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Introduction

Inverse problem of heat source-term estimation used as main example

Surrogate Al models can be used in HPC applications, but deeper understanding is required
How is the model going to behave in rare/extreme events?

How to quantify uncertainty in the predictions coming out of an Al surrogate?

How to interpret what the model learned?

What features are the most meaningful for the model?

How big/complex a model should be?

How much data is enough?
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Heat source-term estimation problem

A source-term estimation problem is about finding the location and strength of something that is being

released or emitted into an environment. Source could be chemical, gas, pollutant, heat, sound, etc.

Source-term estimation typically involves using measurements (e.g., sensors detecting the substance)

and a mathematical model of how the substance spreads (e.g., how gas flows in the air)

This is an inverse problem, we start from the effects and try to find out the cause, ill-posed (non-

uniqueness, instability, non-existence)

Inverse problems can be solved by running multiple simulations of where the source might be and assess

whether the effects are consistent with the observations

Problem: we have a 2D plate with 4 thermometers and a single heat source. We want to find the position

of the source based on the readings

Al is very effective in “solving” these kind of problems: Fanfarillo A. - Quantifying Uncertainty in Source

Term Estimation with TensorFlow Probability https://ieeexplore.ieee.org/abstract/document/8944939 .
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https://ieeexplore.ieee.org/abstract/document/8944939

Traditional Neural Network solution
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Neural network (NN) based on 4 LSTM layers and 1 linear layer as output B (- 00000
A window of 20 timesteps is expected by the LSTM layer

Input to NN is 4 x 20:
4 thermometers reporting data at each timestep : o @ Actual Source

x Predicted Source

20 timesteps expected by NN, most recent timestep kicks out oldest G s

Output is the x and y coordinates on the 2D plate on where the heat source is supposed to
be

The 2D plate is 50 x 50 units
The (perfect) thermometers are located at: (5,5), (44, 5), (5, 44), (44,44)

Total simulation is 200 timesteps

A fixed number of simulations with randomly located sources is used for training AMDZ1
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What to do next?

The model seems to behave most of the times
Was the training dataset representative “enough”?
Was the model complex “enough”™?

Was the problem formulation good “enough”?

Next steps:

Uncertainty quantification: allows you to understand how “sure” the model was about a prediction (systemic
uncertainty) and/or how accurate a particular prediction can be based on the problem itself (aleatoric uncertainty).

Bayesian Neural Networks, Gaussian Processes, Polynomial Chaos Expansion (PCE)

Interpret what the model has learned and how: knowledge distillation, feature importance, sensitivity analysis
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Traditional vs. Bayesian Neural Networks

Traditional Neural Network:
Deterministic weights: each connection in the network has a fixed weight value learned during training
Point estimates: the model provides single-point predictions without quantifying uncertainty

Overfitting risk: may overfit the training data, especially with limited data, leading to poor generalization on new data

Bayesian Neural Network:
Probabilistic weights: weights are treated as probability distributions, capturing a range of possible values

Uncertainty quantification: BNNs provide a measure of confidence in their predictions by considering the uncertainty
in the weights
Regularization: the Bayesian framework helps prevent overfitting by integrating prior knowledge and updating beliefs

with new data
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Traditional vs. Bayesian Neural Networks (BNN)

Traditional Neural Network Bayesian Neural Network

A o

A 02

Weights and output variables are scalars Weights and output variables are random variables

AMDZU

together we advance_



Bayesian Neural Networks (video)

Heat Diffusion and Source Estimation

10 20 30 40
Predicted source: (23.3+6.9, 25.9+7.4)
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BNN Nuts and Bolts

|dea: use probability distributions that model the whole set of possible weights and/or outputs
The distribution is assigned by the user/engineer (prior)

The posterior distribution representing the weights is learned in a Bayesian way from the data:

Markov Chain Monte Carlo: the most Bayesian method, sample from the posterior distribution of a model's

parameters. Very slow and hard to use in real applications. No assumptions on form of posterior. Overkill

Variational Inference: posterior computation as an optimization problem. Instead of directly calculating the posterior,

it approximates it by selecting a simpler, parameterized distribution (variational distribution) and adjusts its

parameters to be as close as possible to the true posterior. Surrogate of real posterior!

Monte Carlo Dropout: not really Bayesian, use Dropout in training and inference to generate random outputs
Random variables can be used for internal weights, outputs, or both!

Outputs as random variables quantify the aleatoric uncertainty

Internal weights as random variables quantify the systemic uncertainty

AMDZU
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Aleatoric and Systemic Uncertainty

Aleatoric uncertainty is caused by inherent randomness or variability in the system. This uncertainty
cannot be reduced by gathering more data, as it is part of the system itself
Rolling a die: it is intrinsically random, no matter how much data is gathered

Weather prediction: even with perfect model and sensors, minimal variations cause major changes in prediction

For our model, aleatoric uncertainty represents a fixed level of measurement or model error regardless of

conditions. The stddev in the output variable quantifies this uncertainty. Sampling only the output variable

Systemic uncertainty caused by lack of knowledge or insufficient data. This type of uncertainty can be

reduced by improving the model or gathering more data
Al models trained on biased data: unseen data will have a greater uncertainty

For our model, it represents how “sure” the model is about a certain prediction, based on the data seen during

training. Multiple runs of the same model, sampling the model parameters
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11 together we advance_



Aleatoric Uncertainty

Using 4 sensors Using 9 sensors

Heat Diffusion & Source Estimation Individual Sample Predictions Heat Diffusion & Source Estimation Individual Sample Predictions
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Aleatoric Uncertainty (video)

Using 4 sensors Using 9 sensors

Heat Diffusion & Source Estimation Individual Sample Predictions Heat Diffusion & Source Estimation Individual Sample Predictions

10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40
Predicted source: (25.3+7.7, 23.7+8.0) Predicted source: (25.3+7.7, 23.7+8.0) Predicted source: (22.9+3.1, 27.1+3.1) Predicted source: (22.9+3.1, 27.1+3.1)
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Systemic Uncertainty

10 training samples 50 training samples

Heat Diffusion & Source Estimation Individual Sample Predictions

Heat Diffusion & Source Estimation Individual Sample Predictions
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Systemic Uncertainty (video)

10 training samples 50 training samples

Heat Diffusion & Source Estimation Individual Sample Predictions Heat Diffusion & Source Estimation Individual Sample Predictions

10 20 30 40 e 20 30 40 10 20 30 40 10 20 30 40
Predicted source: (22.7£1.8, 24.9£1.7) Predicted source: (22.7£1.8, 24.9£1.7) Predicted source: (24.7+0.6, 22.3+0.5) Predicted source: (24.7+0.6, 22.3+0.5)
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Knowledge distillation

Knowledge distillation is a technique for transferring the “knowledge” learned by a large model (teacher) into a simpler

model (student) without sacrificing too much predictive power
The teacher has learned an approximation of a complex function, trained on the original data
The student is NOT trained on the original data but on the teacher’s outputs (mimic the teacher)

If the student model is “easy” to understand for humans, we can interpret what the main model learned and/or we can

use the human readable rules

Good student models for interpretability:

Decision Trees/Random Forests: we can extract rules directly in the form of if-then-else statements

Linear models: easy to understand

Symbolic Regression: non-linear complex functions found via genetic optimization algorithms

Run feature importance methods like LIME (Local Interpretable Model-agnostic Explanations) and SHAP (SHapley

Additive exPlanations)
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Decision Tree (DT) — Rules Extraction

Train a DT based on the outputs from the Neural Network

Extract the rules driving the DT in text format. Highly interpretable
Rules improve trust, debugging, and regulatory compliance

Very useful for fast (hard coded) inference in HPC libraries

More complex tree-based model can be used:
Random Forests

Gradient Boosting
Some branches/outcomes might repeat, tree simplification needed

Parameters like depth and split need to be tuned for optimal results

Printing rules
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-- sensor@_t9 <= 0.07

-- sensorl_t9 <= 0.30

-- sensor3_t9 <= 0.08

-- sensor2_t9 <= 0.01

-- sensor3_t9 <= 0.00

-- sensorl_t9 <= 0.00
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-- sensor0_t9 <= 0.00
-- sensor2_t9 <= 0.00
| --- sensor@_t9 <= 0.00
| | --- sensorl_t9 <= 0.00
| | |--- value: [24.44, 23.54]
| | --- sensorl_t9 > 0.00
| | |--- value: [27.82, 22.80]
| --- sensor0@_t9 > 0.00
| | --- sensor@_t9 <= 0.00
| | |--- value: [23.40, 22.18]
| | --- sensor@_t9 > 0.00
| | |--- value: [22.36, 20.89]
-- sensor2_t9 > 0.00
| --- sensor2_t9 <= 0.00
| | --- sensor2_t9 <= 0.00
| | | --- value: [21.95, 25.66]
| | --- sensor2_t9 > 0.00
| | |--- value: [20.62, 26.45]
|--- sensor2_t9 > 0.00
| | --- sensor@_t9 <= 0.00
| | |--- value: [19.29, 27.17]
| | --- sensor@_t9 > 0.00
| | |--- value: [16.70, 26.35]
-- sensor@_t9 > 0.00
-- sensorl_t5 <= 0.00
-- sensor2_t6 <= 0.00
--- sensor0_t9 <= 0.01
|--- value: [18.20, 16.93]
--- sensor@_t9 > 0.01
|--- value: [16.22, 13.45]
sensor2_t6 > 0.00
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Decision Tree (video)

t=0.0000s

Actual Source
Teacher Pred
Student Pred
Sensor Positions

AMDZU

together we advance_



Symbolic Regression

Symbolic regression aims to discover mathematical expressions that best fit a given dataset, capturing both linear and

nonlinear relationships among variables

The expressions derived through symbolic regression are typically composed of a combination of mathematical
operators and functions, such as:

Arithmetic Operations: addition (+), subtraction (-), multiplication (x), and division (+)

Transcendental Functions: exponential (exp), logarithmic (log), trigonometric functions (sin, cos, tan), among others

Power Functions: raising variables to constant or variable exponents

Symbolic Regression employs genetic programming (GP) to discover mathematical expressions that best fit a given
dataset

Distilled from initial model:

Formula for X coordinate: -1.8512824*log(x36 + x38 + 0.0036557764) + 30.320702*cos(exp(-0.45548022*x37 - 0.45548022*x39))

Formula for Y coordinate: 23.8731941922807 - 1.83930608131609*log((x36 + x37 + 0.002661277)/(x38 + x39 + 0.008379506))

This shows that the model only cares about the latest value coming from the sensors, window length is irrelevant
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Symbolic Regression (video)

t = 0.0000s

Actual Source
Teacher Pred
Symbolic Pred
Sensors
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Conclusions

Uncertainty Quantification (UQ) is essential for trust and robustness, with Bayesian Neural Networks and

Aleatoric/Systemic UQ providing deeper insights

Interpretability methods, such as Symbolic Regression and Decision Trees, enhance model transparency

and usability for HPC applications

While Al surrogates accelerate simulations, model reliability, generalization, and explainability remain

critical challenges

The simpler, the better. The smaller, the better. Multiple small/simple models are usually better than one

big/complex model

Methods presented here are not a must. They are new tools for model validation/calibration and to better

understand what the model is doing

Al surrogate models are not just accelerators but decision-support tools. Combining efficiency with

trustworthiness is key for real-world deployment
AMDZ1
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Disclaimers and Trademark

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and
typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but
not limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product
differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like.

Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to
update or otherwise correct or revise this information.

However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of
AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY
APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY

IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE.

IN NO EVENT WILLAMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER
CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.
Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.
© 2025 Advanced Micro Devices, Inc. All rights reserved.
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