
Neural Operators for

Predicting Time Series

Presenter: Marius Kurz

Oct 13-16, 2025

AMD @ CASTIEL AI Workshop

2 |

A central task in computational science is to predict how a physical system will evolve, or

 “Given the current state of the system, what is its state at some later point in time?”

Predicting Time Series

A planet with clouds and water

AI-generated content may be incorrect.

Oct 13-16, 2025 AMD @ CASTIEL

https://eoimages.gsfc.nasa.gov/images/imagerecords/145000/145563/westernhemisphere_geos_2019246_lrg.jpg

3 |

Predicting Time Series

A central task in computational science is to predict how a physical system will evolve, or

 “Given the current state of the system, what is its state at some later point in time?”

𝑈 𝑥, 𝑡0 + Δ𝑡 = 𝑅(𝑈(𝑥, 𝑡0))

Oct 13-16, 2025 AMD @ CASTIEL

4 |

Predicting Time Series

A central task in computational science is to predict how a physical system will evolve, or

 “Given the current state of the system, what is its state at some later point in time?”

The “dynamics” of the system

𝑈 𝑥, 𝑡0 + Δ𝑡 = 𝑅(𝑈(𝑥, 𝑡0))

• Possible Difficulties

• Multi-scale

• Chaotic

• Exponential error growth

Oct 13-16, 2025 AMD @ CASTIEL

5 |

Predicting Time Series

A central task in computational science is to predict how a physical system will evolve, or

 “Given the current state of the system, what is its state at some later point in time?”

The “dynamics” of the system

• Numerical Simulations

• Rigorous guarantees

• Highly accurate

• (Prohibitively) Expensive

• Artificial Neural Networks

• Cheaper to evaluate (once trained)

• Hard to get guarantees

• Transferability across cases difficult

• Limited by available training data

𝑈 𝑥, 𝑡0 + Δ𝑡 = 𝑅(𝑈(𝑥, 𝑡0))

Oct 13-16, 2025 AMD @ CASTIEL

6 |

Neural Operators – A Brief Introduction

• Artificial Neural Networks typically work on discretized data (images with pixels, tokens in sequence)

• Discretization-dependency can limit the models’ usefulness

• Neural Operators1: Learn to map from continuous functions to continuous functions

1 Kovachki et al., JMLR 24, 2023.

𝑊

𝜎

∫ 𝑘 𝑥, 𝑦 𝑣 𝑥 𝑑𝜇 𝑦 + 𝑏(𝑥)

+

single layer

Global, continuous transform

(FFTs, Convolutions, …)

Linear, pointwise operations

𝑈 (𝑥𝑖 , 𝑡0) 𝑈(𝑥𝑖 , 𝑡0 + Δ𝑡)

Sampled at

specific points 𝑥𝑖

Oct 13-16, 2025 AMD @ CASTIEL

https://jmlr.org/papers/volume24/21-1524/21-1524.pdf
https://jmlr.org/papers/volume24/21-1524/21-1524.pdf

7 |

Scientific Datasets and Benchmarks

• Much progress in AI was fueled by established benchmarks and contests within scientific communities

• Computer Vision: MNIST, CIFAR, ImageNet

• Natural Language Processing: Open LLM Leaderboard, BookCorpus, WMT 2014 English → German

• AlphaFold: CASP

Oct 13-16, 2025 AMD @ CASTIEL

8 |

Scientific Datasets and Benchmarks

• Much progress in AI was fueled by established benchmarks and contests within scientific communities

• Computer Vision: MNIST, CIFAR, ImageNet

• Natural Language Processing: Open LLM Leaderboard, BookCorpus, WMT 2014 English → German

• AlphaFold: CASP

• Many scientific datasets:

• are multi-dimensional: 2D, 3D

• describe transient processes: additional time dimension

• are large: millions of data points per sample, up to several Terabytes

• exhibit differently structured input/output data: different simulation methods, applications, …

 → Establishing and sharing scientific datasets can be very difficult!

Oct 13-16, 2025 AMD @ CASTIEL

9 |

Two Exemplary Datasets for Scientific Simulations

The Well

• 2D and 3D cases from various fields of

computational science

• Reference results for variants of FNO and U-Net

models

References:

• Paper: Ohana et al., NeurIPS, 2024.

• Github: https://github.com/PolymathicAI/the_well

PDEBench

• Different 1D, 2D and 3D testcases with focus on

PDEs prevalent in fluid dynamics

• Provides baseline results for FNO, U-Net and

PINN models

References:

• Paper: Takamoto et al., NeurIPS, 2022.

• Github: https://github.com/pdebench/PDEBench

Oct 13-16, 2025 AMD @ CASTIEL

https://papers.nips.cc/paper_files/paper/2024/file/4f9a5acd91ac76569f2fe291b1f4772b-Paper-Datasets_and_Benchmarks_Track.pdf
https://papers.nips.cc/paper_files/paper/2024/file/4f9a5acd91ac76569f2fe291b1f4772b-Paper-Datasets_and_Benchmarks_Track.pdf
https://papers.nips.cc/paper_files/paper/2024/file/4f9a5acd91ac76569f2fe291b1f4772b-Paper-Datasets_and_Benchmarks_Track.pdf
https://github.com/PolymathicAI/the_well
https://proceedings.neurips.cc/paper_files/paper/2022/file/0a9747136d411fb83f0cf81820d44afb-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/0a9747136d411fb83f0cf81820d44afb-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/0a9747136d411fb83f0cf81820d44afb-Paper-Datasets_and_Benchmarks.pdf
https://github.com/pdebench/PDEBench

10 |

Let’s pick an example!

turbulent_radiative_layer_2D from The

Well1 dataset:

• Shear flow between hot and cold fluid

phases

• Compressible Navier-Stokes equations

describe temporal evolution

• Radiative cooling modeled through a source

term in the energy equation

hot cold

Interface

𝑡

𝑡0

1 https://github.com/PolymathicAI/the_well

“shear” = relative movement

Oct 13-16, 2025 AMD @ CASTIEL

https://github.com/PolymathicAI/the_well

11 |

Time Series Prediction with Neural Operators

time

Model

𝑛𝑡𝑖𝑚𝑒 × 𝑛𝑓𝑖𝑒𝑙𝑑𝑠 × 𝑛𝑥 × 𝑛𝑦

𝑛𝑓𝑖𝑒𝑙𝑑𝑠 × 𝑛𝑥 × 𝑛𝑦

• Training: Model predicts the next state based on the last 𝑛𝑡𝑖𝑚𝑒 states, which is a hyperparameter

Backward Pass

Oct 13-16, 2025 AMD @ CASTIEL

12 |

Time Series Prediction with a Neural Operator

time

• Inference: Model is evaluated auto-regressively, i.e. predictions are fed back as input

Model

𝑛𝑡𝑖𝑚𝑒 × 𝑛𝑓𝑖𝑒𝑙𝑑𝑠 × 𝑛𝑥 × 𝑛𝑦

Feed prediction back as input

𝑛𝑓𝑖𝑒𝑙𝑑𝑠 × 𝑛𝑥 × 𝑛𝑦

Oct 13-16, 2025 AMD @ CASTIEL

13 |

How to use PyTorch packages with ROCm-Support?

• We use the neuraloperator package, which implements FNOs in PyTorch.

• Simply install with

• And use with

• Just make sure to have PyTorch with ROCm support installed. That’s it…

$> pip install neuralop

import torch
import neuraloperator

Oct 13-16, 2025 AMD @ CASTIEL

14 |

Model

Optimizer

Key Components of the Training Task

model = neuralop.models.FNO(
 n_modes = (16, 16),
 in_channels = args.n_steps_input * n_fields,
 out_channels = n_fields,
 hidden_channels = 128,
 n_layers = 5,
).to(device)

optimizer = torch.optim.Adam(
model.parameters(),
lr = 5e-3
)

loss = torch.nn.MSELoss()

data_loader = torch.utils.data.DataLoader(
 dataset = dataset_train,
 shuffle = True,
 batch_size = args.batchsize,
)

Loss Function

Data Loader

Data movement from CPU to GPU

Oct 13-16, 2025 AMD @ CASTIEL

15 |

Basic Training Loop

for epoch in range(args.num_episodes):
 for batch in tqdm.tqdm(data_loader, unit="batches"):

 # 1. Nullify the gradients for new batch
 optimizer.zero_grad()

 # 2. Move Data to Device
 x = batch["input_fields"].to(device)
 y = batch["output_fields"].to(device)

 # 3. Do some processing
 # ...

 # 4. Forward pass
 y_model = model(x)

 # 5. Backward pass
 output = loss(y_model, y) # Evaluate Loss
 output.backward() # Compute Gradients
 optimizer.step() # Optimizer Step

Data movement from CPU to GPU

Actual Compute

Oct 13-16, 2025 AMD @ CASTIEL

16 |

Run the Training

• Run a few episodes of training on a single GPU

$> python3 fno.py --num_episodes=10 –-batchsize=16
Running on a GPU!
Found dataset at location ./datasets/turbulent_radiative_layer_2D!
100%|██| 437/437 [01:25<00:00, 5.12batches/s]
100%|██| 437/437 [01:18<00:00, 5.58batches/s]
100%|██| 437/437 [01:08<00:00, 6.36batches/s]
100%|██| 437/437 [01:08<00:00, 6.35batches/s]
100%|██| 437/437 [01:12<00:00, 6.07batches/s]
100%|██| 437/437 [01:05<00:00, 6.68batches/s]
100%|██| 437/437 [01:08<00:00, 6.34batches/s]
100%|██| 437/437 [01:08<00:00, 6.40batches/s]
100%|██| 437/437 [01:10<00:00, 6.23batches/s]
100%|██| 437/437 [01:08<00:00, 6.39batches/s]

“Throughput”

First Touch Penalty

Oct 13-16, 2025 AMD @ CASTIEL

17 |

How does this look on the system?

More details on how to profile

AI workloads tomorrow!

Moving Mini-Batch to Device

Forward and Backward Passes

Oct 13-16, 2025 AMD @ CASTIEL

Host API calls

Actual GPU activity

18 |

Data Movement

• Moving the training data to the GPU can become a major bottleneck, especially if

• the model is small and cheap in terms of execution time

• the training samples are large

• Possible Optimizations:

• Fit the whole training dataset on the GPU (only possible for small datasets)

• Overlap memory movement with computation (non-blocking communication)

• Easy improvements:

• Use pinned memory

• Use multiple CPU threads to prepare data

data_loader = torch.utils.data.DataLoader(
 dataset = dataset_train,
 shuffle = True,
 batch_size = args.batchsize,
 pin_memory = True,
 num_workers = 2,
 prefetch_factor = 4
)

Oct 13-16, 2025 AMD @ CASTIEL

19 |

Run the Training using Pinned Memory

$> python3 fno.py --num_episodes=10 –-batchsize=16
Running on a GPU!
Found dataset at location ./datasets/turbulent_radiative_layer_2D!
100%|██| 437/437 [01:11<00:00, 6.10batches/s]
100%|██| 437/437 [01:01<00:00, 7.08batches/s]
100%|██| 437/437 [01:00<00:00, 7.20batches/s]
100%|██| 437/437 [01:00<00:00, 7.21batches/s]
100%|██| 437/437 [01:00<00:00, 7.21batches/s]
100%|██| 437/437 [01:00<00:00, 7.22batches/s]
100%|██| 437/437 [01:00<00:00, 7.23batches/s]
100%|██| 437/437 [01:00<00:00, 7.23batches/s]
100%|██| 437/437 [01:00<00:00, 7.23batches/s]
100%|██| 437/437 [01:00<00:00, 7.23batches/s]

~15% higher throughput

First Touch Penalty

• Pinned Memory and multiprocessing improves throughput by ~15% (7.2 vs. 6.3 batches per second)

Oct 13-16, 2025 AMD @ CASTIEL

20 |

Evaluating the Trained Model

• First 2-3 predictions are close to the ground-truth

• Starts diverging after few timesteps (exponential error growth)

• Predicting several timesteps successively was not part of the

training

• See the original paper1 to find the datasets and models that

perform better!

1 https://openreview.net/pdf?id=7UunRhzX4H

Oct 13-16, 2025 AMD @ CASTIEL

https://openreview.net/pdf?id=7UunRhzX4H

21 |

Key Takeaways

• Simulation datasets are oftentimes very large and non-trivial to handle

• Neural Operators promise to generalize better across resolutions than e.g. ResNet, U-Net, …

• AI models oftentimes lack long-term stability in auto-regressive tasks due to exponential error growth

• Data movement might be the bottleneck of training, especially if models are small and data samples large

 → More details on profiling tomorrow!

Oct 13-16, 2025 AMD @ CASTIEL

22 |

Try it yourself!

• Get on a node via SLURM and setup your environment:

• Run a few episodes of training with

• Next, feel free to:

• test the model on another dataset

• replace the Neural Operator by your favorite ML model (e.g. a ResNet)

• follow the GitHub Readme to reproduce the shown profile data (much more information on profiling tomorrow!)

• or do whatever you find interesting!

module load rocm
module load pytorch
python3 -m venv $HOME/venv-pt
source $HOME/venv-pt/bin/activate
cd HPCTrainingExamples/MLExamples/Neural_Operators
pip3 install -r requirements.txt

python3 fno.py --num_episodes=3 --batchsize=4

Make sure ROCm is

loaded for the PyTorch

module to become

visible!

Oct 13-16, 2025 AMD @ CASTIEL

23 |

Disclaimer
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The

information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes,

component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS

flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no

obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time

to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF

AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD

SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN

NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING

FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY CONTENT IS

PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR SOLE DISCRETION AND UNDER NO

CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR ANY

DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD CDNA, AMD ROCm, AMD Instinct, and combinations thereof are

trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of

their respective owners.

LLVM is a trademark of LLVM Foundation

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board

Oct 13-16, 2025 AMD @ CASTIEL

	Slide 1: Neural Operators for Predicting Time Series
	Slide 2: Predicting Time Series
	Slide 3: Predicting Time Series
	Slide 4: Predicting Time Series
	Slide 5: Predicting Time Series
	Slide 6: Neural Operators – A Brief Introduction
	Slide 7: Scientific Datasets and Benchmarks
	Slide 8: Scientific Datasets and Benchmarks
	Slide 9: Two Exemplary Datasets for Scientific Simulations
	Slide 10: Let’s pick an example!
	Slide 11: Time Series Prediction with Neural Operators
	Slide 12: Time Series Prediction with a Neural Operator
	Slide 13: How to use PyTorch packages with ROCm-Support?
	Slide 14: Key Components of the Training Task
	Slide 15: Basic Training Loop
	Slide 16: Run the Training
	Slide 17: How does this look on the system?
	Slide 18: Data Movement
	Slide 19: Run the Training using Pinned Memory
	Slide 20: Evaluating the Trained Model
	Slide 21: Key Takeaways
	Slide 22: Try it yourself!
	Slide 23: Disclaimer
	Slide 24

