MPI Example: Ghost Exchange

Presenter: Bob Robey
Oct 21-23, 2025
AMD @ Tsukuba University

AMD ¢

together we advance_
Oct 21-23, 2025 AMD @ Tsukuba University

What is covered in the MPI Example: Ghost Exchange

What is the Ghost Exchange example and how it can help scientific application developers familiarize with
porting and running on GPUs

How to compile and run the example

Different implementations of the Ghost Exchange examples using OpenMP® or HIP

Several programming improvements to better the overall performance of the example

Examples of how to use affinity to further improve the performance of the Ghost Exchange example

AMDZU

together we advance_

MPI Example: Ghost Exchange — what is it?

A simplified instance of what an actual scientific application code using MPI might look like

The problem is discretized on a structured Cartesian grid where the solution is defined on a cell-wise
fashion

MPI is used to execute the computations in parallel: multiple processes handle partitions of the initial
computational domain

Ghost cells are cells assigned to a given process that are instead own by a different one: this means that a
process can read the solution defined at the ghost cells but should not modify it

The ghost cells exist because mathematical operators in discretized form need information on the
neighboring cells to compute the values of physical fields on a given cell

Ghost cells surround the cells owned by a process therefore forming a halo around the subdomain owned
by the process. Note that boundary cells are also included in the halo in this example

Values of the solution at the ghost cells need to be transferred from the process that owns the ghost cells
to the process that is only reading their information: this is done through a halo exchange using MPI

Boundary conditions are of outflow type, meaning that the value of the solution at the boundary cells is set
equal to the neighboring interior cell.

Boundary conditions are enforced prior to the halo exchanges
Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

phase scheme

in two-

Ghost Cell Exchange

each owning a 4x4 subset of the mesh

Example of the 2-step halo exchange, considering 9 processes,

S el il

together we advance_

AMDZU

imggtezf_r%()g@rallel and High Performance Compmg@brgu%gggxi\ggquamora

Ghost Exchange: OpenMP® based versions

OpenMP based implementations can be found at:
https://github.com/amd/HPCTrainingExamples/tree/main/MPl-examples/GhostExchange/GhostExchange ArrayAssign

Multiple versions available:
Orig: CPU only implementation
Ver1: offload to GPU using OpenMP and unified shared memory, needs "export HSA_ XNACK=1" (variation of Orig)
Ver2: added roctx markers for profiling (variation of Ver1)
Ver3: the communication buffers are allocated on the GPU using the OpenMP API (variation of Ver2)

Ver4: the communication buffers are dynamically allocated on the CPU with malloc only once at the beginning of the run instead of
every time step the ghost exchange call is made (variation of Ver2)

Ver5: the solution arrays is unrolled from a 2D array into a 1D array (variation of Ver4)
Ver6: uses explicit memory management with OpenMP, can do "unset HSA XNACK™ (variation of Ver5)

Orig8: the computation of the averaging kernel is done in an asynchronous way, all on the CPU. The cells that do not need information
from the cells in the ghost halos are advanced first. Then, the MPI communication is performed, which updates the value of the cells at
the ghost cells, and then the solution is advanced on those cells that need information from cells on the ghost halos (variation of Orig)

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

https://github.com/amd/HPCTrainingExamples/tree/main/MPI-examples/GhostExchange/GhostExchange_ArrayAssign
https://github.com/amd/HPCTrainingExamples/tree/main/MPI-examples/GhostExchange/GhostExchange_ArrayAssign
https://github.com/amd/HPCTrainingExamples/tree/main/MPI-examples/GhostExchange/GhostExchange_ArrayAssign

Ghost Exchange: HIP based versions

HIP based implementations can be found at:
HPCTrainingExamples/MPl-examples/GhostExchange/GhostExchange ArrayAssign HIP at main - amd/HPCTrainingExamples

Multiple versions available:
Ver1: offload to GPU using HIP and unified shared memory, needs “export HSA XNACK=1" (variation of Orig from the OpenMP® dir)
Ver1Cuda: same as Ver1 but in CUDA instead of HIP. This version is present to test hipify tools
Ver1WithBug: same as Ver1 but with a bug introduced in the thread grid launch parameters to have users debug it on their own
Ver2: added roctx markers for profiling (variation of Ver1)
Ver3: the communication buffers are allocated on the GPU using hipMalloc: GPU aware MPI is leveraged (variation of Ver2)

Ver4: the communication buffers are dynamically allocated on the CPU with malloc only once at the beginning of the run instead of
every time step the ghost exchange call is made (variation of Ver2)

Ver5: the solution arrays is unrolled from a 2D array into a 1D array (variation of Ver4)
Ver6: the solution arrays and communication buffers are allocated on the GPU, can do "unset HSA XNACK" (variation of Ver5)

Ver8: the computation advancing the solution happens on the GPU and overlaps with the MPI exchanges happening on the CPU. This
feature is particularly valuable for the MI300A architecture since no copy and transfer of data has to be performed (variation of Orig8
from the OpenMP dir)

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

https://github.com/amd/HPCTrainingExamples/tree/main/MPI-examples/GhostExchange/GhostExchange_ArrayAssign_HIP
https://github.com/amd/HPCTrainingExamples/tree/main/MPI-examples/GhostExchange/GhostExchange_ArrayAssign_HIP
https://github.com/amd/HPCTrainingExamples/tree/main/MPI-examples/GhostExchange/GhostExchange_ArrayAssign_HIP

Run the Ghost Exchange CPU only version

module load rocm amdclang openmpi
git clone https://github.com/AMD/HPCTrainingExamples

cd HPCTrainingExamples/MPI-examples/GhostExchange/GhostExchange ArrayAssign
cd Orig

mkdir build && cd build
cmake ..

make -j

mpirun -n 4 ./GhostExchange -x 2 -y 2 -1 20000 -j 20000 -h 1 -c -1 100
This will run 4 MPI ranks in a 2x2 processor grid (-x 2 -y 2)
The ghost cell halo will be 1 cells (-h 1) and the corners (-c)
Each process will have a 20,000 by 20,000 cell domain (-1 20000 -7j 20000)
Problem will run for 100 timesteps (-I 100)

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

https://github.com/AMD/HPCTrainingExamples

Ghost Exchange: CPU vs GPU Timings Comparison

Orig (CPU)

Solution Advancement: 24.927985

Boundary Condition Enforcement: ©.078748
Ghost Cell Update: 0.479542

Total: 25.786622

for (int j = @3 j < jsize; j++){
for (int 1 = @; 1 < isize; i++){
xnew[J][1] = (x[3][1] + x[JI[1-1] + x[JI[E+1] + x[J-1][1] + x[J+1][i])/5.0;

b
}
Ver1 HIP
Solution Advancement: 8.04754@
®) Boundary Condition Enforcement: ©.571013
Ver1 OpenMP® (GPU target offload) Ghost Cell Update: 1.992076
Solutior_] Advanéement: 3.122815 — eXpOI"t HSA_XNACK=1 ﬁ Total: 11.819252
Boundary Condition Enforcement: .585148@
Ghost Cell Update: ©.462915 __global__ void blur (double **x, double **xnew, int jsize, int isize)
Total: 5.616494 {
int tidx = threadIdx.x + blockIdx.x * blockDim.x;
#pragma omp target teams distribute parallel for collapse(2) int tidy = threadIdx.y + blockIdx.y * blockDim.y;
for (int j = @; j < jsize; j++){ if (tidy < jsize && tidx < isize) {
for (int i = 8; 1 < isize; i++){ xnew[tidy][tidx] = (x[tidy][tidx] + x[tidy][tidx-1] + x[tidy][tidx+1]
xnew[J][1] = (x[JI[i] + x[JI[i-2] + x[JQ[i+1] + x[J-1][1i] + x[J+2][i])/5.e; + x[tidy-1][tidx] + x[tidy+1][tidx])/5.@;
¥ ¥
L ¥
Run on MI210 with ROCm 6.4.2 and OpenMPI 5.0.7
Oct 21-23, 2025 AMD @ Tsukuba University AMDZ1

together we advance_

Ghost Exchange: Ver1 vs Ver4 Timings Comparison

Ver1 OpenMP®

Solutioﬁ Advanéement: 3.122815

Boundary Condition Enforcement:

Ghost Cell Update: ©.462915
Total: 5.616494

Ver4 OpenMP®

Solution Advancement: 3.184172

Boundary Condition Enforcement:

Ghost Cell update: ©.489475
Total: 5.314528

export HSA XNACK=1

@.585148

8.445526

roctxRangePush("Bufalloc™);

Ver1 HIP

Solution Advancement: 8.047540

Boundary Condition Enforcement: .571013
Ghost Cell Update: 1.992076

Total: 11.819252

Ver4 HIP

Solution Advancement: 7.120858

Boundary Condition Enforcement: ©.208986
Ghost Cell Update: 2.710922

Total: 11.@532@5

xbuf left send = (double
xbuf rght send = (double
xbuf rght recv = (double
xbuf left recv (double

*Ymalloc(bufcount*sizeof(double));
*¥malloc(bufcount*sizeof(double));
*Ymalloc(bufcount*sizeof(double));
*Imalloc(bufcount*sizeof(double));

roctxRangePop(); //Bufialloc

Run on MI210 with ROCm 6.4.2 and OpenMPI 5.0.7
AMD @ Tsukuba University

Oct 21-23, 2025

AMDZU

together we advance_

Ghost Exchange: Ver4 vs Ver6 Timings Comparison

Ver4d OpenMP® Ver4 HIP
Solution Advancement: 3.104172 Solution Advancement: 7.120858
Boundary Condition Enforcement: 0.445526 e Ml XPOrt HSA XNACK=1 e Boundary Condition Enforcement: @.208986
Ghost Ccell Update: ©.489475 Ghost Cell Update: 2.710922
Total: 5.314528 Total: 11.@532@5
Ver6 OpenMP® Ver6 HIP
Solution Advancement: 1.210582 goluslon ?dvsnigmenE:F5.565561l 0.019133
Boundary Condition Enforcement: @.613608 — unset HSA XNACK e Gﬁuntagylloz ; 11:0(] 2 g;:;gin Coo
Ghost cell Update: ©.384211 ; Esl- : 537552 e e
Total: 2.227684 otal:i 6.

#pragma omp target enter data map(alloc: xbuf left send[@:bufcount], xbuf rght send[@:bufcount]) POCtXRangEPL_JSh("BU'F’G‘llo':")3)
#pragma omp target enter data map(alloc: xbuf rght recv[e:bufcount], xbuf left recv[e:bufcount]) HIP_CHECK(hipMalloc(&xbuf_left_send, bufcount*sizeof(double)));

HIP CHECK(hipMalloc(&xbuf rght send, bufcount*sizeof(double)));
HIP CHECK(hipMalloc(&xbuf rght recv, bufcount*sizeof(double)));

#pragma omp target enter data map(alloc: x[@:totcells], xnew[@:totcells]) HIP_CHECK(hipMalloc(&xbuf_left_recv, bufcount*sizeof(double)));
roctxRangePop(); //Bufalloc

HIP CHECK(hipMalloc(&x, totcells * sizeof(double)));
HIP CHECK(hipMalloc(&xnew, totcells * sizeof(double)));

Run on MI210 with ROCm 6.4.2 and OpenMPI 5.0.7
Oct 21-23, 2025 AMD @ Tsukuba University AMDA

together we advance_

Ghost Exchange Ver1 HIP (no affinity settings)

$ mpirun -n 4 ./GhostExchange -x 2 -y 2 -i 20000 -j 20000 -h 1 -c -1 100

Solution Advancement: 8.112173

Boundary Condition Enforcement: ©.493496
Ghost Cell Update: 1.985867

Total: 11.952287

MPI @03 - HWT 131 - RT GPU ID ©,1,2,3,4,5,6,7 - GPU ID N/A
MPI €02 - HWT 13@ - RT GPU ID ©,1,2,3,4,5,6,7 - GPU ID N/A
MPI @00 - HWT 128 - RT GPU ID ©,1,2,3,4,5,6,7 - GPU ID N/A
MPI @01 - HWT 129 - RT GPU ID ©,1,2,3,4,5,6,7 - GPU ID N/A

|
MPIfank |

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ
11 together we advance_

Ghost Exchange Ver1 HIP (GPU affinity)

$ mpirun -n 4 ../../set_gpu device.sh ./GhostExchange -x 2 -y 2 -i 20000 -j 20000 -h 1 -c -I 100

Solution Advancement: 2.004534
Boundary Condition Enforcement: ©.020589
Ghost Cell Update: ©.661813

Total: 3.264538 366)(Speed_up

MPI @ee - HWT 128 - RT GPU ID @ - GPU _ID 3
MPI ee3 - HWT 131 - RT GPU ID @ - GPU ID @
MPI @82 - HWT @82 - RT GPU ID @ - GPU ID 1
MPI €01 - HWT 129 - RT_GPU_:FD @ - GPU _ID 2

i \
s e gy

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ
12 together we advance_

Ghost Exchange example summary

Porting simple MPI communication examples to the GPU can be straightforward
Use of complex MPI Datatypes can make it more difficult

Some of the kernels for MPI communication and boundary cell conditions do not have a lot of work
On the MI300A, it might be better to do this on the CPU — see Ver8 HIP

Additionally shown:
Taking advantage of Managed Memory (M| 200 series) and Unified Address (MI300A) for porting
Affinity and process placement
Avoiding memory allocations and transfers by allocating memory once on the GPU in the main routine

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

13 together we advance_

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The
information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes,
component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS
flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes
no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to
time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF

AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD
SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE.
IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES
ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY CONTENT IS
PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR SOLE DISCRETION AND UNDER
NO CIRCUMSTANCES WILLAMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR
ANY DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD CDNA, AMD ROCm, and combinations thereof are trademarks of
Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of their
respective owners.

Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git Project, in the United States
and/or other countries
The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

	Slide 1: MPI Example: Ghost Exchange
	Slide 2: What is covered in the MPI Example: Ghost Exchange
	Slide 3: MPI Example: Ghost Exchange – what is it?
	Slide 4: Ghost Cell Exchange in two-phase scheme
	Slide 5: Ghost Exchange: OpenMP® based versions
	Slide 6: Ghost Exchange: HIP based versions
	Slide 7: Run the Ghost Exchange CPU only version
	Slide 8: Ghost Exchange: CPU vs GPU Timings Comparison
	Slide 9: Ghost Exchange: Ver1 vs Ver4 Timings Comparison
	Slide 10: Ghost Exchange: Ver4 vs Ver6 Timings Comparison
	Slide 11: Ghost Exchange Ver1 HIP (no affinity settings)
	Slide 12: Ghost Exchange Ver1 HIP (GPU affinity)
	Slide 13: Ghost Exchange example summary
	Slide 14: Disclaimer
	Slide 15

