
AI Programming

Assistant

Presenter: Bob Robey

Date: Oct 21-23

AMD @ Tsukuba University

2 |

[Public]

What is Ollama?

source: ollama.com

I asked ChatGPT:

“Ollama is a company and platform that

provides an API for interacting with large

language models (LLMs) and AI tools.

The platform allows developers to integrate

powerful AI capabilities into their applications,

particularly focusing on advanced language

models similar to GPT-like models.

Ollama aims to make AI tools more accessible

by offering easy-to-use solutions for interacting with

and deploying LLMs”

Oct 21-23, 2025 AMD @ Tsukuba University

3 |

[Public]

Ollama Installation

• HPC System

o curl -fsSL https://ollama.com/install.sh | sh

or maybe safer to check the commands that will be run with

 https://ollama.com/install.sh

o to run the script: chmod +x install.sh && ./install.sh

o manual installation also available on GitHub:
https://github.com/ollama/ollama/blob/main/docs/linux.md

The ollama application will be installed in /usr/local/bin

• Laptop/Workstation

• Can follow the same procedure as above

• Models that are not too big can run on a laptop without GPUs, but will be slow

source: https://ollama.com/download/linux

Oct 21-23, 2025 AMD @ Tsukuba University

https://ollama.com/install.sh

4 |

[Public]

How to get the Models

• Models can be found here: https://ollama.com/library

this command shows how to run it

this shows the number of parameters

you can use

models themselves are open-source – no

licensing, subscriptions or other fees to

pay

models run locally on the cluster,

workstation or laptop so no information

leakage should be occurring

Oct 21-23, 2025 AMD @ Tsukuba University

5 |

[Public]

Editor integration

• Vim

Vim users can use vim-ollama: https://github.com/gergap/vim-ollama

• To install:
curl -fLo ~/.vim/autoload/plug.vim --create-dirs https://raw.githubusercontent.com/junegunn/vim-plug/master/plug.vim

• Then put this in ~/.vimrc:

 call plug#begin()

 Plug 'gergap/vim-ollama’

 call plug#end()

• Open vim and do ” :PlugInstall ”

• Emacs

Emacs users can use Ellama (Emacs Large LAnguage Model Assistant):

 https://github.com/s-kostyaev/ellama

Oct 21-23, 2025 AMD @ Tsukuba University

https://raw.githubusercontent.com/junegunn/vim-plug/master/plug.vim
https://raw.githubusercontent.com/junegunn/vim-plug/master/plug.vim
https://raw.githubusercontent.com/junegunn/vim-plug/master/plug.vim

6 |

[Public]

Prompt Engineering
• Prompt engineering means crafting and refining natural language instructions to guide AI models in

generating accurate, relevant, and useful outputs.

• Several approaches:

1. Be specific and detailed: “Write a HIP kernel that computes a reduction on an array of integers. Make sure the code

works”

2. Provide context and background Information: “I am building a shallow water model with periodic boundary conditions…”

3. Include example code or templates (Few-Shot Learning): “Here is an example HIP kernel computing convolutions…”

4. Specify the output format and programming language: “The code should be written in C++…”

5. Assign a coding persona or role: “You are a C++ expert. Write a code that implements…”

6. Break down complex tasks (Chain-of-Thought): “Step 1: recognize easily parallelizable loops. 2) Provide a parallel

implementation”

7. Use Multi-Step prompts and iterative refinement: “Parallelize the code. Next, refined the code adding error handling”

8. Highlight constraints and best practices: “The code must show great performance, try to avoid atomic operations as

much as possible.”

9. Experiment with prompt variations: Zero/One/Few shots learning.

Example: You are an expert [C++|C|Fortran] programmer. I want to convert a CPU code to run on an AMD GPU using

OpenMP® standard 6.0. Use target directives and make sure the code works. Recognize cases when parallelism creates race

conditions and take appropriate measures to avoid that.

Oct 21-23, 2025 AMD @ Tsukuba University

7 |

[Public]

Coder LLM vs Reasoning LLM
Coder LLM

• For this presentation: qwen2.5-coder:32b

• An LLM trained on a vast amount of coding examples

• Best used for tasks where you already know the logic and just need a well-formed code snippet

• Lower verbosity is preferred to get concise code quickly.

• Helpful for repetitive and tedious tasks when syntax help is needed but logic is straightforward

Reasoning LLM

• For this presentation: qwq:32b

• An LLM trained to “think” using Chain-of-Thought (or similar)

• Ideal when tackling unfamiliar or complex problems where understanding the logic and process is as

important as the final code

• May produce more verbose outputs that include explanations and intermediate reasoning, which can be

useful for understanding the solution but might require additional parsing if you need just the code.

• Helpful when more logic needs to be used to solve a coding problem (e.g., CPU/GPU porting)

Oct 21-23, 2025 AMD @ Tsukuba University

8 |

[Public]

Ollama supported AMD GPUs (as of March 11 2025)

Source: https://github.com/ollama/ollama/blob/main/docs/gpu.md#amd-radeon
Oct 21-23, 2025 AMD @ Tsukuba University

https://github.com/ollama/ollama/blob/main/docs/gpu.md#amd-radeon
https://github.com/ollama/ollama/blob/main/docs/gpu.md#amd-radeon
https://github.com/ollama/ollama/blob/main/docs/gpu.md#amd-radeon

9 |

[Public]

Start Up Ollama: gfx942 (MI300A and MI300X)

• Start ollama deamon: ollama serve &

• The & makes it run in the background

• Might need export OLLAMA_HOST=127.0.0.1:11435 if getting Error: listen tcp 127.0.0.1:11434: bind:
address already in use

currently issue on gfx942:

https://github.com/ollama/ollama/issues/8735

Oct 21-23, 2025 AMD @ Tsukuba University

10 |

[Public]

Start Up Ollama: gfx90a (MI200 series)

• The GPU devices are recognized for gfx90a (MI210 in this particular case)

working on gfx90a

Oct 21-23, 2025 AMD @ Tsukuba University

11 |

[Public]

Run a Model with Ollama

• export OLLAMA_MODELS=$HOME/.models
ollama run qwen2.5-coder:32b

• will show something like this: Ollama run will first pull and

then run, below is the output

of the pull part

Once ready, you will see this prompt:

To exit, type /bye

Oct 21-23, 2025 AMD @ Tsukuba University

12 |

[Public]

Hipify a code with qwen2.5-coder:32b

• Hipify this code:
HPCTrainingExamples/HIP/vector_addition_examples/vector_addition_hipify/vector_addition.cu

• Prompt:

You are an experienced GPU programmer with knowledge of AMD GPUs and HIP, hipify this code: <code>

• Answer:

…
output code

…

Oct 21-23, 2025 AMD @ Tsukuba University

13 |

[Public]

Hipify a code with qwen2.5-coder:32b
• Compare with:

HPCTrainingExamples/HIP/vector_addition_examples/vector_addition_error_check/vector_addition.cpp

qwen2.5-coder
original

Forgot to

add the

hip_runtime

include,

but so did
hipify-perl

Using an old

syntax but

still working

Oct 21-23, 2025 AMD @ Tsukuba University

14 |

[Public]

Hipify a code with qwq:32b

• Hipify this code:

HPCTrainingExamples/HIP/vector_addition_examples/vector_addition_hipify/vector_addition.cu

• Prompt:

You are an experienced GPU programmer with knowledge of AMD GPUs and HIP, hipify this code: <code>

• Answer:

it knows about the hip_runtime

but it does not produce code

Oct 21-23, 2025 AMD @ Tsukuba University

15 |

[Public]

Write a portable CMakeLists.txt with qwen2.5-coder:32b

• Write a portable CMakeLists.tx for this code: HPCTrainingExamples/HIP/vectorAdd/vectoradd.hip

• Prompt:

• You are an experienced CMAKE programmer with knowledge of HIP and CUDA, write a CMakeLists.txt that is portable

between HIP and CUDA when the user specifies CMAKE_GPU_RUNTIME as input variable for CMake. Note that HIP is a

portable language so you do not need to switch source file for CUDA or HIP, the same source file called “vectoradd.hip”

can be use for either choice of CMAKE_GPU_RUNTIME, this is the code: <code>

• Answer:

Compare with:

HPCTrainingExamples/HIP/vectorAdd/CMakeLists.txt

Oct 21-23, 2025 AMD @ Tsukuba University

16 |

[Public]

Write a portable CMakeLists.txt with qwen2.5-coder:32b

How was the code for HIP?

• Just needed to modify one line: project(VectorAdd LANGUAGES CXX CUDA)
but only so we could run it on a system where CUDA is not installed

${CMAKE_GPU_RUNTIME}

Oct 21-23, 2025 AMD @ Tsukuba University

17 |

[Public]

Write a portable CMakeLists.txt with qwen2.5-coder:32b

How was the code for CUDA?

Needed to add:

• find_package(CUDAToolkit REQUIRED)

• if (${CMAKE_GPU_RUNTIME} MATCHES "CUDA")

 set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} -I/$ENV{HIP_PATH}/include")

 endif()

• set_source_files_properties(${SOURCE_FILES} PROPERTIES LANGUAGE ${CMAKE_GPU_RUNTIME})

Oct 21-23, 2025 AMD @ Tsukuba University

18 |

[Public]

Write a portable CMakeLists.txt with qwen2.5-coder:32b

How was the code for CUDA?

Tested on Gilgamesh (University of Oregon system with NVIDIA H100 and AMD MI210)

Shows that we are

running on Nvidia

Oct 21-23, 2025 AMD @ Tsukuba University

19 |

[Public]

Write OpenMP® target directives with qwen2.5-coder:32b

• Start from this code:
Pragma_Examples/OpenMP/Fortran/1_saxpy/0_saxpy_serial_portyourself/saxpy.F90

• Prompt:

You are an expert Fortran and GPU programmer. You want to convert a CPU code to run on an AMD GPU

using OpenMP standard 6.0. Use target directives and make sure the code works. Recognize cases when

parallelism creates race conditions and take appropriate measures to avoid that. The CPU code is: <code>

• Answer:

Oct 21-23, 2025 AMD @ Tsukuba University

20 |

[Public]

Write OpenMP® target directives with qwen2.5-coder:32b
How was the code?

• It forgot to declare the loop index i: integer :: i

• Compiler warning: simd information on composite construct discarded (that is just due to
amdflang-new)

This is the key part of the code

I modified it like this and got the same exact output

Oct 21-23, 2025 AMD @ Tsukuba University

21 |

[Public]

Write OpenMP® target directives with qwen2.5-coder:32b
Next level:

• Prompt:

 If you are on an MI300A with HSA_XNACK=1, what could be simplified in the program?

• Answer:

Oct 21-23, 2025 AMD @ Tsukuba University

22 |

[Public]

Write OpenMP® target directives with qwen2.5-coder:32b
How was the code this time?

• Still forgot to declare the loop index i: integer :: i

• Same compiler warning: simd information on composite construct discarded (that is just due to
amdflang-new)

Before After

Same output as before but faster

Oct 21-23, 2025 AMD @ Tsukuba University

23 |

[Public]

Convert OpenACC to OpenMP® code with qwen2.5-coder:32b
• Start from this code: Pragma_Examples/OpenACC/Fortran/freduce/freduce.F

Prompt:
You are an experienced Fortran programmer with knowledge of OpenACC and OpenMP, convert the following
code that performs a reduction with OpenACC into a code that uses OpenMP to perform the same operation
but on a GPU. This is the code: <code>

• Answer:

relevant part

Oct 21-23, 2025 AMD @ Tsukuba University

24 |

[Public]

Convert OpenACC to OpenMP® code with qwen2.5-coder:32b
How was the code?

• Getting compiler errors but it somewhat understood the assignment

qwen2.5-coder:32b revision

compile error due to !$omp teams not being after !$omp target

Oct 21-23, 2025 AMD @ Tsukuba University

25 |

[Public]

Convert OpenACC to OpenMP® code with qwen2.5-coder:32b
• Start from this code: HPCTrainingExamples/Pragma_Examples/OpenACC/Fortran/freduce/freduce.F

• Prompt:
You are an experienced Fortran programmer with knowledge of OpenACC and OpenMP, convert the following code that

performs a reduction with OpenACC into a code that uses OpenMP to perform the same operation but on a GPU. Note

that we only want the reduction to happen on GPU. This is the code: <code>

• Answer:

the code compiles and runs

out of the box with

amdflang-new and HSA_XNACK=1

note the use of !$omp target data map
instead of !$omp target map

Oct 21-23, 2025 AMD @ Tsukuba University

26 |

[Public]

What about Reproducibility?
I gave the exact same prompt and code as in the previous slide to qwen2.5-coder:32b, this time running on

MI210 instead of MI300A

Answer:

Previous result Current result
compiler error

not needed

Oct 21-23, 2025 AMD @ Tsukuba University

27 |

[Public]

Convert complex C++ code with MPI and OpenMP® to Fortran
• Start from this code:

HPCTrainingExamples/MPI-examples/GhostExchange/GhostExchange_ArrayAssign/Ver1/GhostExchange.cc

• Prompt:
You are an experienced Fortran and C++ programmer with knowledge of OpenMP to run on GPU, MPI and GPU
programming. The following code is computing a simple averaging kernel over a 2D domain discretized with a
Cartesian structured mesh which is partitioned among MPI ranks. The code executes in parallel with MPI and
OpenMP and is currently implemented in C++. Note that the code is using an allocator for 2D arrays called
malloc2D.h. Consider that in Fortran, handling 2D arrays is a lot simpler than in C++ and therefore do not
assume you need any external allocator for 2D arrays. Note additionally that the following code is written for
AMD GPUs with HSA_XNACK=1 and is using unified share memory. Using this information, write a variant of
this code that does the same job, but is written in Fortran instead of C++, here is the code: <code>

• Answer:

Key Components

Example Usage

Key MPI Functions Used

Potential Improvements

Oct 21-23, 2025 AMD @ Tsukuba University

28 |

[Public]

A note on the legal implications of using AI-generated code

1. Copyright and Ownership

• No Human, No Copyright: In the U.S. and EU, AI-generated code without human authorship

• is not protected by copyright – it defaults to public domain

• Partial Protection: If a human modifies AI output significantly, they may claim copyright over

• those modifications but not the raw AI output

2. Attribution & Licensing Risks

• Open-Source Compliance: AI may generate GPL, MIT, or Apache-licensed code,

• triggering obligations (e.g., attribution, license adherence)

3. Infringement & Legal Risks

• Direct Copying: AI may reproduce verbatim or near-verbatim segments from training data,

• risking copyright infringement

• Derivative Works: Modifying or translating protected code via AI may be an infringement, if the AI output is too similar to the original

Takeaway: AI-generated code may not be copyrightable but can still infringe copyrights. Treat AI as an assistant, not an autonomous coder

Oct 21-23, 2025 AMD @ Tsukuba University

29 |

[Public]

Summary
• LLMs can assist programmers with some of their computing task

• Coder models can produce code as advised by the prompt, limited number of information shared, focusing

on key aspects

• Reasoning models can provide insights on a topic and serve as a “source of information”, but tend to be

rather chatty

• Rather simple tasks can be processed effectively, more complex task not there yet

• The prompt provided can make a big difference in the outcome obtained

• LLMs can assist programmers with conversion tools that may not be widely available (such as OpenACC

to OpenMP® conversion)

• Outcome has to be viewed in probabilistic sense, so reproducibility is not really to be expected

Oct 21-23, 2025 AMD @ Tsukuba University

30 |

[Public]

Disclaimer
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical

errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and

roadmap changes, component and motherboard version changes, new model and/or product releases, product differences between differing

manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be

completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the

right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such

revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS

HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY

PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER

CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF

THE POSSIBILITY OF SUCH DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY

CONTENT IS PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR

SOLE DISCRETION AND UNDER NO CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL

RISK AND ARE SOLELY RESPONSIBLE FOR ANY DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD CDNA, AMD ROCm, AMD Instinct, and combinations thereof

are trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may

be trademarks of their respective owners.

qwq and qwen2.5-coder are open-source models from Alibaba Cloud

The OpenMP® name and the OpenMP® logo are registered trademarks of the OpenMP Architecture Review Board

Oct 21-23, 2025 AMD @ Tsukuba University

	Slide 1: AI Programming Assistant
	Slide 2: What is Ollama?
	Slide 3: Ollama Installation
	Slide 4: How to get the Models
	Slide 5: Editor integration
	Slide 6: Prompt Engineering
	Slide 7: Coder LLM vs Reasoning LLM
	Slide 8: Ollama supported AMD GPUs (as of March 11 2025)
	Slide 9: Start Up Ollama: gfx942 (MI300A and MI300X)
	Slide 10: Start Up Ollama: gfx90a (MI200 series)
	Slide 11: Run a Model with Ollama
	Slide 12: Hipify a code with qwen2.5-coder:32b
	Slide 13: Hipify a code with qwen2.5-coder:32b
	Slide 14: Hipify a code with qwq:32b
	Slide 15: Write a portable CMakeLists.txt with qwen2.5-coder:32b
	Slide 16: Write a portable CMakeLists.txt with qwen2.5-coder:32b
	Slide 17: Write a portable CMakeLists.txt with qwen2.5-coder:32b
	Slide 18: Write a portable CMakeLists.txt with qwen2.5-coder:32b
	Slide 19: Write OpenMP® target directives with qwen2.5-coder:32b
	Slide 20: Write OpenMP® target directives with qwen2.5-coder:32b
	Slide 21: Write OpenMP® target directives with qwen2.5-coder:32b
	Slide 22: Write OpenMP® target directives with qwen2.5-coder:32b
	Slide 23: Convert OpenACC to OpenMP® code with qwen2.5-coder:32b
	Slide 24: Convert OpenACC to OpenMP® code with qwen2.5-coder:32b
	Slide 25: Convert OpenACC to OpenMP® code with qwen2.5-coder:32b
	Slide 26: What about Reproducibility?
	Slide 27: Convert complex C++ code with MPI and OpenMP® to Fortran
	Slide 28: A note on the legal implications of using AI-generated code
	Slide 29: Summary
	Slide 30: Disclaimer
	Slide 31

