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GPUs are high throughput devices

- Must expose parallelism to properly utilize them

GPU starvation — under-utilization of resources

Full utilization of resources
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Optimization strategy depends on performance limiters

Memory bound
Low arithmetic intensity, memory units saturated

Arithmetic Operations
Bytes moved

Compute bound

High arithmetic intensity, compute units saturated

Typical machine balance: 5-10 FLOPs/B
40-80 FLOPs per double to exploit compute capability

MI250x machine balance: ~16 FLOPs/B
128 FLOPs per double to exploit compute capability

Arithmetic Intensity =

Difficult to get compute bound on current architectures — concept of flops are for free

Latency bound
Memory units not saturated and/or compute units not saturated

Focus of this presentation — what to do for these different types of kernels?

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ
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Background — What is Roofline

Attainable FLOPs/s =

min {

Machine Balance:
Where

Five Performance Regions:

Unattainable Compute
Unattainable Bandwidth
Compute Bound
Bandwidth Bound

Poor Performance
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Memory Bandwidth Bound
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Data Movement

Reducing data movement is still very important for GPU performance
Move data, compute as much as possible with that data

Reuse data when possible — temporal reuse and spatial reuse
Stage data in shared memory (LDS) or registers for faster access
Lower precision data types move fewer bytes, evaluate their use for your algorithm

Move more data per work-item to improve streaming efficiency
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Data Access Considerations

Coalesced loads/stores improve achieved bandwidth of transfers
L1 cacheline size is 64 bytes in MI1200 GPUs, and 128 bytes in MI300 GPUs
Use as much as possible of each cacheline read
Strided accesses may load more data than needed (more details in rocprof-compute by Examples talk)

Use vector data types such as float4, float2
Compiler generates fewer, wider load instructions
Amortize on cost of address/index calculations
Improve data streaming efficiency

Use non-temporal loads for data that will not be reused

Aligned memory accesses avoid excess data from being fetched

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ
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Sometimes compiler generates wider loads/stores for free

__global  wvoid add2(const int N,
float *__ restrict__ x,

float *  restrict y) {

int n = threadIdx.x + blockDim.x * blockIdx.x;
Y[2*n+0] = x[2*n+0];

yI2*n+1] = x[2*n+1]; Each work item loads and stores two elements

__global  wvoid addl(const int N,
float *__ restrict__ x,
float * restrict y) {

int n = threadIdx.x + blockDim.x * blockIdx.x;

y[n] = x[n];

Oct 21-23, 2025

add2(int, float*, float*): ; @add2(int, float*, float*)

s load dword s3, s[0:1], 0x24
s_load_dwordx4 s[4:7], s[0:1], Ox8
s_waitcent lgkment(0)
s _and b32 s0, s3, Oxffff
s_mul i32 s2, s2, s0
v_add 1lshl u32 v0, s2, v0, 1
v_ashrrev_i32_e32 v1, 31, vO0
v_1lshlrev bé64 v[0:1], 2, v[0:1]
v_1lshl add_u64 v[2:3], s[4:5], 0, v[0:1]
{ global_load dwordx2 v[2:3], v[2:3], off |
v_1lshl add_u64 v[0:1], s[6:7], 0, v[0:1]
s_waitcnt vment(0)
iglobal_store_dwordxz v[0:1], v[2:3], off!
s_endpgm

— Wider load/store

instruction

addl(int, float*, float*): ; @addl(int, float*, float*)

AMD @ Tsukuba University

s_load_dword s3, s[0:1], 0x24

s load dwordx4 s[4:7], s[0:1], O0x8

s_waitent lgkment(0)

s _and b32 s0, s3, Oxffff

s_mul i32 s2, s2, s0

v_add u32 e32 v0, s2, v0

v_ashrrev_i32_e32 vl, 31, v0

v_lshlrev_bé4 v[0:1], 2, v[0:1]

v_1shl add u64 v[2:3], s[4:5], 0, v[0:1]
| global_load dword v2, v[2:3], off |

v_1shl add u64 v[0:1], s[6:7], 0, v[0:1]

s waitcnt vment(0)

iqlobal store dword v[0:1], v2, off

s_endpgm
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Compute Optimizations

Compute bound kernels perform O(100) operations per byte loaded
Large GEMMSs are an example of compute bound kernels, but HPC workloads are typically memory bound

Pre-compute values to look up in kernel

Use faster math intrinsic functions, e.g., _cosf(x) instead of cosf(x)
More details:

Avoid general math functions where possible
a * a * a uses two instructions whereas pow(a, 3.0f) uses many
Godbolt link:

Explore use of packed FP32 operations that process two FP32 values in one instruction
For example, using float2 instead of float can result in the use of packed instructions

Oct 21-23, 2025 AMD @ Tsukuba University
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https://rocm.docs.amd.com/projects/HIP/en/latest/reference/math_api.html
https://godbolt.org/z/8hz8P4oc9

Compute Optimizations (contd.)

Where you stage data for your compute matters
To make your kernel truly compute-bound, read from registers
Moving data from shared memory and/or cache takes O(10) cycles

For specific matrix multiplication like calculations, special hardware units exist (rocWMMA)
AMD Matrix Cores ROCm Blog:
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Unexpected Instructions

Wait, what?!

Fewer instructions, FP32 ops

Oct 21-23, 2025 AMD @ Tsukuba University AMDA
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Main Ideas for Optimizing Latency Bound Kernels

Increase parallelism to utilize all GPU resources
Reduce number of synchronization barriers
Reduce thread divergence

Avoid register spilling to slower "scratch” memory

Oct 21-23, 2025 AMD @ Tsukuba University
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Motivation for Launching Many Wavefronts

The GPU has a lot of resources

Wavefronts can stall for various reasons:
Waiting for data to load
Waiting at a synchronization barrier

GPU is good at switching to wavefronts with instructions ready to be executed

Oct 21-23, 2025 AMD @ Tsukuba University
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What is Occupancy?

# Resident wavefronts / Maximum #wavefronts the GPU can have in-flight

Hardware Perspective (let's consider a MI210 GPU):
There are 104 Compute Units (CU)
Up to 32 wavefronts can be scheduled to each CU = max 3328 wavefronts

Developers’ Perspective:
Am | launching enough units of work to use all CUs?
Am | launching more wavefronts than the number of CUs to hide latencies?

Oct 21-23, 2025 AMD @ Tsukuba University
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Occupancy by Example (daxpy)

Z = aX + Ywhere Z, Xand Y are 1D arrays of length N = 1,000,000 elements

We know that
- a workgroup can have 64 to 1024 work-items = 1 to 16 wavefronts
- all wavefronts of a workgroup will be scheduled to the same CU

We can launch the daxpy kernel in many ways:

1 workgroup with 64 work-items
Only 1 wave on 1 CU = No latency hiding

1 workgroup with 256 work-items
Only 4 waves on 1 CU = All other CUs idle

N/1024 workgroups, each workgroup has 16 waves
~1000 workgroups = ~16000 waves = good occupancy

But that’s not the whole picture..

Oct 21-23, 2025 AMD @ Tsukuba University
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Memory Resources that affect Occupancy

Compute Units have finite resources that are shared between work items
Local Data Share (LDS)
Vector General Purpose Registers (VGPRS)
Scalar General Purpose Registers (SGPRs)

Scheduler

L1 Cache

Scalar Unit SIMDO [ swmp2 | SIMD3

Oct 21-23, 2025 AMD @ Tsukuba University
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How LDS affects Occupancy

- Fast, on-CU, software managed memory to efficiently share data between work-items of a workgroup

- Each CU in a MI200 GPU has 64 KiB of LDS available
- Shared among workgroups on CU

No LDS used, LDS 8 KiB of LDS per WG,
does not limit 8 WGs can fit in CU
occupancy

Oct 21-23, 2025 AMD @ Tsukuba University
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What is Register Pressure?

Register pressure is a commonly used slang term for the demand in GPU kernel code for both vector and
scalar registers

Vector registers are often referred to as VGPRs, which stands for Vector General Purpose Registers
These registers have an array of values with one value for each thread in a wavefront

Scalar registers are often referred to as SGPRs, which stands for Sector General Purpose Registers
These registers have one value for all the threads in a wavefront

When there is high usage of vector registers, it can have effects on program performance.
Reduces occupancy by limiting the number of waves that can be schedule on a GPU compute unit.
For very high usage, can result in “spilling” of registers to global memory and the slower access times for variables

More generally, memory pressure and resource pressure are similar terms used to refer to the demand for
other types of resources for GPU kernels.

Register pressure also occurs on CPUs. In both CPU and GPU architectures, registers are a scarce
resource that compilers use to locate variables close to the processor.

For a quick review of the GPU resources = next slides

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ
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How Vector Registers affect Occupancy

In VGPRs, each thread in the wavefront can save its own value
Each MI200 CU has a limited size vector register file (max 512

VGPRs of size 4 bytes)

Num VGPRs

Oct 21-23, 2025

| Occupancy per SIMD | Occupancy per CU

32 waves
28 waves
24 waves
20 waves
16 waves
12 waves
8 waves

4 waves

AMD @ Tsukuba University
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How Scalar Registers (SGPRs) affect Occupancy

In SGPRs, one value is shared across all work-items of the wavefront
Each MI200 CU has a limited size scalar register file (max 102 SGPRs of size 4 bytes per wavefront)

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ
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A Note about Register Spilling

Register allocation is done by the compiler at compilation time

When the required number of VGPRs is too much (i.e., > 256), the compiler may “spill” registers to slower
“scratch” memory
Better to avoid spilling in most cases

By default, the compiler assumes workgroups are going to have 1024 work-items
Use on smaller workgroups to allow the compiler to use more registers

The compiler may spill SGPRs to VGPRs, this seldom limits scheduling
Don’t take this as a challenge

ROCm blog about Register Pressure:

AMDZU
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https://rocm.blogs.amd.com/software-tools-optimization/register-pressure/README.html
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RegiSter Pressure Hints - sce Reqister pressure in AMD CDNA™ 2 GPUs

Compiler for GPU kernels will generally keep data in registers
Registers/variables in functions will persist (functions are currently in-lined)
Vector registers greater than 256 will spill to main memory

Reducing number of vector registers can help occupancy

Methods to try and reduce vector registers
Reduce the scope where variable is live
Limit register usage by reducing workgroup size (__launch_bounds_ )
Avoid asserts
Avoid mathematical intrinsics
Use LDS to store some variables
Manually reuse variables
Use restrict keyword
Avoid stack arrays and keep them as small as possible
Use constexpr when variables are constants ( or #define or equivalent compile time constant)

Scalar registers — spill to vector registers
Generally not a performance issue
Avoid passing in large structs of scalar variables with only a few actually used

Oct 21-23, 2025 AMD @ Tsukuba University
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Fuse kernels to reduce launch latencies

- Also reduce data movement as shown here:

13 7 7

One read of “a” and “b” and one write of “c

v

N

2 reads of “a” and “b”, “c” written out and read back before being written out again!

Oct 21-23, 2025 AMD @ Tsukuba University AMDA
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Reduce or Avoid Synchronization

Thread block synchronization
Synchronizes wavefronts in a thread block
Expensive in large work groups, don’t over use it

Host-side synchronization
Memory operations (hipMalloc, hipFree, etc.) implicitly synchronize activity on the device => unexpected low perf
Move memory allocations out of inner loops. This may cause a rethinking of the current algorithm

Use asynchronous memory copies (H<->D) with pinned host buffers
avoid host-side synchronization
overlap copies with compute

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ
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A Note about Atomics

If using atomic operations on MI200, compile with to use hardware atomics on FP
data in GPU memory
Not needed on MI300

Reducing contention in atomic operations can improve performance

On MI300 GPUs, atomics are performed in the AMD Infinity Cache™ instead of the L2 cache
Infinity Cache is a Memory Adjacent Last Level (MALL) cache
L2 is distributed and local to Accelerator Compute Dies (XCDs)

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ
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Minimize Thread Divergence

- Instructions in divergent paths are executed multiple times, some threads masked off each time

- Try minimizing divergent sections even if it means values computed by some threads will be discarded
eventually

To compare assembly for both cases: hitps://godbolt.ora/z/4TEqvESzP

Oct 21-23, 2025 AMD @ Tsukuba University AMDA
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Warp shuffle/cross-lane functions

Exchange data in registers between threads in wavefront
Uses the same hardware fabric as LDS, but no storage in LDS
Works on a common “width” where every thread is using the same width up to the wavefront size of 64

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ
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Considerations for the MI300A APU architecture

Single allocation, zero copy
No page migrations, CPU and GPU share same physical memory

Choice of allocator can affect latency of first touch
hipMalloc - device page tables populated, registered on CPU only on first touch
hipHostMalloc (or) malloc + hipHostRegister — page tables populated on both CPU and device
malloc — CPU page tables populated, GPU only registers them on first touch

Page size matters
System allocators defaults to 4KB pages, GPU prefers 2MB pages
hipMalloc everything to guarantee 2MB pages

What resources on the device do you want to use for copies?
SDMA engines or kernels
Single or multi-threaded on CPU

Oct 21-23, 2025 AMD @ Tsukuba University
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Summary

Kernel performance may be limited by
memory bandwidth
lack of compute resources
latencies

Performance optimization involves balancing many constraints
Reduce data movement and access data in a coalesced manner
Avoid unnecessary compute and excessive synchronization
Adjust occupancy while considering resource requirements

Oct 21-23, 2025 AMD @ Tsukuba University
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Hands-on exercises

Located in our HPC Training Examples repo:
https://github.com/amd/HPCTrainingExamples

A table of contents for the READMEs if available at the top-level README in the repo

Relevant exercises for this presentation located in:
HIP-Optimizations directory

Link to instructions on how to run the HIPIFY tests: HIP-Optimizations/daxpy/README.md

Log into the AAC node and clone the repo:

ssh <username>@aac6.amd.com -p 7000 -1 <path_to_ssh key>
git clone https://github.com/amd/HPCTrainingExamples.git

Oct 21-23, 2025 AMD @ Tsukuba University
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Hands-on Exercises and Examples

- Try the following suggestions on the example code for blog post

- First retrieve the examples and find the directory where they are located
git clone https://github.com/amd/HPCTrainingExamples

cd HPCTrainingExamples/rocm-blogs-codes/registerpressure

- Get the compiler resource report for the kernel
hipcc --offload-arch=<gfxcode> lbm.cpp -Rpass-analysis=kernel-resource-usage -c

- Note that the number of registers (SGPRs and VGPRs) are slightly different than in the blog. They will
vary slightly for different compiler versions. Also note that the Occupancy is 4 waves/SIMD. We want to
improve that. To accomplish that, we need to get the VGPRs down to 96 as seen from the earlier table.

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ
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Things to try from the blog post

Remove unnecessary math functions
pow(current_phi, 2.0) on line 37 can be changed to current_phi * current_phi

This C function raises the argument to a floating point power in software. It is not a very efficient way to do the
operation and also consumes a lot of registers.

Rearrange code so variables are declared close to use
Add restrict attribute to function arguments
Result of optimizations

SGPRs VGPRs Occupancy
lom.cpp
lbom_1_nopow.cpp

lom_2 rearrange.cpp

lom_3 restrict.cpp

In this case, we have not been able to get the VGPRs to 96 or below. Try adding restrict to more arguments
and see if you can.

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ
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Extra credit

Add _ launch_bounds_ (256) to function attributes
Drops SGPRs to 84 and VGPRs to 96. Occupancy jumps to 5 waves per SIMD

Oct 21-23, 2025 AMD @ Tsukuba University
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Register usage is reported by most tools

For OpenMP® offload, use export LIBOMPTARGET KERNEL_TRACE=1, compile and run, more recent
compiler versions will also report occupancy

DEVID: 0 SGN:2 args: 3 teamsXthrds:( 391X 256) reqd:( 0X 0)
tripcount: 100000 rpc:1 n:__omp_offloading_3d_1a2def2_main_
DEVID: 0 SGN:2 args: 5 teamsXthrds:( 391X 256) reqd:( 0X 0)

tripcount: 100000 rpc:1 n:__omp_offloading_3d_1a2def2__ Z5daxpyidPdS_S___

Rocprofv3 reports registers in some of the .csv files and in traces

Rocprof-sys shows registers in the kernel details popup

Rocprof-compute shows registers in the counter output tables

Rocgdb will show registers and their data when stopped in a GPU routine — use ‘info registers’

AMDZU
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Transpose Examples

Data Ordering and Coalescing
Memory Loads
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Goals

Examine data ordering and its effects on performance

Understand what contiguous means in the context of GPUs

Understand what coalesced memory load means

Know how to use local data share (LDS) to mitigate non-contiguous memory access
Know how to avoid bank conflicts

Oct 21-23, 2025 AMD @ Tsukuba University
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Data ordering

The order that data is processed has a large effect on performance
Contiguous data will allow the GPU to coalesce memory reads and/or writes
Result is that fewer cache lines need to be fetched
Also, fewer page loads will be needed

Oct 21-23, 2025 AMD @ Tsukuba University

AMDZU

together we advance_



What are “coalesced” memory loads

If the threads in a wavefront access contiguous data, it will be loaded in a minimal number cache line loads

If the data is aligned, and if the data the wavefront touches fits wholly inside one 64-128 byte cache, it can be done in
one cache line load (64-128 bytes on Instinct GPUs)

If the data is scattered, multiple cache line loads are necessary

Once the data is in the GPU, the GPU is very efficient at using the data
Similar for vector operations on the CPU

But with memory bandwidth limited kernels, these multiple cache line loads limit performance

When we say an application is memory bandwidth limited, we are saying that it is or page
table limited. We cannot load less than a cache line or a partial page. This results in wasted bandwidth.

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ
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How to write kernels for “coalesced” memory loads 1/2

Use contiguous, unit-stride access per thread:
Every 64-byte cache line brought into the L1/L2 cache is fully consumed before the next line is needed
Do it by having threads in a wavefront access sequential indices
If looping, map by strides to keep waves in lockstep over contiguous ranges.

Prefer Structure of Arrays (SoA) over Array of Structures (AoS) for vectorized field-wise access:
If each lane needs field x from many records, SoA keeps the x values contiguous, enabling full coalescing.

SoA AoS
Stru;EQZiP:iflij,{*z; struct Particle { float x, y, z; float id; };
Eizat :;3; *vy, *vz; __global _ void update_pos(Particle *p, float dt)
s ¢ int 1 = blockIdx.x * blockDim.x + threadIdx.x;

p[i].x += dt * p[i].vx;

pli].y += dt * p[i].vy;

{ : _ ¥ nr4 .
int i = blockIdx.x * blockDim.x + threadIdx.x; Pl1].z += dt pl1].vz;

__global__ void update_pos(Particles p, float dt)

p.x[i] += dt * p.vx[i]; }
p-vﬂ += jt * p-vyEi};
p.z[i] += dt * p.vz[i]; ]
} Code generated with GPT-OSS:20b
Oct 21-23, 2025 AMD @ Tsukuba University AMDZU
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How to write kernels for “coalesced” memory loads 2/2

Align data:
Ensure arrays of 4/8/16-byte elements are aligned to 64 B or 128 B if possible.
Use hipMalloc — it generally does the correct alignment for the GPU

Pad/promise alignment on structs and arrays (e.g., alignas(16/32/64)) so that common vector types (float2/float4) are
naturally aligned.

// Every Particle object begins at a 64-byte boundary.

// pos and vel (float4) are therefore 16-byte aligned automatically.

struct alignas(64) Particle

The pad float is not necessary with alignas
float4 pos;  // 16-byte SIMD vector but it would be useful without

tloatd vel; // 16-byte SIMD vector

float mass ; // 4 bytes

float  pad; // pad so the next Particle still starts on 64 B

Use vector types to encourage wide loads:

float2/float4, int2/int4 map to global load dwordx2/x4 in ISA and can reduce instruction count and improve alignment
handling, provided the pointer is correctly aligned.

Code generated with OpenAl 03

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ
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Effects of misalignment and non-contiguous memory access

Misalignment:

If the first lane’s address is not at a “good” boundary, the wave’s combined footprint can span an extra cache-line.
May require an additional cache line load, i.e. 9 cache line loads instead of 8 for a 12.5% penalty

Strides greater than 1 or random memory access:

Loops in kernels where threads access i in first iteration and i+1 in second so that wavefront is accessing every
other value.

column-wise access to row-major matrices,
AoS when each lane (thread) needs the same field but fields are interleaved in memory.

Remedies:
transpose,
use SoA, or
stage through local data share (LDS).
If must use AoS, might help to pad/align and use vector loads.

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ
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Using LDS to mitigate non-sequential memory access

Background on LDS banks
To deliver high bandwidth at modest area cost, LDS is physically split into 32 independent banks, each 4 bytes wide
per port.
NOTE: memory loads to LDS and from LDS to vector unit use Data Share instructions and do not need
coalescing

Rather, LDS memory performance is subject to bank conflicts

A bank conflict happens when two or more wavefront lanes attempt to access the same LDS bank in the same clock
cycle, and the ports on that bank cannot serve all those requests concurrently

Bank conflicts most commonly arise when the memory access pattern uses a stride that’'s a multiple of the number of
banks (32)

Typical pattern for performance
Load a tile from global memory with coalesced vector accesses.
Store to LDS in a pattern convenient for the compute (e.g., transposed).
Compute using LDS-resident data with bank-conflict-aware indexing.
Write results back to global in a coalesced way.

Tips for using LDS
Add padding to avoid bank conflicts when accessing columns (e.g., K+1 stride in shared tiles).
Keep LDS usage per workgroup within the hardware limit to maintain occupancy.

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

45 together we advance_



46

Vectorized loads and when to use them

Vectorized loads include
double2/double3/double4,
float2/float3/float4,
int2/int3/int4,
uint2/uint3/uint4

Pros:
fewer instructions
better alignment guarantees
often improves bandwidth utilization when data is aligned and grouped
naturally leads to loop unrolling

Cons:
Requires alignment
Must handle tails if length not divisible by the vector width
Vectors of 3 may not be as performant as vectors that are powers of 2 due to alignment issues

Compiler hints:
Use restrict to help alias analysis.
Use alignas or attribute((aligned(N))) on allocations/structs.
In HIP, _builtin assume_aligned(ptr, N) can help the compiler pick wide ops if you guarantee alignment.
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Transpose example

We examine the programming advice in the context of a transpose example

The examples are in the HPCTrainingExamples repository

git clone https://github.com/AMD/HPCTrainingExamples
cd HPCTrainingExamples/HIP/transpose

We'll look at the examples in the following sequence
Transpose read_contiguous
Transpose write_contiguous
Transpose tiled

Keep in mind, the global index of a thread, with the x-dimension
varying faster, followed by the y and then the z
tid linear = threadIdx.x

+ threadIdx.y * blockDim.x

+ threadIdx.z * blockDim.x * blockDim.y;
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Transpose read_contiguous example

It is natural to read the data in the input
data array pattern

The input data in a C/C++ allocated array is
generally row-major.

Host allocation is done as a 1D array and
then the indexing is done manually

We do the 2D indexing in the kernel with a
define statement to make it easier to
understand

#define GIDX(y, X, sizex) y * sizex + X

The transpose operation then looks like the
following with the read contiguous and the
write striding through the data

// Transpose: output[x][y] = input[y][X]
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Read contiguous kernel code

See the kernel code in transpose_kernel read contiguous.cpp

17 #define GIDX(y, X, sizex) y * sizex + X
18
19 _ global__ void transpose_kernel read_contiguous(

20  const double* _ restrict__ input, double* _ restrict__ output,

21  int srcHeight, int srcWidth) {

22 // Calculate source global thread indices

23 const int srcX = blockIdx.x * blockDim.x + threadIdx.x;
24 const int srcY = blockIdx.y * blockDim.y + threadIdx.y;
25

26 // Boundary check

27 if (srcY < srcHeight && srcX < srcWidth) {

28 // Transpose: output[x][y] = input[y][x]

29 const int input_gid = GIDX(srcY,srcX,srcWidth);

30 const int output_gid = GIDX(srcX,srcY,srcHeight); // flipped axis
31 output[output_gid] = input[input_gid];

EY) }

33 }

Build and run the code
make transpose_read_contiguous
./transpose_read_contiguous

Output - selected
Testing Matrix dimensions: 8192 x 8192

Basic Transpose, Read Contiguous - Average Time: 4450.20 us
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Transpose write_contiguous example

How about if we make the data write contiguous?
The transpose operation then looks like the following with the write contiguous and the read striding

through the data
// Transpose: output[y][x] = input[x][y]

AMD @ Tsukuba University
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Write contiguous kernel code

See the kernel code in transpose_kernel _write _contiguous.cpp

16 #define GIDX(y, X, sizex) y * sizex + x

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35 }

global  void transpose_kernel write_ contiguous(
const double* _ restrict__ input, double* _ restrict__ output,
int srcHeight, int srcWidth) {
// Calculate destination global thread indices
const int dstX = blockIdx.x * blockDim.x + threadIdx.x;
const int dstY = blockIdx.y * blockDim.y + threadIdx.y;
const int dstWidth = srcHeight;
const int dstHeight = srcWidth;

// Boundary check

if (dstY < dstHeight && dstX < dstWidth) {
// Transpose: output[y][x] = input[x][y]
const int input_gid = GIDX(dstX,dstY,srcWidth); // flipped axis
const int output_gid = GIDX(dstY,dstX,dstWidth);

output[output_gid] = input[input_gid];

Build and run the code
make transpose_write_contiguous
./transpose_write_contiguous
Output - selected
Testing Matrix dimensions: 8192 x 8192
Basic Transpose, Write Contiguous - Average Time: 2901.80 pus

This is substantially faster than the read contiguous version! Write has to do a load/store which is more work. If there were a lot
of arrays being read, read contiguous might come out ahead.
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Applying some of the ideas above

We’'ll use the shared memory (LDS) on the Compute Unit to create a small memory tile
This allows us to read contiguous write contiguous data from/to arrays

We will pad the LDS tile to avoid bank conflicts
shared-memory tile = _ shared  double tile[TILE SIZE][TILE SIZE+PAD]

Note that the pad should be added to the second dimension, because that dimension is what impacts the striding
pattern that is involved in the selection of an LDS bank

We need to add a synchronization after loading the tile
__syncthreads();

We use restrict on the function arguments
We also use const for variables
We use the same integer type for variables in the if tests to avoid having the compiler add instructions

The TILE_SIZE variable is limited to the workgroup size of 1024. This means 32x32 is the largest tile that
can be used.
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Tiled transpose kernel

14 _ global__ void transpose_kernel_tiled(

15 double* _ restrict input, double* _ restrict output,

16 constint srcHeight, const int srcWidth)

17 {

18 // thread coordinates in the source matrix

19 constint tx = threadldx.x;

20 constintty = threadldx.y;

21

22 /I source global coordinates this thread will read

23 constint srcX = blockldx.x * TILE_SIZE + tx;

24 constint srcY = blockldx.y * TILE_SIZE + ty;

25

26 // allocate a shared (LDS) memory tile with padding to avoid bank conflicts
27

28

29 /I Read from global memory into tile with coalesced reads
30 if (srcY < srcHeight && srcX < srcWidth) {

31 tile[ty][tx] = input[GIDX(srcY, srcX, srcWidth)];

32 }lelse{

33 tile[ty][tx] = 0.0; // guard value — never used for writes
34 )

KE)

36 // Synchronize to make sure all of the tile is updated before using it
37 __syncthreads();

38

39 // destination global coordinates this thread will write

40 constint dstY = blockldx.x * TILE_SIZE + ty; // swapped axes

41  constint dstX = blockldx.y * TILE_SIZE + tx;

42
43 /| Write back to global ith [ d writ . . .
44 i (dStY — SroWidth 86 detx srabegtn . swapping the order for the tile does not create memory access issues
gy CUPUCIDHCSY, dot, sreldim] = flefidIb €= because memory loads to LDS and from LDS do not need coalescing
47)

Oct 21-23, 2025 AMD @ Tsukuba University AMDA

together we advance_



54

Build tiled version and run

Build and run the tiled transpose
make transpose tiled
./transpose tiled

Output

Tiled Transpose, Read and Write Contiguous - Average Time: 2686.40 us
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Build timed version that compares all versions

We can run a combined version that does a comparison of all of the versions
make transpose timed
./transpose timed

Output
Performance Summary:
Basic read contiguous  4439.60 ps
Basic write contiguous 2899.80 us
Tiled - both contiguous 2686.80 us

Speedup (Write Contiguous): 1.53x
Speedup (Tiled - Both Contiguous): 1.65x
Speedup (ROCBlas): 1.22x

Verification: PASSED
There is a 1.53x speedup by using the contiguous write and 1.65x for this 8192x8192 matrix size on an
MI210 GPU running ROCm 6.4.1.

AMDZU

together we advance_

Oct 21-23, 2025 AMD @ Tsukuba University



56

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions,

and typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons,
including but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product
releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any
computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to
update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from
time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY
APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR
ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY
INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, ROCm, Radeon, CDNA, Instinct, Infinity Cache and
combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for identification
purposes only and may be trademarks of their respective companies.

Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git
Project, in the United States and/or other countries

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board
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