Al Programming
Assistant

Presenter: Bob Robey
Date: Oct 21-23
AMD @ Tsukuba University

AMD ¢

together we advance_

What is Ollama?

.@.

Get up and running with large
language models.

Gemma 3, and other models, locally.

Download |

Available far 05, Linux,
and Windows

source: ollama.com

Oct 21-23, 2025

| asked ChatGPT:

“Ollama is a company and platform that
provides an API for interacting with large
language models (LLMs) and Al tools.

The platform allows developers to integrate
powerful Al capabilities into their applications,
particularly focusing on advanced language
models similar to GPT-like models.

Ollama aims to make Al tools more accessible
by offering easy-to-use solutions for interacting with
and deploying LLMs”

AMDZU

together we advance_

AMD @ Tsukuba University

Ollama Installation

HPC System
curl -fsSL https://ollama.com/install.sh | sh Download Ollama
or maybe safer to check the commands that will be run with
https://ollama.com/install.sh
to run the script: chmod +x install.sh && ./install.sh « & o=
manual installation also available on GitHub: macOs Linux Windows

https://github.com/ollama/ollama/blob/main/docs/linux.md

The ollama application will be installed in /usr/local/bin .
Install with one command:

curl -fssL https://ollama.com/install.sh | sh

La ptO p/ VVO rkstation View script source+ Manual install instructions
Can follow the same procedure as above
Models that are not too big can run on a laptop without GPUs, but will be slow

source: https://ollama.com/download/linux

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

https://ollama.com/install.sh

How to get the Models

models run locally on the cluster,
Models can be found here: https://ollama.com/library workstation or laptop so no information
leakage should be occurring

deepseek-ri

DeepSeek's first-generation of reasoning models with
comparable performance to OpenAl-o1, including six dense

models distilled from DeepSeek-R1 based on Llama and Qwen. thIS ShOWS the number Of parameters
15 7b 8 14b 32b 70b 67ib you Can use

Y, 25.8M Pulls (© Updated 4 wee

7b Q 29 Tags : - & this command shows how to run it

Updated 7 weeks ago

model

params models themselves are open-source — no
licensing, subscriptions or other fees to
template
pay
license
Oct 21-23, 2025 AMD @ Tsukuba University AMDZ

together we advance_

Editor integration

Vim
Vim users can use vim-ollama: https://github.com/gergap/vim-ollama

To install:
curl -fLo ~/.vim/autoload/plug.vim --create-dirs https://raw.githubusercontent.com/junegunn/vim-plug/master/plug.vim

Then put this in ~/.vimrc:
call plugt#begin()

Plug 'gergap/vim-ollama’
call plugttend()
Openvimand do” :PlugInstall ”

Emacs

Emacs users can use Ellama (Emacs Large LAnguage Model Assistant):
https://github.com/s-kostyaev/ellama

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

https://raw.githubusercontent.com/junegunn/vim-plug/master/plug.vim
https://raw.githubusercontent.com/junegunn/vim-plug/master/plug.vim
https://raw.githubusercontent.com/junegunn/vim-plug/master/plug.vim

Prompt Engineering

Prompt engineering means crafting and refining natural language instructions to guide Al models in
generating accurate, relevant, and useful outputs.

Several approaches:

Be specific and detailed: “Write a HIP kernel that computes a reduction on an array of integers. Make sure the code
works”

Provide context and background Information: “I am building a shallow water model with periodic boundary conditions...”
Include example code or templates (Few-Shot Learning): “Here is an example HIP kernel computing convolutions...”
Specify the output format and programming language: “The code should be written in C++...”

Assign a coding persona or role: “You are a C++ expert. Write a code that implements...”

Break down complex tasks (Chain-of-Thought): “Step 1: recognize easily parallelizable loops. 2) Provide a parallel
implementation”

Use Multi-Step prompts and iterative refinement: “Parallelize the code. Next, refined the code adding error handling”

Highlight constraints and best practices: “The code must show great performance, try to avoid atomic operations as
much as possible.”

Experiment with prompt variations: Zero/One/Few shots learning.

Example: You are an expert [C++|C|Fortran] programmer. | want to convert a CPU code to run on an AMD GPU using
OpenMP® standard 6.0. Use target directives and make sure the code works. Recognize cases when parallelism creates race
conditions and take appropriate measures to avoid that.

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

Coder LLM vs Reasoning LLM

Coder LLM
For this presentation: gwen2.5-coder:32b
An LLM trained on a vast amount of coding examples
Best used for tasks where you already know the logic and just need a well-formed code snippet
Lower verbosity is preferred to get concise code quickly.
Helpful for repetitive and tedious tasks when syntax help is needed but logic is straightforward

Reasoning LLM
For this presentation: qwq:32b
An LLM trained to “think™ using Chain-of-Thought (or similar)

|ldeal when tackling unfamiliar or complex problems where understanding the logic and process is as
important as the final code

May produce more verbose outputs that include explanations and intermediate reasoning, which can be
useful for understanding the solution but might require additional parsing if you need just the code.

Helpful when more logic needs to be used to solve a coding problem (e.g., CPU/GPU porting)

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

Ollama supported AMD GPUs (as of March 11 2025)

AMD Radeon

Ollama supports the following AMD GPUs:

Linux Support

Family Cards and accelerators

7900 XTX 7900 XT 7990 GRE 780@ XT 7700 XT 7600 XT 7600 6950 XT 6900 XTX 6900XT 6800 XT 6808 Vega
AMD Radeon RX
64 \Vega 56

AMD Radeon W7900 W7/800 W7700 W7688 W7500 W6S00X WEB800X Duo WOEBQBX We8e0 V620 V420 V3480 V320 Vega II Duo
PRO Vega IT VII 556G

AMD Instinct MI3BeX MI3eeA MI3ea MI250X MI258 MI219 MI2e00 MIlee MI6® MISO

Windows Support

With ROCm v6.1, the following GPUs are supported on Windows.

Family Cards and accelerators
AMD Radeon RX 7960 XTX 7900 XT 7900 GRE 7800 XT 7700 XT 7600 XT 7600 6950 XT 6900 XTX 6900XT 6800 XT 6300

AMD Radeon PRO w7960 W7808 W/700 W/600 W7500 W6900X W6880X Duo W6800X W6B00 V620

Source: https://qgithub.com/ollama/ollama/blob/main/docs/gpu.md#amd-radeon
Oct 21-23, 2025 AMD @ Tsukuba University AMDA

together we advance_

https://github.com/ollama/ollama/blob/main/docs/gpu.md#amd-radeon
https://github.com/ollama/ollama/blob/main/docs/gpu.md#amd-radeon
https://github.com/ollama/ollama/blob/main/docs/gpu.md#amd-radeon

Start Up Ollama: gfx942 (MI300A and MI300X)

Start ollama deamon: ollama serve &
The & makes it run in the background

Might need export OLLAMA HOST=127.0.0.1:11435 if getting Error:
address already in use

gcapodag@@eaves014afl:~% ollama serve &

(1] 3707250

gcapodag@@6ae6s5014ati:~% 2025/03/12 ©3:58:084 routes.go:1215:

currently issue on gfx942:

https://github.com/ollama/ollama/issues/8735

listen tcp 127.0.0.1:11434: bind:

INFO server config env="map[CUDA VI$IBLE DEVICES: GPU DEVICE ORDINAL: HIP VISIBLE DEVICES: HSA OV

ERRIDE_GFX VERSION: HTTPS PROXY: HTTP_PROXY: NO_ PROXY: OLLAMA COMNTEXT LENGTH:2048 OLLAMA DEBUG:fT lse OLLAMA FLASH ATTENTION:false OLLAMA GPU OVERHEAD:® OLLAMA
_HOST:http://127.0.8.1:11435 OLLAMA INTEL GPU:false OLLAMA KEEP_ALIVE:5m@s OLLAMA KV CACHE TYPE: OLLAMA LLM LIBRARY: OLLAMA LOAD TIMEOUT:5m@s OLLAMA MAX LOADE

D _MODELS:® OLLAMA MAX QUEUE:512 OLLAMA MODELS:/home/aac/shared/teams/dcgpu_training/amd/gcapodag’.models OLLAMA MULTIUSER CACHE:false OLLAMA NEW ENGINE:false
OLLAMA_ NOHISTORY:false OLLAMA NOPRUNE:false OLLAMA NUM PARALLEL:® OLLAMA ORIGINS:[http://localhcst https://localhost http://localhost:* https://localhost:* ht
tp://127.08.0.1 https://127.0.0.1 http://127.0.0.1:* https://127.0.9.1:* http://0.8.0.0 https://€.0.0.8 http://9.0.0.0:* htifps://0.8.8.8:* app://* file://* tau

ri://* vscode-webview://* vscode-file://*] OLLAMA_ SCHED SPREAD:false ROCR _VISIBLE DEVICES: http proxy: https proxy: no proxy:]"

time=2025-03-12T03:
time=2025-03-12T03:
time=2025-03-12T03:
time=2025-83-12T03:
time=2025-03-12T03:
time=2025-03-12T03:
time=2025-03-12T03:
time=2025-03-12T03:
time=2025-83-12T03:
time=2025-03-12T03:
time=2025-03-12T03:

58:
58:
58:
58:
58:
58:
58:
58:
58:
58:
58:

ed4.1e27
e4.1e37
04,1067
ed4.1e77
e4.1677
e4.17ez
04.1737
04,1757
e4.1757
04.1767
04.1767

B" available="443.5 GiB"

Oct 21-23, 2025

level=INFO
level=INFO
level=INFO
level=INFO
level=INFO
level=INFO
level=INFO
level=INFO
level=INFO
level=INFO
level=INFO

source=images.go:432 msg="total blobs: "
source=images.go:439 msg="total unused blobs removed: 3"

source=routes.go:1277 msg="Listening on 127.0.0.1:1143> (version ©.5.13)"

source=egpu.go:217 mse="lookine for compatible GPUs"
source=amd_linux.go:296 msg="unsupported Radeon iGPU detected skipping"
source=amd_linux.go:296 msg="unsupported Radeon iGPU detected skipping"
source=amd_linux.go:296 msg="unsupported Radeon iGPU detected skipping"
source=amd_linux.go:296 msg="unsupported Radeon iGPU detected skipping"
source=amd linux.go:482 msg="no compatible amdgpu devices detected"
source=gpu.go:377 msg="no compatible GPUs were discovered"
source=types.go:130 msg="inference compute” id=0 library=cpu variant=

AMD @ Tsukuba University

id=e total="e B"
id=1 total="e B"
id=2 total="e B"
id=3 total="e B"

compute="" driver=e.e name="" total="502.2 Gi

AMDZU

together we advance_

Start Up Ollama: gfx90a (MI200 series)

The GPU devices are recognized for gfix90a (MI1210 in this particular case)

gcapodag@scbfdaedlaaa:~$% 2025/63/13 04:26:17 routes.go:1215:

ERRIDE_GFX_VERSION: HTTPS_PROXY: HTTP_PROXY: NO_PROXY: OLLAMA CONTEXT_LENGTH:2048 OLLAMA DEBUG:fals

working on gfx90a

INFO server config env="map[CUDA_VISIBLJ DEVICES: GPU_DEVICE_ORDINAL:

HIP_VISIBLE_DEVICES: HSA_OV
OLLAMA_FLASH_ATTENTION:false OLLAMA GPU_OVERHEAD:® OLLAMA

_HOST:http://127.6.8.1:11435 OLLAMA INTEL GPU:false OLLAMA KEEP_ALIVE:5m@s OLLAMA KV_CACHE_TYPE: OLJAMA LLM LIBRARY: OLLAMA LOAD TIMEQUT:5m@s OLLAMA_ MAX_LOADE

D MODELS:® OLLAMA MAX QUEUE:512 OLLAMA MODELS:/home/aac/shared/teams/dcgpu training/amd/gcapodag/.

lama/models OLLAMA MULTIUSER CACHE:false OLLAMA NEW ENGINE

:false OLLAMA NOHISTORY:false OLLAMA NOPRUNE:false OLLAMA NUM PARALLEL:® OLLAMA ORIGINS:[http://logalhost https://localhost http://localhost:* https://localho

st:* http:.//127.0.0.1 https://127.0.0.1 http.//127.0.08.1:* https://127.0.0.1:* http://0.0.8.8 httg:

//* tauri://* vscode-webview://* vscode-file://*] OLLAMA SCHED SPREAD:false ROCR VISIBLE DEVICES:fhttp proxy: https proxy:
time=2825-03-13T04:
time=2825-03-13T04:
time=2825-03-13T04:
time=2825-03-13T04:
time=2825-03-13T04:
time=2825-03-13T04:
time=2825-03-13T04:
time=2825-03-13T04:
time=2825-03-13T04:
time=2825-03-13T04:
time=2825-03-13T04:
time=20825-03-13T04:
time=20825-03-13T04:

name=1002:74ef total="64.@ GiB"

26:
26:
26:
26:
26:
26:
26:
26:
26:
26:
26:
26:
26:

Oct 21-23, 2025

17.276Z
17.2717
17.2747
17.2747
17.30e87
17.3097
17.3097
17.3167
17.3117
17.3127
17.3137
17.3147
17.3147

level=INFO
level=INFO
level=INFO
level =INFO

source=images.go:432 msg="total blobs:
source=images.go:439 msg="total unused blobs removed: 9

source=routes.go:1277 msg="Listening on 127.0.06.1:1143
source=gpu.go:217 msg—"looklng for compatible GPUs"

o"

(version ©.5.13)"

no_proxy:]"

level =INFO
level =INFO
level =INFO
level =INFO
level =INFO
level=INFO
level=INFO
level =INFO

source=amd linux.go:
source=amd linux.go:
source=amd linux.go:
source=amd linux.go:
source=amd linux.go:
source=amd linux.go:
source=amd linux.go:
source=amd linux.go:

386
386
386
386
386
386
386
386

msg="amdgpu
msg="amdgpu
msg="amdgpu
msg="amdgpu
msg="amdgpu
msg="amdgpu
msg="amdgpu
msg="amdgpu

is
is
is
is
is
is
is
is

supported”
supported"
supported"
supported"
supported"
supported"
supported"
supported"

level =INFO

source=types.go:130

available="64.0 GiB"

msg="1nfterence compute”

gpu=GPU-50822e090808b5427
gpu=GPU-eb8daca7c7f674a2
gpu=GPU-d369dc9aab45528c
gpu=GPU-b598d638837782d7
gpu=GPU-e32cbe3ec6T6a640
gpu=GPU-adeed7fbcb23d4c3
gpu=GPU-31ded92d2beecbbe
gpu=GPU-dfd218ad6f8e20b9

gpu_type=gfx9e@a
gpu_type=gfx9ea
gpu_type=gfx9ea
gpu_type=gfx9e@a
gpu_type=gfx9e@a
gpu_type=gfx9@a
gpu_type=gfx9e@a
gpu_type=gfx9@a

AMD @ Tsukuba University

1d-GPU-5022€090808b5427 library=rocm variant=

//0.0.0.0 http://0.0.8.0:* https://0.0.0.0:* app://* file:

compute=gfx9@a driver=6.7

AMDZU

together we advance_

Run a Model with Ollama

export OLLAMA MODELS=$HOME/.models
ollama run gwen2.5-coder:32b

will show something like this: Ollama run will first pull and

then run, below is the output
of the pull part

gcapodag@eeane5014ati:~% ollama run qwen2.5-coder:32b

[GIN] 2025/03/12 - ©4:09:28 | | 43.93pus | 127.0.0.1 | A
[GIN] 2025/03/12 - ©4:09:28 | | 4.536189ms | 127.0.0.1 | "/api/show"
pulling manifest ¥ [GIN] 2025/03/12 - @4:09:29 |[J288Y| 1.148589014s | 127.0.0.1 ||| S /api/pull”

pulling manifest

pulling ac3dibagaa77...
pulling 66b9ea@gbdsh. ..
pulling e94a8ech9327...
pulling 832dd9e@@ass. ..

pulling fee76bd3c336.

verifying sha256 diges

writing manifest
success

100% G
100% G
100% G
100% G
100% G

Once ready, you will see this prompt:

>3 Eend a message (/? for help)

Oct 21-23, 2025

To exit, type /bye

AMD @ Tsukuba University AMD ¢\

together we advance_

Hipify a code with qwen2.5-coder:32b

Hipify this code:
HPCTrainingExamples/HIP/vector_addition_examples/vector_addition hipify/vector_addition.cu

Prompt:
You are an experienced GPU programmer with knowledge of AMD GPUs and HIP, hipify this code: <code>

Answer:

To convert the given CUDA code to use HIP (Heterogeneous-computing Interface for Portability) for AMD GPUs, you need to replace CUDA-specific API calls
and syntax with their HIP equivalents. Below is the hipified version of your code:

output code

#i## Key Changes:
1. **Kernel Launch Syntax**: The "<<<...>>> syntax is replaced with “hiplLaunchkernelGGL .
2. **API Function Names**: CUDA API functions are prefixed with "cuda” and need to be replaced with the corresponding HIP functions prefixed with " hip-,

such as “cudaMalloc™ becomes "hipMalloc™.
3. **Error Checking®**: The error checking macro remains mostly the same but uses "hipGetErrorString™ instead of ~cudaGetErrorsString™ .

This code should now be compatible with AMD GPUs using the HIP framework. Make sure to compile it with a HIP-capable compiler, such as hcc™ or clang
with HIP support enabled.

AMDZU

together we advance_

Oct 21-23, 2025 AMD @ Tsukuba University

Hipify a code with qwen2.5-coder:32b

- Compare with:
HPCTrainingExamples/HIP/vector_addition_examples/vector_addition_error_check/vector_addition.cpp

Mincludo cctdio hs I include _cctdio hs
#include <math.h> |

#include <math.h>
#include "hip/hip runtime.h"

/™ Macro tor checking GPU API return values =/ tor checking GPU API return values */
#define gpuCheck(call) #define gpuCheck(call)
do{ do{
hipError_t gputrr = call; hipError_t gpukrr = call;
if(hipSuccess != gpukrr){ if(hipSuccess != gpukrr){
PU APTI Error - %s:%d: '%s'\mn", FILE , LINE , hipGetErr| printf("GPU API Error - %s:%d: '%s'\n", FILE , LINE , hipGetEr
exit(1);

global void vector addition(double *A, double *B, double *C, int n) global void vector addition(double *A, double *B, double *C, int n)

(q\A/EEr1:2.ES-(:()Cj€3r thr_per_blk: number of threads per thread block thr_per_blk: number of threads per thread block

blk_in_grid: number of thread blocks in grid */ blk_in_grid: number of thread blocks in grid */
int thr_per_blk = 256; int thr_per_blk = 256;
int blk_in_grid = ceil(float(N) / thr_per_blk); int blk_in_grid = ceil(float(N) / thr_per_blk);
. /* Launch vector addition kernel */ | /* Launch vector addition kernel */
LJESIT1§) an ()I(j hipLaunchkernelGGL(vector addition, dim3(blk in grid), dim3(thr _per blk), | vector_ addition<<<blk in_grid, thr_per blk>>>(d a, d B, d C, N);

ES)/f]tEi)(t)l]t 7T Check Tor Kernel launchn errors ©7
i i heck(hipGetLast .
St|” Work|ng gpucheck(hipGetLastError())

7+ Check tor Kernel Iaunch errors -/
gpucheck(hipGetLastError());

/* Check for kernel execution errors */
gpuCheck (hipDeviceSynchronize());

/* Check for kernel execution errors */
gpucheck (hipbDeviceSynchronize());

printf("Blocks in Grid ¢ %d\n", blk_in_grid);
printf("Threads per Block: %d\n", thr per blk);
printf(” \n\n");

printf(“Blocks in Grid : %d\n", blk_ in_grid);
printf("Threads per Block: %d\n", thr per blk);
printf(" \n\n");

return e; return 8;

Oct 21-23, 2025 AMD @ Tsukuba University

AMDZU

together we advance_

Hipify a code with gqwq:32b

Hipify this code:

HPCTrainingExamples/HIP/vector_addition_examples/vector_addition_hipify/vector_addition.cu

Prompt:

You are an experienced GPU programmer with knowledge of AMD GPUs and HIP, hipify this code: <code>

Answer:

#include <hip/hip runtime.h>

At the top, replacing any CUDA-specific headers.

So, first step: Include <hip/hip runtime.h> instead of the implicit cuda runtime.h. The user's original code didn't include that explicitly, but cuDA
code typically includes #include <cuda runtime.h>. So adding:

it knows about the hip_runtime

but it does not produce code

Oct 21-23, 2025

Now, looking at all instances of 'cuda' in the code:

- The macro uses cudakrror_t -+ change to hipError_t

- cudaMalloc » hipMalloc

- cudaMemcpyHostToDevice » hipMemcpyHostToDevice (the enum is the same but under HIP)

Wait: cudaMemcpyHostToDevice becomes hipMemcpyHostToDevice. Similarly for DeviceToHost.

So all cudaMemcpy calls should have their direction enums prefixed with 'hip' instead of 'cuda’.
The line:

gpuCheck(cudaMemcpy(d A, h_A, bytes, cudaMemcpyHostToDevice));

Becomes:

gpuCheck(hipMemcpy(d A, h_A, bytes, hipMemcpyHostToDevice));

Same for the other cudaMemcpy calls.

AMD @ Tsukuba University AMD ¢\

together we advance_

Write a portable CMakeLists.txt with qwen2.5-coder:32b

Write a portable CMakelLists.tx for this code: HPCTrainingExamples/HIP/vectorAdd/vectoradd.hip
Prompt:

You are an experienced CMAKE programmer with knowledge of HIP and CUDA, write a CMakeLists.txt that is portable
between HIP and CUDA when the user specifies CMAKE _GPU_RUNTIME as input variable for CMake. Note that HIP is a
portable language so you do not need to switch source file for CUDA or HIP, the same source file called “vectoradd.hip”
can be use for either choice of CMAKE_GPU_RUNTIME, this is the code: <code>

Answer:

To create a "CMakelLists.txt that can handle both HIP and CUDA based on the ~CMAKE GPU RUNTIME variable, you need to set up your CMake project to
conditionally include the appropriate compiler flags and link against the correct libraries. The same source file "vectoradd.hip™ will be used for both
HIP and CUDA.

Here's a CMakeLists.txt that achieves this:
##H# Usage:

To build with HIP, you would run CMake like this:
“""sh

cmake -DCMAKE GPU RUNTIME=HIP ..)
Compare with:

HPCTrainingExamples/HIP/vectorAdd/CMakelLists.txt
To build with CuDA, you would run:
“*"sh
cmake -DCMAKE GPU RUNTIME=CUDA ..

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

15 together we advance_

Write a portable CMakeLists.txt with qwen2.5-coder:32b

?
How was the code for HIP* ${CMAKE_GPU_RUNTIME}

Just needed to modify one line: project(VectorAdd LANGUAGES CXX €UDA)

but only so we could run it on a system where CUDA is not installed

gcapodag@esae65014aftl:~/HPCTrainingExamples/HIP/vectorAdd/build$ cmake -DCMAKE GPU RUNTIME=HIP ..

-- The HIP compiler identification is Clang 18.0.0@

-- Detecting HIP compiler ABI info

-- Detecting HIP compiler ABI info - done

-- Check for working HIP compiler: /opt/rocm-6.3.3/1lib/1lvm/bin/clang++ - skipped

-- Detecting HIP compile features

-- Detecting HIP compile features - done

-- Performing Test CMAKE HAVE LIBC PTHREAD

-- Performing Test CMAKE HAVE LIBC PTHREAD - Success

-- Found Threads: TRUE

-- Configuring done (2.6s)

-- Generating done (@.1s)

-- Build files have been written to: /home/aac/shared/teams/dcgpu training/amd/gcapodag/HPCTrainingExamples/HIP/vectorAdd/build
gcapodag@esae65014aftl:~/HPCTrainingExamples/HIP/vectorAdd/build$ make
[58%] Building HIP object CMakeFiles/vector_ add.dir/vectoradd.hip.o
[1e@8%] Linking HIP executable vector_ add

[100%] Built target vector_ add gcapodag@eeae65014atl:~/HPCTrainingExamples/HIP/vectorAdd/build$./vector add
gcapodag@e6ae65014afl:~/HPCTrainingExamples/HIP/vectorAdd/build$./vector add System minor 4

System minor 4 System major 9 _
- agent prop name AMD Instinct MI3@eA
System major 9

hip Device prop succeeded

agent prop name AMD Instinct MI3@0A PASSED!
hip Device prop succeeded }
PASSED! _
Oct 21-23, 2025 AMD @ Tsukuba University AMDZ1

together we advance_

Write a portable CMakeLists.txt with qwen2.5-coder:32b

How was the code for CUDA?
Needed to add:
find_package(CUDAToolkit REQUIRED)

if (${CMAKE_GPU RUNTIME} MATCHES "CUDA")
set (CMAKE_CUDA FLAGS "${CMAKE_CUDA_FLAGS} -I/$ENV{HIP_PATH}/include")
endif()

set _source_files properties(${SOURCE_FILES} PROPERTIES LANGUAGE ${CMAKE_ GPU RUNTIME})

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

17 together we advance_

Write a portable CMakeLists.txt with qwen2.5-coder:32b

How was the code for CUDA?
Tested on Gilgamesh (University of Oregon system with NVIDIA H100 and AMD MI210)

[gcapodag@gilgamesh build]$ cmake
-- The CXX compiler identification is GNU 8.5.@

Detecting CXX compiler ABI

Detecting CXX compiler ABI - done

Check for working CXX compiler: /usr/bin/c++ - skipped

Detecting CXX compile features ShOWS that we are
Detecting CXX compile features - done . ..
Detecting CUDA compiler ABI running on Nvidia
Detecting CUDA compiler ABI - done

Check for working CUDA compiler: /packages/cuda/12.8.1/bin/nvcc - skipped

Detecting CUDA compile features

Detecting CUDA compile features - done

Found CUDAToolkit: /packages/cuda/12.8.1/include (found version "

Performing Test CMAKE HAVE LIBC_PTHREAD

Performing Test CMAKE HAVE LIBC_PTHREAD -

Looking for pthread create in pthreads

Looking for pthread create in pthreads -

Looking for pthread create in pthread

Looking for pthread create in pthread - found

Found Threads:

Configuring done (2.5s)

Generating done (©.@s)

Build files have been written to: /home/users/gcapodag/repos/HPCTrainingExamples/HIP/vectorAdd/build

[gcapodag@gilgamesh build]$./vector add
System minor ©
System major 9

agent prop name NVIDIA H10@ PCIe
hip Device prop
PASSED!

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

Write OpenMP® target directives with qwen2.5-coder:32b

Start from this code:
Pragma_Examples/OpenMP/Fortran/1 _saxpy/© saxpy serial portyourself/saxpy.F90

Prompt:

You are an expert Fortran and GPU programmer. You want to convert a CPU code to run on an AMD GPU
using OpenMP standard 6.0. Use target directives and make sure the code works. Recognize cases when
parallelism creates race conditions and take appropriate measures to avoid that. The CPU code is: <code>

Answer:

To convert your CPU code to run on an AMD GPU using OpenMP 6.8 and its target directives, you need to make several modifications. The key changes
involve adding ~!$omp target™ and related directives to offload the work to the GPU. Additionally, you should ensure that any parallelism does not
introduce race conditions.

Here's how you can modify your code:
1. **add Target Directives®*: Use " l$omp target™ to specify which parts of the code should run on the GPU.
2. **Data Mapping®*: Ensure data is mapped correctly between the host (CPU) and device (GPU).

3. **Avoid Race Conditions**: In this specific case, there are no race conditions since each element of "y~ is updated independently.

Here's the modified code:

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

20

Write OpenMP® target directives with qwen2.5-coder:32b

How was the code?
It forgot to declare the loop index i: integer :: i

Compiler warning: simd information on composite construct discarded (thatis just due to
amdflang-new)

This is the key part of the code

$omp target map(to: a,x) map(tofrom: y) | modified it like this and got the same exact output

! t distribut 1lel d imd
tomp teams distribute parallel do sim I$omp target teams distribute parallel do simd map(to: a,x) map(tofrom: y)

do 1=1,n do i=1,n
y(i) = a * x(1) + y(1) 2 . s :
o o y(i) = a * x(i) + y(i)
end do

I$omp end teams distribute parallel do simd

I$omp end target

gcapodag@e6aneseldatl:~/HPCTrainingExamples/Pragma Examples/OpenMP/Fortran/1 saxpy/® saxpy serial portyourself$./ollama
DEVID: © SGN:2 ConstWGSize:256 args: 3 teamsXthrds:(1368X 256) reqd:(©xX @) lds usage:@B sgpr_count:2@ vgpr count:1@ sgpr spill count:@ vgpr spill count
1@ tripcount:1eeeeeee rpc:@ md:@ md LB:-1 md UB:-1 Max Occupancy: 8 Achieved Occupancy: 75% n:_omp offloading 32 528eb QMsaxpymodPinitialize 147
DEVID: @ SGN:2 ConstWGSize:256 args: 9 teamsXthrds:(1368X 256) reqd:(©X @) lds usage:@B sgpr_count:22 vgpr count:14 sgpr spill count:@ vgpr spill count
:@ tripcount:10eeeeee rpc:e md:@ md LB:-1 md UB:-1 Max Occupancy: 8 Achieved Occupancy: 75% n: omp offloading 32 5288b QMsaxpymodPsaxpy 123

Time of kernel: @.ee@267

plausibility check:

y(1) 4.

y(n-1) 4.

I$omp end target teams distribute parallel do simd

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

Write OpenMP® target directives with qwen2.5-coder:32b

Next level:
Prompit:

If you are on an MI300A with HSA XNACK=1, what could be simplified in the program?
Answer:

When working on an AMD MI3@e@A GPU with "HSA XNACK=1", you can simplify some aspects of your OpenMP target directives. The "HSA XnACK=1" setting allows
for the handling of non-accessible memory (XNACK) in Heterogeneous System Architecture (HSA), which means that you don't need to explicitly map data
between host and device using the "map clause as frequently. This can simplify your code.

Here's how you can adjust your program to take advantage of "HSA XNACK=1 :

1. **Remove Explicit Data Mapping**: Since "HSA XNACK=1" handles memory access automatically, you can omit the explicit "map clauses.
2. **simplify Target Directives®*: Focus on offloading the loops and parallelism without worrying about data mapping.

Here's the simplified version of your code:

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

21 together we advance_

Write OpenMP® target directives with qwen2.5-coder:32b

How was the code this time?
Still forgot to declare the loop index i: integer :: i

Same compiler warning: simd information on composite construct discarded (thatis just due to
amdflang-new)

Before After
I$omp target map(to: a,x) map(tofrom: y) '$omp target _
I$omp teams distribute parallel do simd I$omp teams distribute parallel do simd
do i=1,n do i=1,n
y(i) = a * x(i) + y(i) y(i) = a * x(i) + y(i)
end do end do
I$omp end teams distribute parallel do simd I$omp end teams distribute parallel do simd
I$omp end target I$omp end target

Same output as before but faster

gcapodag@@6anes814atl:~/HPCTrainingExamples/Pragma_ Examples/OpenMP/Fortran/1_saxpy/3 saxpy paralleldosimd$./ollama

DEVID: © SGN:2 ConstWGSize:256 args: 6 teamsXthrds:(1368X 256) reqd:(@xX @) lds usage:@B sgpr count:2e@ vgpr count:1@ sgpr spill count:® vgpr spill count
1@ tripcount:10000000 rpc:® md:@ md LB:-1 md UB:-1 Max Occupancy: 8 Achieved Occupancy: 75% n: omp offloading 32 1a359 QMsaxpymodPinitialize 146

DEVID: © SGN:2 ConstWGSize:256 args: 6 teamsXthrds:(1368X 256) reqd:(@xX @) lds usage:@B sgpr count:22 vgpr count:13 sgpr spill count:® vgpr spill count

1@ tripcount:10008000 rpc:® md:@ md LB:-1 md UB:-1 Max Occupancy: 8 Achieved Occupancy: 75% n:_ omp offloading 32 1a359 QMsaxpymodPsaxpy 123
Time of kernel: @.000127

y(1) 4.
y(n-1) 4.

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

22 together we advance_

23

Convert OpenACC to OpenMP® code with qwen2.5-coder:32b

Start from this code: Pragma_Examples/OpenACC/Fortran/freduce/freduce.F

do i=1, 1e
sum2=0.o
sum1=1000 .0

do j-1, 10 relevant part

sum2=sum2+array(j)
end do

buffer(i)=suml+sum2

Prompt: end do

You are an experienced Fortran programmer with knowledge of OpenACC and OpenMP, convert the following
code that performs a reduction with OpenACC into a code that uses OpenMP to perform the same operation
but on a GPU. This is the code: <code>

Answer:
Converting a code from using OpenACC to OpenMP for GPU execution involves several changes. However, it's important to note that **OpenMP does not
natively support GPU offloading®* as of the latest standards (as of 2823). OpenMP primarily targets multi-threaded CPU execution with some support for
accelerators through directives like "target , but this requires specific compiler support and configurations.

It you want to perform a reduction operation on a GPU using OpenMP, you would typically use an extension or a combination of OpenMP and another tool
that supports GPU offloading. One common approach is to use **NVIDIA's OpenMP target extensions** with the NVIDIA HPC SDK (formerly known as PGI
compilers).

Below is a step-by-step guide to convert your Fortran code from using OpenACC to using OpenMP with GPU offloading, assuming you have access to a
compiler that supports these features.

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

Convert OpenACC to OpenMP® code with qwen2.5-coder:32b

How was the code?
Getting compiler errors but it somewhat understood the assignment

gwen2.5-coder:32b revision
I$omp target map(to: array) map(from: buffer) do i=1. 1@
do i=1, 10 suaz = 0.0
e e
— . l - - - » L =
$omp teams distribute parallel do reduction(s:sum2) aiogzlta;get teams distribute parallel do reduction(+:sum2) map(to: array) map(from: buffer)
do j=1, 1e) sum2 = sum2 + array(Jj)
sum2 = sum2 + array(j) end do
end do I¢omp end target teams distribute parallel do
buffer(i) = suml + sum2 buffer(i) = suml + sum2
end do end do

I$omp end target

compile error due to not being after

error: loc("/home/aac/shared/teams/dcgpu training/amd/gcapodag/HPCTrainingExamples/Pragma_Examples/OpenACC/Fortran/freduce/ollama.F9@":28:15): expected to be
nested inside of omp.target or not nested in any OpenMP dialect operations
error: verification of lowering to FIR failed

AMDZU

together we advance_

Oct 21-23, 2025 AMD @ Tsukuba University

24

25

Convert OpenACC to OpenMP® code with qwen2.5-coder:32b

Start from this code: HPCTrainingExamples/Pragma_ Examples/OpenACC/Fortran/freduce/freduce.F

Prompit:

You are an experienced Fortran programmer with knowledge of OpenACC and OpenMP, convert the following code that
performs a reduction with OpenACC into a code that uses OpenMP to perform the same operation but on a GPU. Note
that we only want the reduction to happen on GPU. This is the code: <code>

Answer:

To convert the given Fortran code from using OpenACC to using OpenMP with GPU offloading for the reduction operation, you can use the “target teams
distribute parallel for™ construct provided by OpenMP 4.5 and later. Here's how you can modify the code:

I$omp target data map(to: array) map(from: buffer)
do i=1, 1@

sum2=@.@

suml=1eee.8

the code compiles and runs
out of the box with

I$omp target teams distribute parallel do reduction(+:sum2)

do j=1, 10
ST amdflang-new and HSA_XNACK=1
en Q
buffer(i)=suml+sum2
ol note the use of
I$omp end target data instead of
Oct 21-23, 2025 AMD @ Tsukuba University AMDA

together we advance_

What about Reproducibility?

| gave the exact same prompt and code as in the previous slide to qwen2.5-coder:32b, this time running on
MI210 instead of MI300A

Answer:

To convert the given Fortran code that uses OpenACC to a version using OpenMP for GPU execution, you need to make use of the target directive provided
by OpenMP. The “target directive allows offloading loops and other constructs to the GPU. However, note that OpenMP does not directly support reduction
on the GPU in the same way as OpenACC. You will need to manually handle the reduction using shared memory within a GPU kernel.

Previous result Current result

!$0mp target data map(to: array) map(from: buffer) I$omp target data map(to:array)]map(fromto:buffer)
do i=1, 16 do i=1, 1@
sum2=0.9 sum2 = 9.0
suml=1660.0 suml = 1000.0
I offload the reduction to the GPU | offload the loop to the GPU with manual geeduciion
I$omp target teams distribute parallel do reduction(+:sum2) I$omp target teams distribute parallel do|private(j) peduction(+:sum2)
do j=1, 10 do j=1, 10
sum2=sum2+array(j) sum2 = sum2 + array(j) not needed
end do end do
buffer(i)=suml+sum2 buffer(i) = suml + sum2
end do end do
I$omp end target data I$omp end target data
Oct 21-23, 2025 AMD @ Tsukuba University AMD1

26 together we advance_

Convert complex C++ code with MPI and OpenMP® to Fortran

Start from this code:
HPCTrainingExamples/MPI-examples/GhostExchange/GhostExchange ArrayAssign/Verl/GhostExchange.cc

Prompit:
You are an experienced Fortran and C++ programmer with knowledge of OpenMP to run on GPU, MPl and GPU

programming. The following code is computing a simple averaging kernel over a 2D domain discretized with a
Cartesian structured mesh which is partitioned among MPI ranks. The code executes in parallel with MPIl and
OpenMP and is currently implemented in C++. Note that the code is using an allocator for 2D arrays called
malloc2D.h. Consider that in Fortran, handling 2D arrays is a lot simpler than in C++ and therefore do not
assume you need any external allocator for 2D arrays. Note additionally that the following code is written for
AMD GPUs with HSA_XNACK=1 and is using unified share memory. Using this information, write a variant of
this code that does the same job, but is written in Fortran instead of C++, here is the code: <code>

Answer:

The provided C code simulates a distributed Cartesian grid using MPI, with each process handling a subgrid of a larger global grid. The code includes
functionalities to initialize the grid, perform halo exchanges between neighboring processes, and print the entire grid in a structured format. Below is
an analysis and explanation of key parts of the code:

By understanding these components and their interactions, you can effectively use and extend this code for distributed computing tasks involving
Cartesian grids.[GIN] 2025/03/12 - 21:50:00 |[288N| 3ma3s | 127.0.0.1 || SSEEE "/api/chat"

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

A note on the legal implications of using Al-generated code

Copyright and Ownership
No Human, No Copyright: In the U.S. and EU, Al-generated code without human authorship
is not protected by copyright — it defaults to public domain
Partial Protection: If a human modifies Al output significantly, they may claim copyright over

those modifications but not the raw Al output

Attribution & Licensing Risks
Open-Source Compliance: Al may generate GPL, MIT, or Apache-licensed code,
triggering obligations (e.g., attribution, license adherence)

Infringement & Legal Risks

Direct Copying: Al may reproduce verbatim or near-verbatim segments from training data,

risking copyright infringement
Derivative Works: Modifying or translating protected code via Al may be an infringement, if the Al output is too similar to the original

Takeaway: Al-generated code may not be copyrightable but can still infringe copyrights. Treat Al as an assistant, not an autonomous coder

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

28 together we advance_

29

Summary

LLMs can assist programmers with some of their computing task

Coder models can produce code as advised by the prompt, limited number of information shared, focusing
on key aspects

Reasoning models can provide insights on a topic and serve as a “source of information”, but tend to be
rather chatty

Rather simple tasks can be processed effectively, more complex task not there yet

The prompt provided can make a big difference in the outcome obtained

LLMs can assist programmers with conversion tools that may not be widely available (such as OpenACC
to OpenMP® conversion)

Outcome has to be viewed in probabilistic sense, so reproducibility is not really to be expected

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

30

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical
errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and
roadmap changes, component and motherboard version changes, new model and/or product releases, product differences between differing
manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be
completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the
right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such
revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS
HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.
AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY
PARTICULAR PURPOSE. IN NO EVENT WILLAMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER
CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY
CONTENT IS PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR

SOLE DISCRETION AND UNDER NO CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL
RISK AND ARE SOLELY RESPONSIBLE FOR ANY DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD CDNA, AMD ROCm, AMD Instinct, and combinations thereof
are trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may
be trademarks of their respective owners.

gwq and qwen2.5-coder are open-source models from Alibaba Cloud
The OpenMP® name and the OpenMP® logo are registered trademarks of the OpenMP Architecture Review Board

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

	Slide 1: AI Programming Assistant
	Slide 2: What is Ollama?
	Slide 3: Ollama Installation
	Slide 4: How to get the Models
	Slide 5: Editor integration
	Slide 6: Prompt Engineering
	Slide 7: Coder LLM vs Reasoning LLM
	Slide 8: Ollama supported AMD GPUs (as of March 11 2025)
	Slide 9: Start Up Ollama: gfx942 (MI300A and MI300X)
	Slide 10: Start Up Ollama: gfx90a (MI200 series)
	Slide 11: Run a Model with Ollama
	Slide 12: Hipify a code with qwen2.5-coder:32b
	Slide 13: Hipify a code with qwen2.5-coder:32b
	Slide 14: Hipify a code with qwq:32b
	Slide 15: Write a portable CMakeLists.txt with qwen2.5-coder:32b
	Slide 16: Write a portable CMakeLists.txt with qwen2.5-coder:32b
	Slide 17: Write a portable CMakeLists.txt with qwen2.5-coder:32b
	Slide 18: Write a portable CMakeLists.txt with qwen2.5-coder:32b
	Slide 19: Write OpenMP® target directives with qwen2.5-coder:32b
	Slide 20: Write OpenMP® target directives with qwen2.5-coder:32b
	Slide 21: Write OpenMP® target directives with qwen2.5-coder:32b
	Slide 22: Write OpenMP® target directives with qwen2.5-coder:32b
	Slide 23: Convert OpenACC to OpenMP® code with qwen2.5-coder:32b
	Slide 24: Convert OpenACC to OpenMP® code with qwen2.5-coder:32b
	Slide 25: Convert OpenACC to OpenMP® code with qwen2.5-coder:32b
	Slide 26: What about Reproducibility?
	Slide 27: Convert complex C++ code with MPI and OpenMP® to Fortran
	Slide 28: A note on the legal implications of using AI-generated code
	Slide 29: Summary
	Slide 30: Disclaimer
	Slide 31

