
ROCprofv3

Basic Profiling and Timelines

Presenter: Bob Robey

Oct 21-23, 2025

AMD @ Tsukuba University

2 |

[Public]

AMD has three GPU profiling tools

librocprofiler-sdk library - tracing and profiling infrastructure for developing tools

rocprofv3
GPU tracing and counter collection

rocprof-sys
GPU and CPU tracing

rocprof-compute
GPU kernel performance analysis

Oct 21-23, 2025 AMD @ Tsukuba University

3 |

[Public]

AMD has three GPU profiling tools

librocprofiler-sdk library - tracing and profiling infrastructure for developing tools

rocprofv3
GPU tracing and counter collection

rocprof-sys
GPU and CPU tracing

rocprof-compute
GPU kernel performance analysis

Oct 21-23, 2025 AMD @ Tsukuba University

4 |

[Public]

What is rocprofv3?

• Performance analysis tool for ROCm based applications (single or multi process)

• Main capabilities:

• GPU Hotspot analysis – identify performance bottlenecks

• Device activity tracing – visualize HIP, HSA , GPU kernels, and data transfers in a GUI

• Performance counter collection – analyze kernel performance further

• Supports Python and OpenMP® offload profiling

• Documented at: https://rocm.docs.amd.com/projects/rocprofiler-sdk/en/latest/how-to/using-rocprofv3.html

Oct 21-23, 2025 AMD @ Tsukuba University

https://rocm.docs.amd.com/projects/rocprofiler-sdk/en/latest/how-to/using-rocprofv3.html
https://rocm.docs.amd.com/projects/rocprofiler-sdk/en/latest/how-to/using-rocprofv3.html
https://rocm.docs.amd.com/projects/rocprofiler-sdk/en/latest/how-to/using-rocprofv3.html
https://rocm.docs.amd.com/projects/rocprofiler-sdk/en/latest/how-to/using-rocprofv3.html
https://rocm.docs.amd.com/projects/rocprofiler-sdk/en/latest/how-to/using-rocprofv3.html
https://rocm.docs.amd.com/projects/rocprofiler-sdk/en/latest/how-to/using-rocprofv3.html
https://rocm.docs.amd.com/projects/rocprofiler-sdk/en/latest/how-to/using-rocprofv3.html

5 |

[Public]

Running rocprofv3 with single and multiple processes

• rocprofv3 requires double-hyphen (--) before the application to be executed:

• $ rocprofv3 [<rocprofv3-options> ...] -- <application> [<application-args> ...]

• $ rocprofv3 --runtime-trace -- ./myapp -n 1

• For MPI applications or if using Slurm, place rocprofv3 inside the job launcher:

• $ mpirun -np 4 rocprofv3 --runtime-trace -- ./mympiapp

• Output files will be generated for each MPI process automatically

NOTE: rocprofv3 can run with MPI but it does not trace MPI calls

Oct 21-23, 2025 AMD @ Tsukuba University

6 |

[Public]

rocprofv3: Collecting application traces

• rocprofv3 can collect a variety of trace event types and generate timelines

• Pftrace output format (--output-format pftrace) currently recommended

Trace Event rocprofv3 Trace Mode

Collect HIP, Kernels, Memory Copy, Marker API --runtime-trace

GPU Kernels --kernel-trace

HIP API call --hip-trace

Host <-> Device Memory copies --hip-trace or --memory-copy-trace

User code markers --marker-trace

CPU HSA Calls --hsa-trace

Kokkos calls --kokkos-trace

Collect HSA, HIP, Kernels, Memory Copy, Marker API --sys-trace

Can combine options in a run

Oct 21-23, 2025 AMD @ Tsukuba University

7 |

[Public]

rocprofv3: Collecting GPU hotspots

$ rocprofv3 --stats --kernel-trace --truncate-kernels --summary -- <app with arguments>

• GPU kernel hotspots are also output in XXXXX_kernel_stats.csv

Combine --stats

with --kernel-trace
Truncate kernel

names, remove args

Print hotspot summary

on the console

Oct 21-23, 2025 AMD @ Tsukuba University

8 |

[Public]

rocprofv3: Collecting hardware counters

• rocprofv3 can collect a number of hardware counters and derived counters

• $ rocprofv3 -L

• To collect, specify counters in an input file:

• $ rocprofv3 -i rocprof_counters.txt -- <app with args>

• $ cat rocprof_counters.txt

pmc: VALUUtilization VALUBusy FetchSize WriteSize MemUnitStalled

pmc: GPU_UTIL CU_OCCUPANCY MeanOccupancyPerCU MeanOccupancyPerActiveCU

• Or specify on command line:

• $ rocprofv3 --pmc VALUUtilization FetchSize -- <app with args>

• In the <pid>_counter_collection.csv output file:
2,2,8,2,43371,43371,16384,18,"NormKernel1",128,1024,0,12,4,32,"FetchSize",131073.625000,116935428165636,116935428564998

2,2,8,2,43371,43371,16384,18,"NormKernel1",128,1024,0,12,4,32,"VALUUtilization",99.962183,116935428165636,116935428564998

One pass per pmc line

Hardware limits on how

many counters can be

collected in one pass

One line per metric per kernel invocation
Dispatch ID

Value of metric

Oct 21-23, 2025 AMD @ Tsukuba University

9 |

[Public]

Visualizing application traces with Perfetto

• $ rocprofv3 --sys-trace --output-format pftrace -- <app with arguments>

• This outputs a Pftrace file that can be visualized using Perfetto (https://ui.perfetto.dev/) in Chrome

Copy activity (H2D and D2H)

GPU activity

HIP and

HSA activity

Traces from Fortran +

OpenMP® offload code

Oct 21-23, 2025 AMD @ Tsukuba University

https://ui.perfetto.dev/

10 |

[Public]

Perfetto: Navigating through traces

• Zoom in to see individual events

• Navigate trace using WASD keys

OpenMP® offload visualization shown here

Oct 21-23, 2025 AMD @ Tsukuba University

11 |

[Public]

Perfetto: Kernel information and flow events

• Zoom and select a kernel, you can see the link to the HIP call launching the kernel

• Try to open the information for the kernel (button at bottom right)

Oct 21-23, 2025 AMD @ Tsukuba University

12 |

[Public]

Perfetto: Viewing function metadata

Kernel name and args

Workgroup size

and grid size

Duration

Oct 21-23, 2025 AMD @ Tsukuba University

13 |

[Public]

rocprofv3: Collecting application traces with roctx markers and regions

• Annotate code with roctx regions:

#include <rocprofiler-sdk-roctx/roctx.h>
...

roctxRangePush("reduce_for_c");
// some code
roctxRangePop();

...

• Annotate code with roctx markers:
...

roctxMark("start of some code");

// some_code

roctxMark("end of some code");

...

• Link with rocprofiler-sdk-roctx library:
 -L${ROCM_PATH}/lib –lrocprofiler-sdk-roctx

• Profile with --hip-trace --marker-trace options:
 $ rocprofv3 --hip-trace --marker-trace -- <app with arguments>

roctx range

Oct 21-23, 2025 AMD @ Tsukuba University

14 |

[Public]

Merge traces from multiple MPI ranks

• $ cat XXX*_results.pftrace > merged.pftrace

• Then visualize merged.pftrace in Perfetto

Rank 0

Rank 1

Ranks

2 and 3

Oct 21-23, 2025 AMD @ Tsukuba University

15 |

[Public]

Profiling overhead

• rocprofv3 is designed for minimal profiling overhead

• The percentage of overhead depends on:

• The profiling options used (e.g., tracing is faster than hardware counter collection)

• The number of counters you collect (multiple passes for multiple pmc lines)

• Whether roctx regions/markers are collected (can result in large traces too)

• The more data collected, the more the overhead of profiling

• To minimize collected data, profile only the small (interesting) region of the execution

• Use --collection-period (START_DELAY_TIME):(COLLECTION_TIME):(REPEAT) added in ROCm 6.4

• Possibly combined with: --collection-period-unit {hour,min,sec,msec,usec,nsec} (default sec)

• $ rocprofv3 --collection-period 3:3:1 --sys-trace -- <app with args>

Oct 21-23, 2025 AMD @ Tsukuba University

16 |

[Public]

Summary

• rocprofv3: CLI tool to quickly analyze GPU activity on AMD GPUs

• Hotspot analysis – identify performance bottlenecks

• Application tracing – visualize HIP, HSA and device activity in a GUI

• Performance counter collection – analyze kernel performance further

Oct 21-23, 2025 AMD @ Tsukuba University

17 |

[Public]

Hands-on exercises

• Located in our HPC Training Examples repo:

 https://github.com/amd/HPCTrainingExamples

• A table of contents for the READMEs if available at the top-level README in the repo

• rocprofv3 exercises: Rocprofv3/HIP/README.md or Rocprofv3/OpenMP/README.md

• Log into the AAC node and clone the repo:

 ssh <username>@aac6.amd.com -p 7000 -i <path_to_ssh_key>

 git clone https://github.com/amd/HPCTrainingExamples.git

 module load rocm/6.4.0

Oct 21-23, 2025 AMD @ Tsukuba University

https://github.com/amd/HPCTrainingExamples
https://github.com/amd/HPCTrainingExamples/blob/main/README.md
https://github.com/amd/HPCTrainingExamples/tree/main/Rocprofv3
https://github.com/amd/HPCTrainingExamples/blob/main/Rocprofv3/OpenMP/README.md
https://github.com/amd/HPCTrainingExamples.git

18 |

[Public]

DISCLAIMERS AND ATTRIBUTIONS
The information contained herein is for informational purposes only and is subject to change without notice. While every precaution has been taken
in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to
update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or
completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement,
merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described
herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations
applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and
Conditions of Sale. GD-18​

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY
APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR
ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY
INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© 2025 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo, Radeon , Instinct , EPYC, Infinity Fabric, ROCm , and combinations thereof are trademarks of Advanced
Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board
Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git
Project, in the United States and/or other countries

Oct 21-23, 2025 AMD @ Tsukuba University

Oct 21-23, 2025 AMD @ Tsukuba University

	Slide 1: ROCprofv3 Basic Profiling and Timelines
	Slide 2: AMD has three GPU profiling tools
	Slide 3: AMD has three GPU profiling tools
	Slide 4: What is rocprofv3?
	Slide 5: Running rocprofv3 with single and multiple processes
	Slide 6: rocprofv3: Collecting application traces
	Slide 7: rocprofv3: Collecting GPU hotspots
	Slide 8: rocprofv3: Collecting hardware counters
	Slide 9: Visualizing application traces with Perfetto
	Slide 10: Perfetto: Navigating through traces
	Slide 11: Perfetto: Kernel information and flow events
	Slide 12: Perfetto: Viewing function metadata
	Slide 13: rocprofv3: Collecting application traces with roctx markers and regions
	Slide 14: Merge traces from multiple MPI ranks
	Slide 15: Profiling overhead
	Slide 16: Summary
	Slide 17: Hands-on exercises
	Slide 18: DISCLAIMERS AND ATTRIBUTIONS
	Slide 19

