
AMD Debugger: ROCgdb

Presenter: Bob Robey

Oct 21-23, 2025

AMD @ Tsukuba University

2 |

[Public]

What is covered in the Rocgdb Debugger Presentation

• Understand what information is accessible, particularly from the GPU, in the debugger

• Understand how to run the rocgdb debugger

• Learn what kind of interfaces are available for running the debugger

Oct 21-23, 2025 AMD @ Tsukuba University

3 |

[Public]

Rocgdb

• AMD ROCm source-level debugger for Linux®

• based on the GNU Debugger (GDB)

• tracks upstream GDB master

• standard GDB commands for both CPU and GPU debugging

• considered a prototype

• focus on source line debugging

• no symbolic variable debugging yet

• As GDB fork it can be used with other tools that use GDB as backend

• Exercises: https://github.com/amd/HPCTrainingExamples/tree/main/Rocgdb

Oct 21-23, 2025 AMD @ Tsukuba University

https://github.com/amd/HPCTrainingExamples/tree/main/Rocgdb

4 |

[Public]

Simple saxpy kernel

classic saxpy operation
 one array index = one work-item

size of arrays = 256

two groups
 each 128 work-items

0 work-items 63 0 work-items 63 0 work-items 63 0 work-items 63

group 0 group 1

wave 0 wave 1 wave 2 wave 3

Oct 21-23, 2025 AMD @ Tsukuba University

5 |

[Public]

Cause a page fault

Easier through commenting out the allocations.

(also possible to initialize the pointers to nullptr)

It’s important to synchronize before exit.

Otherwise, the CPU thread may quit before the GPU gets a chance to

report the error.

Could break it by forcing out of bounds read here

by changing the index

Oct 21-23, 2025 AMD @ Tsukuba University

6 |

[Public]

Compilation with hipcc

Need to set the target hardware
• gfx906 – MI50, MI60, Radeon 7

• gfx908 – MI100

• gfx90a – MI200

• gfx942 - MI300A

Can set multiple targets for different devices

Oct 21-23, 2025 AMD @ Tsukuba University

7 |

[Public]

Execution

Oct 21-23, 2025 AMD @ Tsukuba University

8 |

[Public]

Get a page fault

And BOOM, here is our expected memory violation

Oct 21-23, 2025 AMD @ Tsukuba University

9 |

[Public]

Common gdb commands

Start GDB (GNU Debugger)
•gdb <program> [core dump]

•gdb –args <program> <args>

•gdb -help

Run commands
r[un] - Runs the program until a breakpoint or error

c[ontinue] - Continues running the program until the next breakpoint or error

q[uit] or kill - Quits gdb

fin[ish] - Runs until current function or loop is finished

n[ext] - Runs the next line of the program

n N - Runs the next N lines of the program

s[tep] - Runs the next line of the program, stepping into any called routines

until N - Runs until you get N lines after the current line

Breakpoint commands
b[reakpoint] <where> – set breakpoint

b main - Puts a breakpoint at the beginning of the program

b - Puts a breakpoint at the current line

b N - Puts a breakpoint at line N

b +N - Puts a breakpoint N lines down from the current line

b fn - Puts a breakpoint at the beginning of function "fn”

b/w <where> if <condition – conditional breakpoint or watch

i[nfo] b[reak] - list breakpoints

dis[able] N - disable breakpoint number N

en[able] N – enables breakpoint number N

d[elete] N – delete breakpoint number N

clear – clear all breakpoints

Print commands
[h]elp <command>

[p]rint var - Prints the current value of the variable "var”

[l]ist – list lines

bt (backtrace) - Prints a stack trace

Movement
up - Goes up a level in the stack

[do]wn - Goes down a level in the stack

Oct 21-23, 2025 AMD @ Tsukuba University

10 |

[Public]

Execution with rocgdb

Remember to use rocgdb –args when passing

arguments to program being debugged

Oct 21-23, 2025 AMD @ Tsukuba University

11 |

[Public]

Get more information

Reports segmentation fault in the saxpy kernel.

Oct 21-23, 2025 AMD @ Tsukuba University

12 |

[Public]

Compile with -ggdb

Oct 21-23, 2025 AMD @ Tsukuba University

13 |

[Public]

Get more details

more details
• what kernel

• what file:line

But where’s my stack trace?

To get exceptions reported precisely: set amdgpu precise-memory on

Oct 21-23, 2025 AMD @ Tsukuba University

14 |

[Public]

List threads

What segfaulted is a GPU wave.

It does not have your CPU stack.

List threads to see what’s going on.

Oct 21-23, 2025 AMD @ Tsukuba University

15 |

[Public]

Switch to the CPU thread

t 1

(thread 1)

It’s in the HSA runtime.

But how did it get there?

Oct 21-23, 2025 AMD @ Tsukuba University

16 |

[Public]

See the stack trace of the CPU thread

HSA runtime

HIP runtime

The CPU thread is currently waiting on the device to finish ☺

Oct 21-23, 2025 AMD @ Tsukuba University

17 |

[Public]

Quick tip

• CPUs in AAC MI300A nodes have 96 cores / 192 threads.

• If you’re debugging an app with OpenMP® threading and OMP_NUM_THREADS is not set

you will see 192 CPU threads in rocgdb.

• Set OMP_NUM_THREADS=1 when debugging GPU codes that don’t have CPU specific OpenMP®

regions

• For debugging with MPI, attach rocgdb to individual MPI processes

Oct 21-23, 2025 AMD @ Tsukuba University

18 |

[Public]

Breakpoints – Common pitfalls

We try to put a breakpoint

in line 22 but it is declared

as line 24.

Oct 21-23, 2025 AMD @ Tsukuba University

19 |

[Public]

Simple saxpy kernel – Where is our code?

Oct 21-23, 2025 AMD @ Tsukuba University

20 |

[Public]

Breakpoints – If possible, debug with optimization turned off

We try to put a breakpoint

in line 22 but it is declared

as line 24.

Default compiler

optimization for hipcc is –

O3, compile with –O0

Creating a breakpoint

again and it is declared in

the correct line

Oct 21-23, 2025 AMD @ Tsukuba University

21 |

[Public]

Running and architecture

Running with the keystroke

r and stops at the

breakpoint

More information about the

thread with the command

i th

We can see on what

device is the thread with

the show architecture

command

Oct 21-23, 2025 AMD @ Tsukuba University

22 |

[Public]

Breakpoint kernel and architecture

Breakpoint on the kernel

called saxpy with the

command b saxpy

You can continue with he

command c

We can see on what

device is the thread with

the command

show architecture

Oct 21-23, 2025 AMD @ Tsukuba University

23 |

[Public]

“GUIs”

rocgdb -tui saxpy cgdb -d rocgdb saxpy

Oct 21-23, 2025 AMD @ Tsukuba University

24 |

[Public]

GDB Dashboard
• To show all the debugging information in one screen, you can

also use GDB dashboard. Works with rocgdb.

• Shows:

• Assembly

• Breakpoints

• Registers

• Stack

• Threads

• Variables

• … and more

• https://github.com/cyrus-and/gdb-dashboard

AMD @ Tsukuba UniversityOct 21-23, 2025

http://thttps/github.com/cyrus-and/gdb-dashboard
http://thttps/github.com/cyrus-and/gdb-dashboard
http://thttps/github.com/cyrus-and/gdb-dashboard
http://thttps/github.com/cyrus-and/gdb-dashboard
http://thttps/github.com/cyrus-and/gdb-dashboard
http://thttps/github.com/cyrus-and/gdb-dashboard

25 |

[Public]

rocgdb + gdbgui

breakpoint in CPU code

Oct 21-23, 2025 AMD @ Tsukuba University

26 |

[Public]

amdgcn:gfx90_

scalar registers (8KB)

scalar unit

Local Data Share (64KB)

scheduler

L1 cache (16KB)

typically described as
• a 16-way SIMD unit
• with 64KB of registers

CU
compute unit

Oct 21-23, 2025 AMD @ Tsukuba University

27 |

[Public]

amdgcn:gfx90_

scalar registers (8KB)

scalar unit

Local Data Share (64KB)

scheduler

L1 cache (16KB)

typically described as
• a 16-way SIMD unit
• with 64KB of registers

CU
compute unit

from the standpoint of rocGDB
• a core
• executing up to 10 threads
• with vector length of 64 lanes
• and containing 256 vector registers

Oct 21-23, 2025 AMD @ Tsukuba University

28 |

[Public]

List threads / waves

i th
(info threads)

some CPU threads

4 GPU “threads” (waves)

Oct 21-23, 2025 AMD @ Tsukuba University

29 |

[Public]

Wave details

agent-id:queue-id:dispatch-num:wave-id (work-group-x,work-group-y,work-group-z)/work-group-thread-index

agent (GPU) ID

(HSA) queue ID

dispatch number

wave ID

workgroup
(x, y, z)

wave ID
(within group)

Oct 21-23, 2025 AMD @ Tsukuba University

30 |

[Public]

More advanced things you can do

• inspect / modify registers

• inspect / modify memory

• inspect / modify LDS

• step through the assembly one instruction at a time

• Check race conditions by stepping code in separate GPU waves

Oct 21-23, 2025 AMD @ Tsukuba University

31 |

[Public]

List agents

info agents
➢ shows devices + properties

gfx90a
MI200 series

SIMDs
(CUs x 4)

max waves
(SIMDs x 8)

Oct 21-23, 2025 AMD @ Tsukuba University

32 |

[Public]

List queues

info queues
➢ shows HSA queues

agent ID queue ID (AQL) packets read (AQL) packets written

Oct 21-23, 2025 AMD @ Tsukuba University

33 |

[Public]

Dispatch details

agent ID

queue ID

dispatch ID

grid dimensions group dimensions kernel

info dispatches
➢ shows kernel dispatches

Oct 21-23, 2025 AMD @ Tsukuba University

34 |

[Public]

Use AMD_LOG_LEVEL=3 to find errors without having to use the debugger

Oct 21-23, 2025 AMD @ Tsukuba University

35 |

[Public]

How to use rocgdb + gdbgui + Chrome

test if X forwarding works
ssh -X USERNAME@server

ssh -X login1._______.olcf.ornl.gov

srun -A VEN113 -N 1 -n 1 -c 64 --x11 --pty bash

xmessage -center hello!

install Chrome
• Go to https://www.google.com/chrome/

• Click Download Chrome

• Click 64 bit .rpm (For Fedora/openSUSE)

• Click Accept and Install
scp google-chrome-stable_current_x86_64.rpm USERNAME@home.ccs.ornl.gov:

ssh -X USERNAME@home.ccs.ornl.gov

mkdir ~/chrome

cd ~/chrome

rpm2cpio ../google-chrome-stable_current_x86_64.rpm | cpio -id

install gdbgui
python3 -m pip install --user pipx

python3 -m userpath append ~/.local/bin

pipx install gdbgui

run rocgdb with gdbgui in Chrome
ssh -X USERNAME@home.ccs.ornl.gov

ssh -X login1._______.olcf.ornl.gov

srun -A VEN113 -N 1 -n 1 -c 64 --x11 --pty bash

gdbgui -g /opt/rocm/bin/rocgdb --no-browser &

~/chrome/opt/google/chrome/google-chrome 2>/dev/null &

• In Chrome, go to: http://127.0.0.1:5000

• Click Load Binary to load your binary (compiled with -ggdb)

• Step into a kernel

• Click fetch disassembly
show architecture

info threads

info queues

info dispatches

info registers

info reg vcc

info reg exec

s

si

n

ni

...

Oct 21-23, 2025 AMD @ Tsukuba University

36 |

[Public]

More resources for rocgdb

• /opt/rocm<-version>/share/doc/rocgdb/

• rocgdb.pdf -- has additions for GPU commands

• rocrefcard.pdf -- standard gdb reference card

• Presentations

• https://www.olcf.ornl.gov/wp-content/uploads/2021/04/rocgdb_hipmath_ornl_2021_v2.pdf -- Justin

Chang (AMD)

• https://lpc.events/event/11/contributions/997/attachments/928/1828/LPC2021-rocgdbdemo.pdf –

Andrew Stubbs (Siemens®) – See https://youtu.be/IGWFph4SlpU for 24 min video from presentation of

debugging GCC offloading code (OpenACC and OpenMP®)

Oct 21-23, 2025 AMD @ Tsukuba University

https://www.olcf.ornl.gov/wp-content/uploads/2021/04/rocgdb_hipmath_ornl_2021_v2.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2021/04/rocgdb_hipmath_ornl_2021_v2.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2021/04/rocgdb_hipmath_ornl_2021_v2.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2021/04/rocgdb_hipmath_ornl_2021_v2.pdf
https://youtu.be/IGWFph4SlpU

37 |

[Public]

Disclaimer
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions,

and typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including

but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases,

product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has

risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct

or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof

without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS

HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS

INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT,

SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD

IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© 2025 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo, AMD ROCm, Radeon and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names

used in this publication are for identification purposes only and may be trademarks of their respective companies.

The OpenMP® name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Siemens® is a registered trademark of Siemens Product Lifecycle Management Software Inc., or its subsidiaries or affiliates, in the United States

and in other countries

Oct 21-23, 2025 AMD @ Tsukuba University

	Slide 1: AMD Debugger: ROCgdb
	Slide 2: What is covered in the Rocgdb Debugger Presentation
	Slide 3: Rocgdb
	Slide 4: Simple saxpy kernel
	Slide 5: Cause a page fault
	Slide 6: Compilation with hipcc
	Slide 7: Execution
	Slide 8: Get a page fault
	Slide 9: Common gdb commands
	Slide 10: Execution with rocgdb
	Slide 11: Get more information
	Slide 12: Compile with -ggdb
	Slide 13: Get more details
	Slide 14: List threads
	Slide 15: Switch to the CPU thread
	Slide 16: See the stack trace of the CPU thread
	Slide 17: Quick tip
	Slide 18: Breakpoints – Common pitfalls
	Slide 19: Simple saxpy kernel – Where is our code?
	Slide 20: Breakpoints – If possible, debug with optimization turned off
	Slide 21: Running and architecture
	Slide 22: Breakpoint kernel and architecture
	Slide 23: “GUIs”
	Slide 24: GDB Dashboard
	Slide 25: rocgdb + gdbgui
	Slide 26: amdgcn:gfx90_
	Slide 27: amdgcn:gfx90_
	Slide 28: List threads / waves
	Slide 29: Wave details
	Slide 30: More advanced things you can do
	Slide 31: List agents
	Slide 32: List queues
	Slide 33: Dispatch details
	Slide 34: Use AMD_LOG_LEVEL=3 to find errors without having to use the debugger
	Slide 35: How to use rocgdb + gdbgui + Chrome
	Slide 36: More resources for rocgdb
	Slide 37: Disclaimer
	Slide 38

