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Agenda

1. Inverse problem solution based on AI

• Heat source-term estimation based on Neural Network

2. Introduction to Bayesian Neural Networks

• Uncertainty Quantification for source-term estimation problem

3. Interpretability of AI models

• Knowledge distillation: Decision Trees, Symbolic Regression
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Introduction

• Inverse problem of heat source-term estimation used as main example

• Surrogate AI models can be used in HPC applications, but deeper understanding is required

• How is the model going to behave in rare/extreme events?

• How to quantify uncertainty in the predictions coming out of an AI surrogate?

• How to interpret what the model learned?

• What features are the most meaningful for the model?

• How big/complex a model should be?

• How much data is enough?
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Heat source-term estimation problem

• A source-term estimation problem is about finding the location and strength of something that is being 

released or emitted into an environment. Source could be chemical, gas, pollutant, heat, sound, etc.

• Source-term estimation typically involves using measurements (e.g., sensors detecting the substance) 

and a mathematical model of how the substance spreads (e.g., how gas flows in the air)

• This is an inverse problem, we start from the effects and try to find out the cause, ill-posed (non-

uniqueness, instability, non-existence)

• Inverse problems can be solved by running multiple simulations of where the source might be and assess 

whether the effects are consistent with the observations

• Problem: we have a 2D plate with 4 thermometers and a single heat source. We want to find the position 

of the source based on the readings

• AI is very effective in “solving” these kind of problems: Fanfarillo A. - Quantifying Uncertainty in Source 

Term Estimation with TensorFlow Probability https://ieeexplore.ieee.org/abstract/document/8944939

https://ieeexplore.ieee.org/abstract/document/8944939
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Traditional Neural Network solution

• Neural network (NN) based on 4 LSTM layers and 1 linear layer as output

• A window of 20 timesteps is expected by the LSTM layer

• Input to NN is 4 x 20:

• 4 thermometers reporting data at each timestep

• 20 timesteps expected by NN, most recent timestep kicks out oldest

• Output is the x and y coordinates on the 2D plate on where the heat source is supposed to 

be

• The 2D plate is 50 x 50 units

• The (perfect) thermometers are located at: (5,5), (44, 5), (5, 44), (44,44)

• Total simulation is 200 timesteps

• A fixed number of simulations with randomly located sources is used for training

t-19,t-18,t-17,t-16,…, t-2, t-1, t0

t-19,t-18,t-17,t-16,…, t-2, t-1, t0

t-19,t-18,t-17,t-16,…, t-2, t-1, t0

t-19,t-18,t-17,t-16,…, t-2, t-1, t0

ො𝑥

ො𝑦
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What to do next?

• The model seems to behave most of the times

• Was the training dataset representative “enough”?

• Was the model complex “enough”?

• Was the problem formulation good “enough”?

• Next steps:

• Uncertainty quantification: allows you to understand how “sure” the model was about a prediction (systemic 

uncertainty) and/or how accurate a particular prediction can be based on the problem itself (aleatoric uncertainty). 

Bayesian Neural Networks, Gaussian Processes, Polynomial Chaos Expansion (PCE)

• Interpret what the model has learned and how: knowledge distillation, feature importance, sensitivity analysis
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Traditional vs. Bayesian Neural Networks

• Traditional Neural Network:

• Deterministic weights: each connection in the network has a fixed weight value learned during training

• Point estimates: the model provides single-point predictions without quantifying uncertainty

• Overfitting risk: may overfit the training data, especially with limited data, leading to poor generalization on new data

• Bayesian Neural Network:

• Probabilistic weights: weights are treated as probability distributions, capturing a range of possible values

• Uncertainty quantification: BNNs provide a measure of confidence in their predictions by considering the uncertainty 

in the weights

• Regularization: the Bayesian framework helps prevent overfitting by integrating prior knowledge and updating beliefs 

with new data
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Traditional vs. Bayesian Neural Networks (BNN)

Traditional Neural Network
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Weights and output variables are scalars

Bayesian Neural Network
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Weights and output variables are random variables
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Bayesian Neural Networks (video)
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BNN Nuts and Bolts

• Idea: use probability distributions that model the whole set of possible weights and/or outputs

• The distribution is assigned by the user/engineer (prior)

• The posterior distribution representing the weights is learned in a Bayesian way from the data:

• Markov Chain Monte Carlo: the most Bayesian method, sample from the posterior distribution of a model's 

parameters. Very slow and hard to use in real applications. No assumptions on form of posterior. Overkill

• Variational Inference: posterior computation as an optimization problem. Instead of directly calculating the posterior, 

it approximates it by selecting a simpler, parameterized distribution (variational distribution) and adjusts its 

parameters to be as close as possible to the true posterior. Surrogate of real posterior!

• Monte Carlo Dropout: not really Bayesian, use Dropout in training and inference to generate random outputs

• Random variables can be used for internal weights, outputs, or both!

• Outputs as random variables quantify the aleatoric uncertainty

• Internal weights as random variables quantify the systemic uncertainty
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Aleatoric and Systemic Uncertainty

• Aleatoric uncertainty is caused by inherent randomness or variability in the system. This uncertainty 

cannot be reduced by gathering more data, as it is part of the system itself

• Rolling a die: it is intrinsically random, no matter how much data is gathered

• Weather prediction: even with perfect model and sensors, minimal variations cause major changes in prediction

• For our model, aleatoric uncertainty represents a fixed level of measurement or model error regardless of 

conditions. The stddev in the output variable quantifies this uncertainty. Sampling only the output variable

• Systemic uncertainty caused by lack of knowledge or insufficient data. This type of uncertainty can be 

reduced by improving the model or gathering more data

• AI models trained on biased data: unseen data will have a greater uncertainty

• For our model, it represents how “sure” the model is about a certain prediction, based on the data seen during 

training. Multiple runs of the same model, sampling the model parameters
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Aleatoric Uncertainty

Using 4 sensors Using 9 sensors
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Aleatoric Uncertainty (video)

Using 4 sensors Using 9 sensors
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Systemic Uncertainty

10 training samples 50 training samples
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Systemic Uncertainty (video)

10 training samples 50 training samples
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Knowledge distillation

• Knowledge distillation is a technique for transferring the “knowledge” learned by a large model (teacher) into a simpler 

model (student) without sacrificing too much predictive power

• The teacher has learned an approximation of a complex function, trained on the original data

• The student is NOT trained on the original data but on the teacher’s outputs (mimic the teacher)

• If the student model is “easy” to understand for humans, we can interpret what the main model learned and/or we can 

use the human readable rules

• Good student models for interpretability:

• Decision Trees/Random Forests: we can extract rules directly in the form of if-then-else statements

• Linear models: easy to understand

• Symbolic Regression: non-linear complex functions found via genetic optimization algorithms

• Run feature importance methods like LIME (Local Interpretable Model-agnostic Explanations) and SHAP (SHapley 

Additive exPlanations)
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Decision Tree (DT) – Rules Extraction

• Train a DT based on the outputs from the Neural Network

• Extract the rules driving the DT in text format. Highly interpretable

• Rules improve trust, debugging, and regulatory compliance

• Very useful for fast (hard coded) inference in HPC libraries

• More complex tree-based model can be used:

• Random Forests

• Gradient Boosting

• Some branches/outcomes might repeat, tree simplification needed

• Parameters like depth and split need to be tuned for optimal results
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Decision Tree (video)
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Symbolic Regression

• Symbolic regression aims to discover mathematical expressions that best fit a given dataset, capturing both linear and 

nonlinear relationships among variables

• The expressions derived through symbolic regression are typically composed of a combination of mathematical 

operators and functions, such as:

• Arithmetic Operations: addition (+), subtraction (−), multiplication (×), and division (÷)

• Transcendental Functions: exponential (exp), logarithmic (log), trigonometric functions (sin, cos, tan), among others

• Power Functions: raising variables to constant or variable exponents

• Symbolic Regression employs genetic programming (GP) to discover mathematical expressions that best fit a given 

dataset

Distilled from initial model:

Formula for X coordinate: -1.8512824*log(x36 + x38 + 0.0036557764) + 30.320702*cos(exp(-0.45548022*x37 - 0.45548022*x39))

Formula for Y coordinate: 23.8731941922807 - 1.83930608131609*log((x36 + x37 + 0.002661277)/(x38 + x39 + 0.008379506))

This shows that the model only cares about the latest value coming from the sensors, window length is irrelevant
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Symbolic Regression (video)
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Conclusions

• Uncertainty Quantification (UQ) is essential for trust and robustness, with Bayesian Neural Networks and 

Aleatoric/Systemic UQ providing deeper insights

• Interpretability methods, such as Symbolic Regression and Decision Trees, enhance model transparency 

and usability for HPC applications

• While AI surrogates accelerate simulations, model reliability, generalization, and explainability remain 

critical challenges

• The simpler, the better. The smaller, the better. Multiple small/simple models are usually better than one 

big/complex model

• Methods presented here are not a must. They are new tools for model validation/calibration and to better 

understand what the model is doing

• AI surrogate models are not just accelerators but decision-support tools. Combining efficiency with 

trustworthiness is key for real-world deployment
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