 511790

Jacobi_hip 511790

COPY BYTES to [0] CPU
COPY BYTES to [4] GPU

COMPUTE [4] QUEUE [0] GPU

COMPUTE [4] QUEUE [1] GPU

Current Selection

Oct 21-23, 2025 AMD @ Tsukuba University

hipMemcpy

hsa..

hsa_signal_wait_sca.-

AMDZU

together we advance_

Perfetto: Viewing function metadata

Kernel name and args

4 ~
¢ Current Selection

Slice LocallLaplacianKernel(int, int, int, double, double, double const*, double*) [clone kd]

Name C Kernel(int, int, int, double, double, double const*, Delay

Category

Start time

Absolute Time : Arguments
Duration 8

Process
SQLID

4556433481727591
4556433481866111
138520

11

4

group_segment_size -

workgroup_size -

Oct 21-23, 2025 AMD @ Tsukuba University

1T v

Contextual Options ~

Thread

Y

Workgroup size
and grid size

AMDZU

together we advance_

rocprofv3: Collecting application traces with roctx markers and regions

Annotate code with roctx regions:

#include <rocprofiler-sdk-roctx/roctx.h>

roctx range

roctxRangePush("reduce_for_c");
// some code A /GhostExchange 1031110
roctxRangePop();

Annotate code with roctx markers:

roctxMark("start of some code");
// some_code
roctxMark("end of some code");

Link with rocprofiler-sdk-roctx library:
-L${ROCM_PATH}/1lib -1lrocprofiler-sdk-roctx

Profile with --hip-trace --marker-trace options:
$ rocprofv3 --hip-trace --marker-trace -- <app with arguments>

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

Merge traces from multiple MPI ranks

$ cat XXX* results.pftrace > merged.pftrace

Then visualize merged.pftrace in Perfetto

Rank O

Rank 1

Ranks
2and 3

A _[GhostExchange 1559288

__omp_offioading.32____omp.offoading 32.1bGbe__| ____omp.ofioading 32_1bbe_main.1aokd 11 I\ IR I

Oct 21-23, 2025

AMD @ Tsukuba University

AMDZU

together we advance_

Profiling overhead

rocprofv3 is designed for minimal profiling overhead

The percentage of overhead depends on:
The profiling options used (e.g., tracing is faster than hardware counter collection)
The number of counters you collect (multiple passes for multiple pmc lines)
Whether roctx regions/markers are collected (can result in large traces too0)

The more data collected, the more the overhead of profiling

To minimize collected data, profile only the small (interesting) region of the execution
Use --collection-period (START_DELAY TIME):(COLLECTION_TIME):(REPEAT) added in ROCm 6.4
Possibly combined with: --collection-period-unit {hour,min,sec,msec,usec,nsec} (default sec)
$ rocprofv3 --collection-period 3:3:1 --sys-trace -- <app with args>

Oct 21-23, 2025 AMD @ Tsukuba University

AMDZU

together we advance_

Summary

rocprofv3: CLI tool to quickly analyze GPU activity on AMD GPUs
Hotspot analysis — identify performance bottlenecks
Application tracing — visualize HIP, HSA and device activity in a GUI
Performance counter collection — analyze kernel performance further

Oct 21-23, 2025 AMD @ Tsukuba University

AMDZU

together we advance_

Hands-on exercises

Located in our HPC Training Examples repo:
https://qgithub.com/amd/HPCTrainingExamples

A table of contents for the READMEs if available at the top-level README in the repo

rocprofv3 exercises: Rocprofv3/HIP/README.md or Rocprofv3/OpenMP/README.md

Log into the AAC node and clone the repo:
ssh <username>@aac6.amd.com -p 7000 -i <path_to ssh key>
git clone https://github.com/amd/HPCTrainingExamples.git
module load rocm/6.4.0

Oct 21-23, 2025 AMD @ Tsukuba University

AMDZU

together we advance_

https://github.com/amd/HPCTrainingExamples
https://github.com/amd/HPCTrainingExamples/blob/main/README.md
https://github.com/amd/HPCTrainingExamples/tree/main/Rocprofv3
https://github.com/amd/HPCTrainingExamples/blob/main/Rocprofv3/OpenMP/README.md
https://github.com/amd/HPCTrainingExamples.git

DISCLAIMERS AND ATTRIBUTIONS

The information contained herein is for informational purposes only and is subject to change without notice. While every precaution has been taken
in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to
update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or
completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement,
merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described
herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations
applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and
Conditions of Sale. GD-18

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY
APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR
ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY
INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© 2025 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo, Radeon™ Instinct™, EPYC, Infinity Fabric, ROCm™, and combinations thereof are trademarks of Advanced
Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board
Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git
Project, in the United States and/or other countries

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

AMD ¢\

Oct 21-23, 2025 AMD @ Tsukuba University

	Slide 1: ROCprofv3 Basic Profiling and Timelines
	Slide 2: AMD has three GPU profiling tools
	Slide 3: AMD has three GPU profiling tools
	Slide 4: What is rocprofv3?
	Slide 5: Running rocprofv3 with single and multiple processes
	Slide 6: rocprofv3: Collecting application traces
	Slide 7: rocprofv3: Collecting GPU hotspots
	Slide 8: rocprofv3: Collecting hardware counters
	Slide 9: Visualizing application traces with Perfetto
	Slide 10: Perfetto: Navigating through traces
	Slide 11: Perfetto: Kernel information and flow events
	Slide 12: Perfetto: Viewing function metadata
	Slide 13: rocprofv3: Collecting application traces with roctx markers and regions
	Slide 14: Merge traces from multiple MPI ranks
	Slide 15: Profiling overhead
	Slide 16: Summary
	Slide 17: Hands-on exercises
	Slide 18: DISCLAIMERS AND ATTRIBUTIONS
	Slide 19

