
HIP-Python, Numba-HIP,

CuPy and MPI4Py

Presenter: Bob Robey

Oct 21-23, 2025

AMD @ Tsukuba University

HIP-Python and Numba-HIP

Oct 21-23, 2025 AMD @ Tsukuba University

3 |

[Public]

What is HIP-Python ?

• HIP-Python is a wrapper layer to access many HIP components

• HIP-Python provides low-level Cython and Python bindings for various components of HIP
• HIP runtime – HIPRTC

• hipBLAS

• hipRAND

• hipFFT

• hipSparse

• hipSolver

• RCCL

• roctx

• HIP-Python is interoperable with CuPY and CuPY xarrays

• HIP-Python is also a gateway capability that provides an entry point to
• HIP-Numba

• HIP-Numpy

• HIP-Python can also take advantage of the single address space on the MI300A and the managed
memory capabilities that emulate shared memory on other AMD Instinct GPUs
• Remember to set HSA_XNACK=1 !

Oct 21-23, 2025 AMD @ Tsukuba University

4 |

[Public]

Installing HIP-Python

• HIP-Python is installed on the Training system.

• Installing on your system

• HIP-Python is posted to the TestPyPI site

• https://test.pypi.org/simple/hip-python

• Installing
python3 -m pip install -i https://test.pypi.org/simple hip-python~=6.4.0

• On PyPI, there is a fork of hip-python-fork (not tested)

• Warning: There has been another package on PyPI called hip-

python that is not related

Oct 21-23, 2025 AMD @ Tsukuba University

Above is the list of versions on the test PyPI server

Below is the fork on the PyPI server

https://test.pypi.org/simple/hip-python
https://test.pypi.org/simple/hip-python
https://test.pypi.org/simple/hip-python
https://test.pypi.org/simple/hip-python

5 |

[Public]

HIP-Python Examples 1. Error Checking

2. Getting Device Properties and Attributes

3. Calling hipBLAS

4. Cython example

5. HIP Python Data Types

Oct 21-23, 2025 AMD @ Tsukuba University

Examples are from the rocm documentation

https://rocm.docs.amd.com/projects /hip-python/en/latest/user_guide/ 1_usage.html

https://rocm.docs.amd.com/projects/hip-python/en/latest/user_guide/1_usage.html
https://rocm.docs.amd.com/projects/hip-python/en/latest/user_guide/1_usage.html
https://rocm.docs.amd.com/projects/hip-python/en/latest/user_guide/1_usage.html
https://rocm.docs.amd.com/projects/hip-python/en/latest/user_guide/1_usage.html
https://rocm.docs.amd.com/projects/hip-python/en/latest/user_guide/1_usage.html
https://rocm.docs.amd.com/projects/hip-python/en/latest/user_guide/1_usage.html
https://rocm.docs.amd.com/projects/hip-python/en/latest/user_guide/1_usage.html

6 |

[Public]

1. Error checking

• HIP-Python routines always return a tuple. It is best practice to check the returns for errors.

• The first value is the error code and the second (optional) argument is a string describing the error
def hip_check(call_result):
 err = call_result[0]
 result = call_result[1:]
 if len(result) == 1:
 result = result[0]
 if isinstance(err, hip.hipError_t) and err != hip.hipError_t.hipSuccess:
 raise RuntimeError(str(err))
 return result

• We won’t show error checks on the slides due to space. The hands-on exercises will include the error

checks in the code.

Oct 21-23, 2025 AMD @ Tsukuba University

7 |

[Public]

2. Getting Device Properties

There are two functions that can be called to get properties and attributes. There is an overlap in the items that can be

retrieved by each of these functions.

• hipGetDeviceProperties

• Over 100 properties can be retrieved with a call

props = hip.hipDeviceProp_t()

hip.hipGetDeviceProperties(props,0)

for attrib in sorted(props.PROPERTIES()):

 print(f"props.{attrib}={getattr(props,attrib)}")

• hipDeviceGetAttribute
device_num = 0
for attrib in (
 hip.hipDeviceAttribute_t.hipDeviceAttributeMaxBlockDimX,
 hip.hipDeviceAttribute_t.hipDeviceAttributeMaxBlockDimY,
 hip.hipDeviceAttribute_t.hipDeviceAttributeMaxBlockDimZ,
 hip.hipDeviceAttribute_t.hipDeviceAttributeMaxGridDimX,
 hip.hipDeviceAttribute_t.hipDeviceAttributeMaxGridDimY,
 hip.hipDeviceAttribute_t.hipDeviceAttributeMaxGridDimZ,
 hip.hipDeviceAttribute_t.hipDeviceAttributeWarpSize,):
 value = hip.hipDeviceGetAttribute(attrib,device_num)
 print(f"{attrib.name}: {value}")

Oct 21-23, 2025 AMD @ Tsukuba University

8 |

[Public]

4. Calling hipBLAS using HIP-Python

Data created using Numpy and then passing the array into hipBLAS as the host pointer

import ctypes
import math
import numpy as np

from hip import hip, hipblas

num_elements = 100

input data on host
alpha = ctypes.c_float(2)
x_h = np.random.rand(num_elements).astype(dtype=np.float32)
y_h = np.random.rand(num_elements).astype(dtype=np.float32)

expected result
y_expected = alpha*x_h + y_h

device vectors
num_bytes = num_elements * np.dtype(np.float32).itemsize
x_d = hip.hipMalloc(num_bytes)
y_d = hip.hipMalloc(num_bytes)

Oct 21-23, 2025 AMD @ Tsukuba University

9 |

[Public]

Calling hipBLAS using HIP-Python

copy input data to device
hip.hipMemcpy(x_d,x_h,num_bytes,hip.hipMemcpyKind.hipMemcpyHostToDevice)
hip.hipMemcpy(y_d,y_h,num_bytes,hip.hipMemcpyKind.hipMemcpyHostToDevice)

call hipblasSaxpy + initialization & destruction of handle
handle = hipblas.hipblasCreate()
hipblas.hipblasSaxpy(handle, num_elements, ctypes.addressof(alpha), x_d, 1, y_d, 1)
hipblas.hipblasDestroy(handle)

copy result (stored in y_d) back to host (store in y_h)
hip.hipMemcpy(y_h,y_d,num_bytes,hip.hipMemcpyKind.hipMemcpyDeviceToHost)

compare to expected result
if np.allclose(y_expected,y_h):
 print("ok")
else:
 print("FAILED")
print(f"{y_h=}")
print(f"{y_expected=}")

clean up
hip.hipFree(x_d)
hip.hipFree(y_d)

Oct 21-23, 2025 AMD @ Tsukuba University

Making hipBLAS calls

from python

x_h & y_h from numpy

10 |

[Public]

4a. Unified Shared Memory version of hipBLAS using HIP-Python

import ctypes
import math
import numpy as np

from hip import hipblas

num_elements = 100

alpha = ctypes.c_float(2)
x_h = np.random.rand(num_elements).astype(dtype=np.float32)
y_h = np.random.rand(num_elements).astype(dtype=np.float32)

y_expected = alpha*x_h + y_h

handle = hipblas.hipblasCreate()
hipblas.hipblasSaxpy(handle, num_elements, ctypes.addressof(alpha), x_h, 1, y_h, 1)
hipblas.hipblasDestroy(handle)

if np.allclose(y_expected,y_h):
 print("ok")
else:
 print("FAILED")

Oct 21-23, 2025 AMD @ Tsukuba University

Input data on host

Expected result
Call hipblasSaxpy + initialization &

destruction of handle

Compare to expected result

11 |

[Public]

Cython

• With much of the computationally intensive code running on the GPU, it is helpful to compile some of the

remaining code that still runs on the CPU.

• We place our code that we want to compile in a .pyx file called array_sum.pyx
from hip import hip, hiprtc

def array_sum(double[:, ::1] A):
 cdef int m = A.shape[0]
 cdef int n = A.shape[1]
 cdef int i, j
 cdef double result = 0

 for i in range(m):
 for k in range(n):
 result += A[i, k]

 return result

• Then we define an interface to the python routine in array_sum.pyd
from hip cimport chip, chiprtc

def array_sum(double[:, ::1] A):

Oct 21-23, 2025 AMD @ Tsukuba University

12 |

[Public]

Cython – setup.py part 1 of 2

import os, sys

array_sum = "array_sum"

from setuptools import Extension, setup
from Cython.Build import cythonize

ROCM_PATH=os.environ.get("ROCM_PATH", "/opt/rocm")
HIP_PLATFORM = os.environ.get("HIP_PLATFORM", "amd")

if HIP_PLATFORM not in ("amd", "hcc"):
 raise RuntimeError("Currently only HIP_PLATFORM=amd is supported")

def create_extension(name, sources):
 global ROCM_PATH
 global HIP_PLATFORM
 rocm_inc = os.path.join(ROCM_PATH,"include")
 rocm_lib_dir = os.path.join(ROCM_PATH,"lib")
 rocm_libs = ["amdhip64"]
 platform = HIP_PLATFORM.upper()
 cflags = ["-D", f"__HIP_PLATFORM_{platform}__"]

Oct 21-23, 2025 AMD @ Tsukuba University

13 |

[Public]

Cython – setup.py part 2 of 2

 return Extension(
 name,
 sources=sources,
 include_dirs=[rocm_inc],
 library_dirs=[rocm_lib_dir],
 libraries=rocm_libs,
 language="c",
 extra_compile_args=cflags,
)

setup(
 ext_modules = cythonize(
 [create_extension(array_sum, [f"{array_sum}.pyx"]),],
 compiler_directives=dict(language_level=3),
 compile_time_env=dict(HIP_PYTHON=True),
)
)

Oct 21-23, 2025 AMD @ Tsukuba University

14 |

[Public]

Cython – compiling the array sum python code

• Create a virtual environment, pip install cython along with the hip-python module. Run setup.py build.

python3 –m venv cython_example

source cython_example/bin/activate

• Set up the environment by loading the rocm and hip-python module. Install cython

module load rocm hip-python

pip3 import cython

• Compile the array_sum python code with setup.py build

python3 setup.py build

• Cleanup

deactivate

rm –rf cython_example

Oct 21-23, 2025 AMD @ Tsukuba University

15 |

[Public]

Numba-HIP

• Numba is a Just-inTime (JIT) compiler for Python numerical functions

• We have installed it as part of the hip-python module

• If experimenting with numba-hip and hip-python on your own system, you can install it with the following in

a virtual environment

python3 -m venv hip-python-build

source hip-python-build/bin/activate

python3 -m pip install pip

python3 -m pip install -i https://test.pypi.org/simple hip-python~=6.4.0

python3 -m pip config set global.extra-index-url https://test.pypi.org/simple

python3 -m pip install "numba-hip[rocm-6-4-0] @ git+https://github.com/ROCm/numba-hip.git“

• To clean up after working in the virtual environment

deactivate

rm -rf hip-python-build

Oct 21-23, 2025 AMD @ Tsukuba University

https://test.pypi.org/simple
https://test.pypi.org/simple

16 |

[Public]

Numba-HIP example

• File numba-hip.py

• from numba import hip

• This example code differs from CUDA only in the line @cuda.jit which is @hip.jit for numba-hip

@hip.jit
def f(a, b, c):
 # like threadIdx.x + (blockIdx.x * blockDim.x)
 tid = hip.grid(1)
 size = len(c)

 if tid < size:
 c[tid] = a[tid] + b[tid]

print(“Ok”)

• Run the example with
module load rocm hip-python
python3 numba-hip.py

Oct 21-23, 2025 AMD @ Tsukuba University

17 |

[Public]

Numba-HIP posing as CUDA

• We can also have numba-hip pose as CUDA so that we don’t have to change all the jit calls in our program

from numba import hip

hip.pose_as_cuda()
from numba import cuda

@cuda.jit
def f(a, b, c):
 # like threadIdx.x + (blockIdx.x * blockDim.x)
 tid = hip.grid(1)
 size = len(c)

 if tid < size:
 c[tid] = a[tid] + b[tid]

print("Ok")

Oct 21-23, 2025 AMD @ Tsukuba University

Enable Numba HIP to

pose as Numba CUDA

CuPy

Oct 21-23, 2025 AMD @ Tsukuba University

19 |

[Public]

What is CuPy

Oct 21-23, 2025 AMD @ Tsukuba University

• NumPy is a python interface to optimized routines written in C that provide arrays, multi-dimensional

arrays and common numerical operations on them. These are much faster than operating on Python

lists

• SciPy provides fundamental algorithms common in scientific and numerical computing. The underlying

code is a mixture of Fortran, C and C++

• CuPy is a NumPy/SciPy-compatible array library for GPU-accelerated computing with Python

• CuPy acts as a drop-in replacement to run existing NumPy/SciPy code on NVIDIA CUDA or AMD

ROCm platforms

• CuPy provides the ndarray, sparse matrices, and the associated routines for GPU devices, most

having the same API as NumPy and SciPy.

• CuPy provides interfaces to GPU optimized libraries such as rocBLAS, rocSPARSE, rocFFT, and

RCCL

source: cupy documentation

https://docs.cupy.dev/en/stable/

20 |

[Public]

CuPy and HIP

Oct 21-23, 2025 AMD @ Tsukuba University

• CuPy uses HIP as backhand to run on AMD GPUs

• HIP: Heterogeneous-compute Interface for Portability

• C++ runtime API and kernel language

• Works on AMD and Nvidia GPUs

• The CPU is often referred to as the host, and the GPU as the device

• In HIP, launching a kernel is non-blocking for the host

• After sending instructions/data, the host continues to do more work while the device executes the

kernel​. This means GPU execution and CPU activity can overlap

• What it means for CuPy: appropriate synchronization calls have to be made after a kernel call:
• cupy.cuda.Device(0).synchronize()
• cupy.cuda.Stream.synchronize()

• In HIP, memory copies such as hipMemcpy is blocking for the host

• All activity on the host stops until the copy has completed.

• What it means for CuPy: no need to sync if calling a memory copy right after a kernel.

21 |

[Public]

CuPy functions

Oct 21-23, 2025 AMD @ Tsukuba University

full list here: cupy_documentation full list here: cupy_documentation

CuPy vs NumPy API CuPy-specific functions

click here for differences between CuPy and NumPy

https://docs.cupy.dev/en/stable/reference/comparison.html#numpy-cupy-apis
https://docs.cupy.dev/en/stable/reference/ext.html
https://docs.cupy.dev/en/stable/user_guide/difference.html

22 |

[Public]

CuPy Installation – GitHub Repos

• There are two GitHub repos to take the CuPy source code from to run on AMD GPUs

• We are using the upstream CuPy repository: https://github.com/cupy/cupy

• There is also a fork of the CuPy upstream repository in the ROCm github: https://github.com/rocm/cupy

Oct 21-23, 2025 AMD @ Tsukuba University

https://github.com/cupy/cupy
https://github.com/rocm/cupy

23 |

[Public]

CuPy Installation – Versions

Oct 21-23, 2025 AMD @ Tsukuba University

Upstream versions are more recent

The one above is the one we have installed

ROCm repo versions tend to be behind

There is work from AMD to get changes pushed

directly to the upstream repo

The ROCm/cupy will soon be updated tooAs of September 23rd 2025

24 |

[Public]

CuPy – Installation with pip3 (pre-built wheel for Linux® x86_64)

Oct 21-23, 2025 AMD @ Tsukuba University

Only old versions of ROCm

currently available as

pre-built wheels

Wheels for ROCm 6.4 and 7

will soon be available

pip3 install cupy-rocm-5-0

pip3 install cupy-rocm-4-3

As of September 23rd 2025

25 |

[Public]

CuPy – Robust Installation from Source
Installation from source script available in our model installation repository:

https://github.com/amd/HPCTrainingDock/blob/main/extras/scripts/cupy_setup.sh also installs numpy-allocator

 to leverage unified shared memory

… most relevant part reported below… and cupy-xarray

export CUPY_INSTALL_USE_HIP=1

export ROCM_HOME=${ROCM_PATH}

export HIPCC=${ROCM_HOME}/bin/hipcc

export HCC_AMDGPU_ARCH=${AMDGPU_GFXMODEL}

python3 -m venv cupy_build

source cupy_build/bin/activate

pip3 install -v --target=$CUPY_PATH pytest mock xarray[complete] dask build numpy-allocator --no-cache

export PYTHONPATH=$PYTHONPATH:$CUPY_PATH

Get source from the upstream repository of CuPy.

git clone -q --depth 1 -b v$CUPY_VERSION --recursive https://github.com/cupy/cupy.git

cd cupy

python3 -m build --wheel

pip3 install -v --upgrade --target=$CUPY_PATH dist/*.whl

pip3 install -v --target=$CUPY_PATH cupy-xarray --no-deps

deactivate

Oct 21-23, 2025 AMD @ Tsukuba University

https://github.com/amd/HPCTrainingDock/blob/main/extras/scripts/cupy_setup.sh

26 |

[Public]

Basics of CuPy
• Must import the CuPy Python module in your Python code: import cupy as cp

• To create an array on the device use cp.array: gpu_array = cp.array(cpu_array)

• To copy data from GPU to CPU, use cp.asnumpy: cpu_array = cp.asnumpy(gpu_array)

• To copy back from CPU to GPU use cp.asarray: gpu_array2 = cp.asarry(cpu_array)

• Operations between GPU arrays will be done on the GPU: result_gpu = gpu_array + gpu_array2

• CuPy has the concept of a current device – usually GPU device 0: gpu_array.device

• Note that the device will be called <CUDA Device 0> even if you are on AMD GPUs.

Oct 21-23, 2025 AMD @ Tsukuba University

27 |

[Public]

NumPy – CuPy Interoperability

Oct 21-23, 2025 AMD @ Tsukuba University

source: numpy-documentation

❖ CuPy implements a subset of the NumPy interface by implementing cupy.ndarray, a

counterpart to NumPy ndarrays

❖ The cupy.ndarray object implements the __array_ufunc__ interface. This enables

NumPy universal functions (ufunc) to be applied to CuPy arrays. Note that the return type

of these operations is still consistent with the initial type.

 >>> import cupy as cp
 >>> import numpy as np
 >>> gpu_arr = cp.random.randn(1, 2, 3, 4).astype(cp.float32)
 >>> result = np.sum(gpu_arr)
 >>> print(type(result))
 <class 'cupy._core.core.ndarray’>

❖ cupy.ndarray also implements the __array_function__ interface, meaning it is

possible to do operations such as

 a = np.random.randn(100, 100)
 a_gpu = cp.asarray(a)
 qr_gpu = np.linalg.qr(a_gpu)

https://numpy.org/doc/2.2/user/basics.interoperability.html
https://numpy.org/doc/2.2/user/basics.interoperability.html
https://numpy.org/doc/2.2/user/basics.interoperability.html
https://numpy.org/doc/2.2/reference/ufuncs.html

28 |

[Public]

Simple CuPy code example

• First get the example to run from the training examples repository

git clone https://github.com/amd/HPCTrainingExamples

cd HPCTrainingExamples/Python/cupy

• Set up the environment: note the "module" below is not the Python module

module load cupy

• Run the example

python3 cupy_array_sum.py

• Output should be:
CuPy Array: [1 2 3 4 5]
Squared CuPy Array: [1 4 9 16 25]
NumPy Array: [5 6 7 8 9]
CuPy Array from NumPy: [5 6 7 8 9]
Addition Result on GPU: [6 8 10 12 14]
Result on CPU: [6 8 10 12 14]

Oct 21-23, 2025 AMD @ Tsukuba University

https://github.com/amd/HPCTrainingExamples

29 |

[Public]

Simple CuPy code example: a closer look
import cupy as cp
import numpy as np

Create a CuPy array
gpu_array = cp.array([1, 2, 3, 4, 5])
print("CuPy Array:", gpu_array)

Perform operations on the GPU
gpu_array_squared = gpu_array ** 2
print("Squared CuPy Array:", gpu_array_squared)

Create a NumPy array
cpu_array = np.array([5, 6, 7, 8, 9])
print("NumPy Array:", cpu_array)

Transfer NumPy array to GPU
gpu_array_from_cpu = cp.asarray(cpu_array)
print("CuPy Array from NumPy:",
gpu_array_from_cpu)

Perform element-wise addition
result_gpu = gpu_array + gpu_array_from_cpu
print("Addition Result on GPU:", result_gpu)

Transfer result back to CPU
result_cpu = cp.asnumpy(result_gpu)
print("Result on CPU:", result_cpu)

Oct 21-23, 2025 AMD @ Tsukuba University

Converts NumPy array to CuPy array

Returns an array on the host memory from an

 arbitrary source array (device in this case)

Creates an array on the device

Operations occur on the GPU

Operations occur on the GPU

30 |

[Public]

Verifying that CuPy code example runs on the AMD GPU

•Now run with the AMD_LOG_LEVEL environment variable set

export AMD_LOG_LEVEL=3

python3 cupy_array_sum.py

• Lots of output now – showing just a little bit:

hipMemcpyAsync (0x559ea98f65f0, 0x7f4556800000, 40, hipMemcpyDeviceToHost, stream:<null>)

Signal = (0x7f4d5efff280), Translated start/end = 1083534945452078 / 1083534945453358,
Elapsed = 1280 ns, ticks start/end = 27091222405615 / 27091222405647, Ticks elapsed = 32

Host active wait for Signal = (0x7f4d5efff200) for -1 ns

Set Handler: handle(0x7f4d5efff180), timestamp(0x559eaabead90)

Host active wait for Signal = (0x7f4d5efff180) for -1 ns

hipMemcpyAsync: Returned hipSuccess : : duration: 5948d us

hipStreamSynchronize (stream:<null>)

Handler: value(0), timestamp(0x559eaa7e7350), handle(0x7f4d5efff180)

hipStreamSynchronize: Returned hipSuccess :

hipSetDevice (0)

hipSetDevice: Returned hipSuccess :
CuPy Array: [1 2 3 4 5]

Oct 21-23, 2025 AMD @ Tsukuba University

31 |

[Public]

Unified Memory Programming on CuPy

Oct 21-23, 2025 AMD @ Tsukuba University

source: cupy docs

On AMD GPUs, you additionally need:
export HSA_XNACK=1

this will enable unified shared memory on MI300A

or managed memory on MI200s and MI300X

https://docs.cupy.dev/en/stable/user_guide/memory.html#unified-memory-programming-ump-support-experimental
https://docs.cupy.dev/en/stable/user_guide/memory.html#unified-memory-programming-ump-support-experimental

32 |

[Public]

Additional Examples on CuPy

Oct 21-23, 2025 AMD @ Tsukuba University

Code examples by Igor Sfiligoi

git clone https://github.com/sfiligoi/tutorials.git
cd tutorials/2025-09-mi300a/cupy

From 2025 ICPP AI tutorial

by San Diego Supercomputing Center

and AMD.

https://www.sdsc.edu/research/experts/sfiligoi_igor.html
https://www.sdsc.edu/research/experts/sfiligoi_igor.html
https://github.com/sfiligoi/tutorials.git

33 |

[Public]

CuPy-Xarray: Xarray on GPUs

• Xarray: Python library to work with labelled multi-dimensional arrays

• Popular for applications where multi-dimensional data needs to be handled (such as climate modeling)

• Built on top of NumPy

• Has built-in support for NetCDF

• Can wrap custom duck array objects (i.e. NumPy-like arrays) that follow specific protocols.

• When used together, Xarray and CuPy can provide an easy way to take advantage of GPU acceleration for

scientific computing tasks.

• CuPy-Xarray provides an interface for using CuPy in Xarray, providing accessors on the Xarray objects.

• CuPy-Xarray relies on an existing CuPy installation, install CuPy first

• Cupy-Xarray github repo: https://github.com/xarray-contrib/cupy-xarray

• Install with pip install cupy-xarray --no-deps after installing CuPy

• Issue with dask: https://github.com/xarray-contrib/cupy-xarray/pull/62

• Did not make it into the latest release

• Make sure to install dask with pip install dask

Oct 21-23, 2025 AMD @ Tsukuba University
source: cupy-xarray documentation

https://docs.xarray.dev/en/stable/
https://docs.xarray.dev/en/stable/
https://github.com/xarray-contrib/cupy-xarray
https://github.com/xarray-contrib/cupy-xarray
https://github.com/xarray-contrib/cupy-xarray
https://github.com/xarray-contrib/cupy-xarray
https://github.com/xarray-contrib/cupy-xarray
https://github.com/xarray-contrib/cupy-xarray/pull/62
https://github.com/xarray-contrib/cupy-xarray/pull/62
https://github.com/xarray-contrib/cupy-xarray/pull/62
https://github.com/xarray-contrib/cupy-xarray/pull/62
https://github.com/xarray-contrib/cupy-xarray/pull/62
https://cupy-xarray.readthedocs.io/latest/examples/02_introduction.html
https://cupy-xarray.readthedocs.io/latest/examples/02_introduction.html
https://cupy-xarray.readthedocs.io/latest/examples/02_introduction.html
https://cupy-xarray.readthedocs.io/latest/examples/02_introduction.html

34 |

[Public]

Simple CuPy-Xarray code example

• First get the example to run from the training examples repository

git clone https://github.com/amd/HPCTrainingExamples

cd HPCTrainingExamples/Python/cupy

• Set up the environment: note the "module" below is not the Python module

module load cupy

• Run the example

python cupy_xarray_test.py

Is the array used to create da_np on device? False

Is the array used to create da_cp on device? True

da_cp.data is of type: <class 'cupy.ndarray'>

check that arr_gpu and cupy_array are the same with CuPy: True

check the arr_gpu and cupy_array are the same with NumPy (interoperability): True

arr_gpu is on device: <CUDA Device 0>

arr_cpu is on device: cpu

total number of available devices: 8

arr_gpu2 is on device: <CUDA Device 2>

Oct 21-23, 2025 AMD @ Tsukuba University
source: cupy-xarray documentation

https://github.com/amd/HPCTrainingExamples
https://cupy-xarray.readthedocs.io/latest/examples/02_introduction.html
https://cupy-xarray.readthedocs.io/latest/examples/02_introduction.html
https://cupy-xarray.readthedocs.io/latest/examples/02_introduction.html
https://cupy-xarray.readthedocs.io/latest/examples/02_introduction.html

35 |

[Public]

Simple CuPy-Xarray code example: a closer look
import cupy as cp

import numpy as np

import xarray as xr

import cupy_xarray

arr_cpu = np.random.rand(10, 10, 10)

arr_gpu = cp.random.rand(10, 10, 10)

da_np = xr.DataArray(arr_cpu, dims=["x", "y", "time"])

da_cp = xr.DataArray(arr_gpu, dims=["x", "y", "time"])

. . . (some code omitted) . . .

cupy_array = da_cp.data

print("check that arr_gpu and cupy_array are the same with CuPy:",
cp.allclose(cupy_array,arr_gpu))

print("check the arr_gpu and cupy_array are the same with NumPy
(interoperability):", np.allclose(cupy_array,arr_gpu))

. . . (some code omitted) . . .

with cp.cuda.Device(2):

 arr_gpu2 = cp.array([1, 2, 3, 4, 5])

print("arr_gpu2 is on device:", arr_gpu2.device)

Oct 21-23, 2025 AMD @ Tsukuba University

Adds .cupy to Xarray objects

Creates an array on the CPU with NumPy

Creates an array on the GPU with CuPy

Creates a DataArray using NumPy array

Creates a DataArray using CuPy array

Access the underlying CuPy array used to create the xarray.DataArray

Use CuPy to check that the array used to create

 the xarray and the one given by xarray are the same

Use NumPy to check that the array used to create

 the xarray and the one given by xarray are the same

Use the device context manager to create data on

a different device

MPI4Py

Oct 21-23, 2025 AMD @ Tsukuba University

37 |

[Public]

What is MPI4Py

Oct 21-23, 2025 AMD @ Tsukuba University

• The Message Passing Interface (MPI) is a standardized and portable message-passing system

designed to function on a wide variety of parallel computers

• The MPI standard defines the syntax and semantics of library routines and allows users to write

portable programs in the main scientific programming languages (Fortran, C, or C++).

• MPI for Python provides (MPI4Py) MPI bindings for the Python programming language, allowing

any Python program to exploit multiple processors across multiple nodes.

• MPI4Py can send data directly from one GPU to another GPU by using GPU-aware MPI.

• MPI4Py can be configured to use any MPI implementation

source: mpi4py documentation

https://mpi4py.readthedocs.io/en/stable/mpi4py.html

38 |

[Public]

MPI4Py Installation

• Installation script uses the MPI version specified in the environment variable MPI_PATH

• Current installation script uses the OpenMPI GPU-Aware MPI

• MPI_PATH is defined in the OpenMPI module

 module load rocm

 git clone --branch 4.0.3 https://github.com/mpi4py/mpi4py.git

 cd mpi4py

 echo "[model] = ${MPI_PATH}" >> mpi.cfg

 echo "mpi_dir = ${MPI_PATH}" >> mpi.cfg

 echo "mpicc = ${MPI_PATH}"/bin/mpicc >> mpi.cfg

 echo "mpic++ = ${MPI_PATH}"/bin/mpic++ >> mpi.cfg

 echo "library_dirs = %(mpi_dir)s/lib" >> mpi.cfg

 echo "include_dirs = %(mpi_dir)s/include" >> mpi.cfg

 CC=${ROCM_PATH}/bin/amdclang CXX=${ROCM_PATH}/bin/amdclang++ python3 setup.py build --mpi=model

 CC=${ROCM_PATH}/bin/amdclang CXX=${ROCM_PATH}/bin/amdclang++ python3 setup.py bdist_wheel

 pip3 install -v --target=${MPI4PY_PATH} dist/mpi4py-*.whl

Oct 21-23, 2025 AMD @ Tsukuba University

39 |

[Public]

MPI4Py vs OpenMPI API Comparison

Oct 21-23, 2025 AMD @ Tsukuba University

MPI4Py OpenMPI

Notes on MPI4Py API
• Use methods with all-lowercase name for

generic Python objects

• Use methods with an upper-case letter for

buffer-like objects

• Source: mpi4py tutorial

https://mpi4py.readthedocs.io/en/stable/tutorial.html#gpu-aware-mpi-python-gpu-arrays

40 |

[Public]

Note about GPU Aware MPI and MPI4Py

Oct 21-23, 2025 AMD @ Tsukuba University

• If mpi4py is built against a GPU-aware MPI implementation, GPU arrays can be passed to upper-

case methods as long as they have either the __dlpack__ and __dlpack_device__ methods or

the __cuda_array_interface__ attribute that are compliant with the respective standard

specifications.

• Only C-contiguous or Fortran-contiguous GPU arrays are supported.

• GPU buffers must be fully ready before any MPI routines operate on them to avoid race conditions.

This can be ensured by using the synchronization API of your array library (as we’ll see in the next

example). mpi4py does not have access to any GPU-specific functionality and thus cannot perform

this operation automatically for users.

source: mpi4py tutorial

https://mpi4py.readthedocs.io/en/stable/tutorial.html#gpu-aware-mpi-python-gpu-arrays

41 |

[Public]

MPI4Py and CuPy example: Allreduce and Bcast

Oct 21-23, 2025 AMD @ Tsukuba University

Find the example in our exercises repo:

https://github.com/amd/HPCTrainingExamples/blob/main/Python/mpi4py/mpi4py_cupy.py

Returns an array with evenly spaced values within a given interval:

in this case it will be 10,11,…,19
Returns a new array with same shape and dtype of sendbuf.

Similar to the

corresponding

numpy calls but

happening on the

GPU

Note that the call cupy.cuda.get_current_stream() returns

an object of type cupy.cuda.Stream, see the documentation for

the full list of methods, including synchronize()

Returns True if the two arrays are element-wise equal within a tolerance,

Using this formula:

 𝑎 − 𝑏 ≤ 𝑎 ∗ 𝑡𝑜𝑙 + 𝑏 ∗ 𝑟𝑡𝑜𝑙
where a is recvbuf, b is sendbuf*size, and by default tol=1.e-08
 and rtol=1.e-05

alias for

numpy.complex64

which is a float
complex in C

https://github.com/amd/HPCTrainingExamples/blob/main/MLExamples/mpi4py_cupy.py
https://docs.cupy.dev/en/stable/reference/generated/cupy.cuda.Stream.html

42 |

[Public]

MPI4Py and CuPy example: Send-Recv

Oct 21-23, 2025 AMD @ Tsukuba University

Find the example in our exercises repository:

https://github.com/amd/HPCTrainingExamples/blob/main/Python/mpi4py/mpi4py_cupy.py

Add:
print(“Rank is:”, rank)
to show that multiple processes are executing

Then run with:
module load mpi4py cupy
mpirun –n 4 python3 mpi4py_cupy.py
and see this output:

Rank is: 2
Rank is: 1
Rank is: 3
Rank is: 0
Starting allreduce test...
Starting bcast test...
Starting send-recv test...
Success

https://github.com/amd/HPCTrainingExamples/blob/main/MLExamples/mpi4py_cupy.py

43 |

[Public]

Verifying that MPI4Py and CuPy example runs on the GPU

Oct 21-23, 2025 AMD @ Tsukuba University

Set the AMD_LOG_LEVEL

export AMD_LOG_LEVEL=3
Then run again

mpirun –n 4 python3 mpi4py_cupy.py
and see a lot more output including:

hiprtcCreateProgram (0x7fffa382ee28, #include <cupy/complex.cuh>
#include <cupy/carray.cuh>
#include <cupy/atomics.cuh>
#include <cupy/math_constants.h>
#include <cupy/hip_workaround.cuh>

typedef bool type_in0_raw;
typedef bool type_out0_raw;
typedef int IndexT;

#define REDUCE(a, b) (a & b)
#define POST_MAP(a) (out0 = a)
#define _REDUCE(_offset) if (_tid < _offset) { _type_reduce _a = _sdata[_tid], _b = _sdata[(_tid + _offset)]; _sdata[_tid] =
REDUCE(_a, _b); }

typedef bool _type_reduce;
extern "C" __global__ void cupy_all(const CArray<bool, 1, 1, 1> _raw_in0, CArray<bool, 0, 1, 1> _raw_out0, CIndexer<1, 1> _in_ind,
CIndexer<0, 1> _out_ind, const int _block_stride) {
 __shared__ char _sdata_raw[256 * sizeof(_type_reduce)];
 _type_reduce *_sdata = reinterpret_cast<_type_reduce*>(_sdata_raw);
 unsigned int _tid = threadIdx.x;

44 |

[Public]

Additional Resources

Oct 21-23, 2025 AMD @ Tsukuba University

• CuPy vs NumPy speed comparison: https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-

basics.html#cupy-vs-numpy-speed-comparison

• Real world example of Cupy-Xarray: https://cupy-xarray.readthedocs.io/latest/examples/06_real-

example.html

o Note: you might need to modify the data read line to this if it is taking too long to get the data:
da = xr.open_mfdataset(file_objs, engine="h5netcdf", compat="override",
coords='minimal')[var].load()

• Cupy with Xarray vs NumPy with Xarray performance comparison: https://cupy-

xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-

with-xarray-vs-numpy-with-xarray

• MPI presentation (touching C,Fortran and Python) from Rolf Rabenseifner at HLRS:

https://fs.hlrs.de/projects/par/par_prog_ws/pdf/mpi_3.1_rab.pdf

https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-basics.html#cupy-vs-numpy-speed-comparison
https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-basics.html#cupy-vs-numpy-speed-comparison
https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-basics.html#cupy-vs-numpy-speed-comparison
https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-basics.html#cupy-vs-numpy-speed-comparison
https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-basics.html#cupy-vs-numpy-speed-comparison
https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-basics.html#cupy-vs-numpy-speed-comparison
https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-basics.html#cupy-vs-numpy-speed-comparison
https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-basics.html#cupy-vs-numpy-speed-comparison
https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-basics.html#cupy-vs-numpy-speed-comparison
https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-basics.html#cupy-vs-numpy-speed-comparison
https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-basics.html#cupy-vs-numpy-speed-comparison
https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-basics.html#cupy-vs-numpy-speed-comparison
https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-basics.html#cupy-vs-numpy-speed-comparison
https://cupy-xarray.readthedocs.io/latest/examples/06_real-example.html
https://cupy-xarray.readthedocs.io/latest/examples/06_real-example.html
https://cupy-xarray.readthedocs.io/latest/examples/06_real-example.html
https://cupy-xarray.readthedocs.io/latest/examples/06_real-example.html
https://cupy-xarray.readthedocs.io/latest/examples/06_real-example.html
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://fs.hlrs.de/projects/par/par_prog_ws/pdf/mpi_3.1_rab.pdf

45 |

[Public]

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The

information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes,

component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS

flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no

obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time

to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF

AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD

SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN

NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING

FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY CONTENT IS

PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR SOLE DISCRETION AND UNDER NO

CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR ANY

DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD CDNA, AMD ROCm, AMD Instinct, and combinations thereof are

trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of

their respective owners.

Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git Project, in the United States

and/or other countries

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Oct 21-23, 2025 AMD @ Tsukuba University

	Slide 1: HIP-Python, Numba-HIP, CuPy and MPI4Py
	Slide 2: HIP-Python and Numba-HIP
	Slide 3: What is HIP-Python™?
	Slide 4: Installing HIP-Python™
	Slide 5: HIP-Python™ Examples
	Slide 6: 1. Error checking
	Slide 7: 2. Getting Device Properties
	Slide 8: 4. Calling hipBLAS using HIP-Python
	Slide 9: Calling hipBLAS using HIP-Python™
	Slide 10: 4a. Unified Shared Memory version of hipBLAS using HIP-Python
	Slide 11: Cython
	Slide 12: Cython – setup.py part 1 of 2
	Slide 13: Cython – setup.py part 2 of 2
	Slide 14: Cython – compiling the array sum python code
	Slide 15: Numba-HIP
	Slide 16: Numba-HIP example
	Slide 17: Numba-HIP posing as CUDA
	Slide 18: CuPy
	Slide 19: What is CuPy
	Slide 20: CuPy and HIP
	Slide 21: CuPy functions
	Slide 22: CuPy Installation – GitHub Repos
	Slide 23: CuPy Installation – Versions
	Slide 24: CuPy – Installation with pip3 (pre-built wheel for Linux® x86_64)
	Slide 25: CuPy – Robust Installation from Source
	Slide 26: Basics of CuPy
	Slide 27: NumPy – CuPy Interoperability
	Slide 28: Simple CuPy code example
	Slide 29: Simple CuPy code example: a closer look
	Slide 30: Verifying that CuPy code example runs on the AMD GPU
	Slide 31: Unified Memory Programming on CuPy
	Slide 32: Additional Examples on CuPy
	Slide 33: CuPy-Xarray: Xarray on GPUs
	Slide 34: Simple CuPy-Xarray code example
	Slide 35: Simple CuPy-Xarray code example: a closer look
	Slide 36: MPI4Py
	Slide 37: What is MPI4Py
	Slide 38: MPI4Py Installation
	Slide 39: MPI4Py vs OpenMPI API Comparison
	Slide 40: Note about GPU Aware MPI and MPI4Py
	Slide 41: MPI4Py and CuPy example: Allreduce and Bcast
	Slide 42: MPI4Py and CuPy example: Send-Recv
	Slide 43: Verifying that MPI4Py and CuPy example runs on the GPU
	Slide 44: Additional Resources
	Slide 45: Disclaimer
	Slide 46

