

Neural Operators for Predicting Time Series

Presenter: Marius Kurz Oct 13-16, 2025 AMD @ CASTIEL AI Workshop

A central task in computational science is to predict how a physical system will evolve, or "Given the current state of the system, what is its state at some later point in time?"

AMD @ CASTIEL

A central task in computational science is to predict how a physical system will evolve, or "Given the current state of the system, what is its state at some later point in time?"

$$U(x, t_0 + \Delta t) = R(U(x, t_0))$$

A central task in computational science is to predict how a physical system will evolve, or "Given the current state of the system, what is its state at some later point in time?"

$$U(x,t_0+\Delta t) = R(U(x,t_0))$$

The "dynamics" of the system

- Possible Difficulties
 - Multi-scale
 - Chaotic
 - Exponential error growth

A central task in computational science is to predict how a physical system will evolve, or "Given the current state of the system, what is its state at some later point in time?"

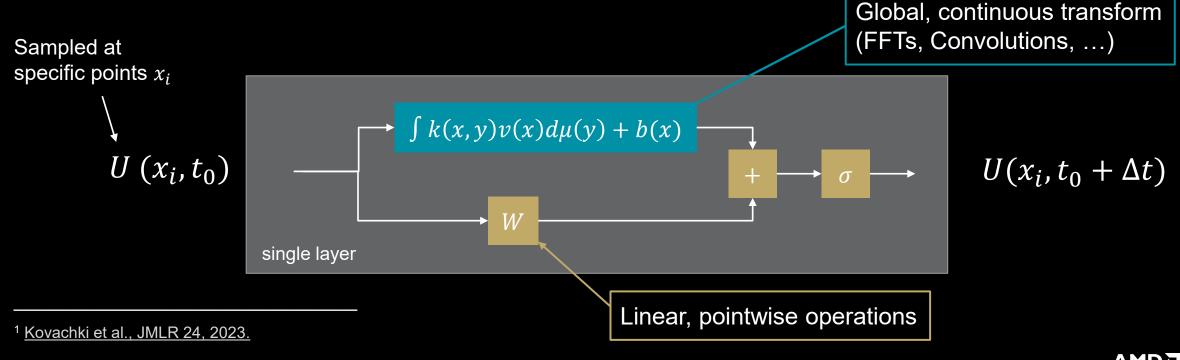
$$U(x,t_0+\Delta t)=R(U(x,t_0))$$
 The "dynamics" of the system

- Numerical Simulations
 - Rigorous guarantees
 - Highly accurate
 - (Prohibitively) Expensive

- Artificial Neural Networks
 - Cheaper to evaluate (once trained)
 - Hard to get guarantees
 - Transferability across cases difficult
 - Limited by available training data

Neural Operators – A Brief Introduction

- Artificial Neural Networks typically work on discretized data (images with pixels, tokens in sequence)
- Discretization-dependency can limit the models' usefulness
- Neural Operators¹: Learn to map from continuous functions to continuous functions



Scientific Datasets and Benchmarks

- Much progress in Al was fueled by established benchmarks and contests within scientific communities
 - Computer Vision: MNIST, CIFAR, ImageNet
 - Natural Language Processing: Open LLM Leaderboard, BookCorpus, WMT 2014 English → German
 - AlphaFold: CASP

Scientific Datasets and Benchmarks

- Much progress in Al was fueled by established benchmarks and contests within scientific communities
 - Computer Vision: MNIST, CIFAR, ImageNet
 - Natural Language Processing: Open LLM Leaderboard, BookCorpus, WMT 2014 English → German
 - AlphaFold: CASP
- Many scientific datasets:
 - are multi-dimensional: 2D, 3D
 - describe transient processes: additional time dimension
 - are large: millions of data points per sample, up to several Terabytes
 - exhibit differently structured input/output data: different simulation methods, applications, ...
 - → Establishing and sharing scientific datasets can be very difficult!

Two Exemplary Datasets for Scientific Simulations

The Well

- 2D and 3D cases from various fields of computational science
- Reference results for variants of FNO and U-Net models

References:

- Paper: <u>Ohana et al., NeurIPS, 2024</u>.
- Github: https://github.com/PolymathicAl/the-well

PDEBench

- Different 1D, 2D and 3D testcases with focus on PDEs prevalent in fluid dynamics
- Provides baseline results for FNO, U-Net and PINN models

References:

- Paper: <u>Takamoto et al., NeurIPS, 2022</u>.
- Github: https://github.com/pdebench/PDEBench

Let's pick an example!

turbulent_radiative_layer_2D from The Well¹ dataset:

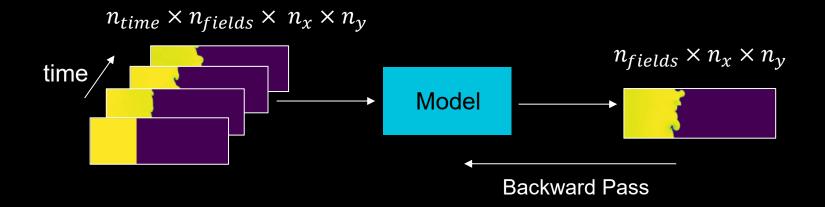
- Shear flow between hot and cold fluid phases
- Compressible Navier-Stokes equations describe temporal evolution
- Radiative cooling modeled through a source term in the energy equation

[&]quot;shear" = relative movement t_0 hot cold Interface

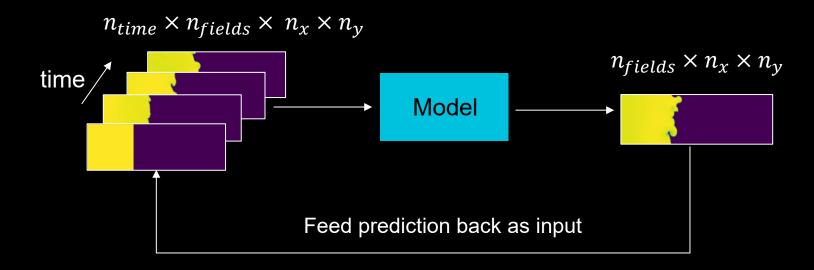
¹ https://github.com/PolymathicAl/the_well

Time Series Prediction with Neural Operators

• Training: Model predicts the next state based on the last n_{time} states, which is a hyperparameter



Time Series Prediction with a Neural Operator



• Inference: Model is evaluated auto-regressively, i.e. predictions are fed back as input

How to use PyTorch packages with ROCm-Support?

- We use the neuraloperator package, which implements FNOs in PyTorch.
- Simply install with

```
$> pip install neuralop
```

And use with

```
import torch
import neuraloperator
```

Just make sure to have PyTorch with ROCm support installed. That's it...

Key Components of the Training Task

Model

Data movement from CPU to GPU

```
Optimizer
```

```
loss = torch.nn.MSELoss()
```

```
Loss Function
```

Data Loader

Basic Training Loop

```
for epoch in range(args.num_episodes):
   for batch in tqdm.tqdm(data loader, unit="batches"):
      # 1. Nullify the gradients for new batch
      optimizer.zero grad()
      # 2. Move Data to Device
      x = batch["input_fields"].to(device)
      y = batch["output fields"].to(device)
     # 3. Do some processing
     # ...
     # 4. Forward pass
     y \mod el = \mod el(x)
     # 5. Backward pass
      output = loss(y_model, y) # Evaluate Loss
      output.backward() # Compute Gradients
      optimizer.step() # Optimizer Step
```

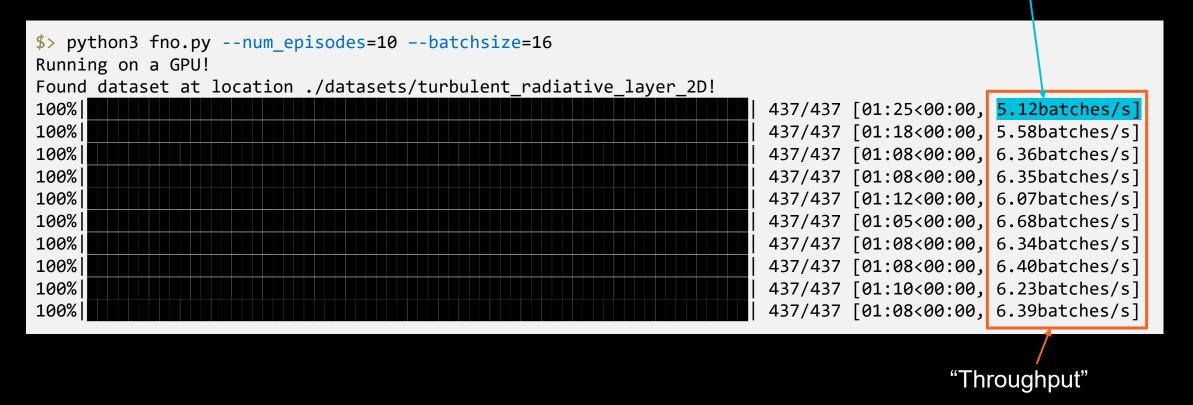
Data movement from CPU to GPU

Actual Compute

Run the Training

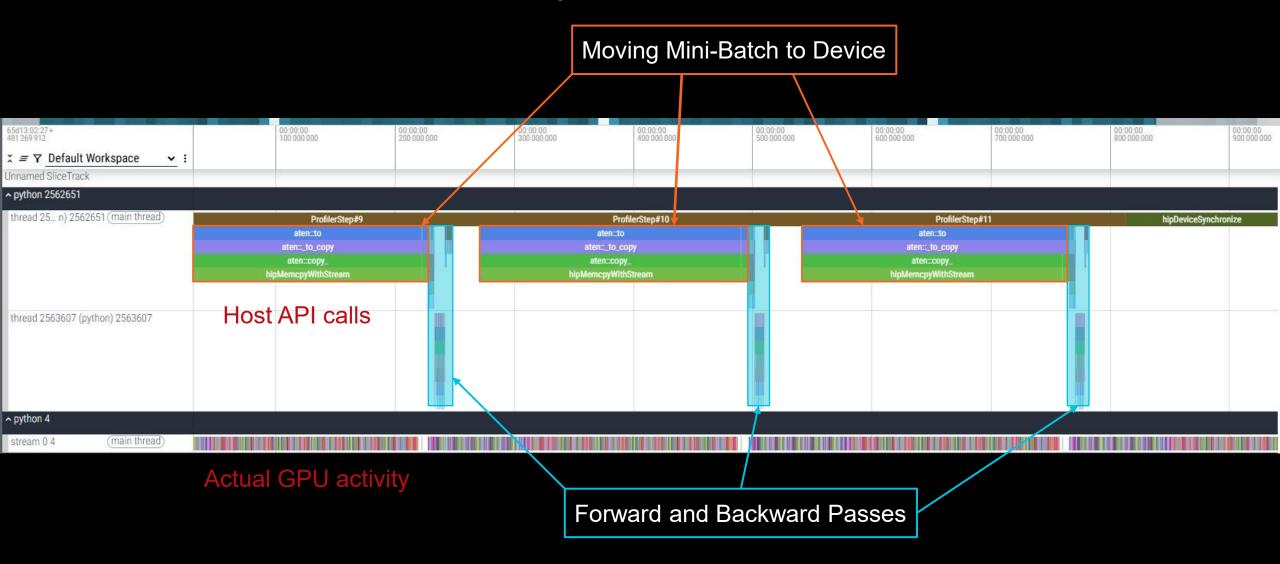
Run a few episodes of training on a single GPU

First Touch Penalty



AMD together we advance_

How does this look on the system?



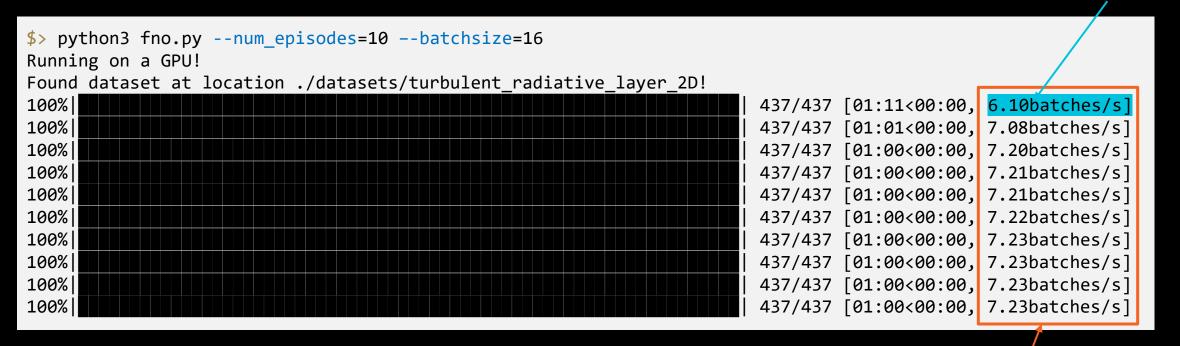
Data Movement

- Moving the training data to the GPU can become a major bottleneck, especially if
 - the model is small and cheap in terms of execution time
 - the training samples are large
- Possible Optimizations:
 - Fit the whole training dataset on the GPU (only possible for small datasets)
 - Overlap memory movement with computation (non-blocking communication)

Run the Training using Pinned Memory

Pinned Memory and multiprocessing improves throughput by ~15% (7.2 vs. 6.3 batches per second)

First Touch Penalty

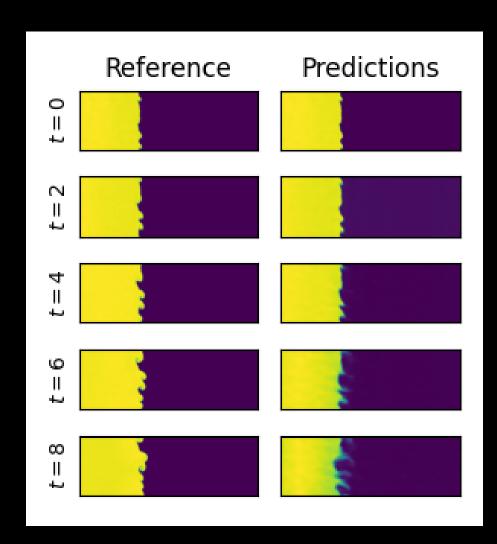


~15% higher throughput

Evaluating the Trained Model

- First 2-3 predictions are close to the ground-truth
- Starts diverging after few timesteps (exponential error growth)
- Predicting several timesteps successively was not part of the training

 See the original paper¹ to find the datasets and models that perform better!



¹ https://openreview.net/pdf?id=7UunRhzX4H

Key Takeaways

- Simulation datasets are oftentimes very large and non-trivial to handle
- Neural Operators promise to generalize better across resolutions than e.g. ResNet, U-Net, ...
- Al models oftentimes lack long-term stability in auto-regressive tasks due to exponential error growth
- Data movement might be the bottleneck of training, especially if models are small and data samples large
 - → More details on profiling tomorrow!

Try it yourself!

Get on a node via SLURM and setup your environment:

```
module load rocm
module load pytorch
python3 -m venv $HOME/venv-pt
source $HOME/venv-pt/bin/activate
cd HPCTrainingExamples/MLExamples/Neural_Operators
pip3 install -r requirements.txt
```

Make sure ROCm is loaded for the PyTorch module to become visible!

Run a few episodes of training with

```
python3 fno.py --num_episodes=3 --batchsize=4
```

- Next, feel free to:
 - test the model on another dataset
 - replace the Neural Operator by your favorite ML model (e.g. a ResNet)
 - follow the GitHub Readme to reproduce the shown profile data (much more information on profiling tomorrow!)
 - or do whatever you find interesting!

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED 'AS IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY CONTENT IS PROVIDED "AS IS" WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR SOLE DISCRETION AND UNDER NO CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR ANY DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD CDNA, AMD ROCm, AMD Instinct, and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of their respective owners.

LLVM is a trademark of LLVM Foundation

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board

#