
Optimizing HIP

Applications

Presenter: Bob Robey

AMD @ Tsukuba University

Oct 21-23, 2025

2 |

[Public]

Agenda 1. Overview of Kernel Performance Limiters

2. How to optimize memory bound kernels

3. How to optimize compute bound kernels

4. How to optimize latency bound kernels

5. Considerations for MI300A APU architecture

AMD @ Tsukuba UniversityOct 21-23, 2025

3 |

[Public]

GPUs are high throughput devices

• Must expose parallelism to properly utilize them

Oct 21-23, 2025 AMD @ Tsukuba University

GPU starvation – under-utilization of resources

Full utilization of resources

4 |

[Public]

Optimization strategy depends on performance limiters

Memory bound

o Low arithmetic intensity, memory units saturated

Compute bound

o High arithmetic intensity, compute units saturated

• Typical machine balance: 5-10 FLOPs/B
• 40-80 FLOPs per double to exploit compute capability

• MI250x machine balance: ~16 FLOPs/B
• 128 FLOPs per double to exploit compute capability

• Difficult to get compute bound on current architectures – concept of flops are for free

Latency bound

o Memory units not saturated and/or compute units not saturated

Focus of this presentation – what to do for these different types of kernels?

Oct 21-23, 2025 AMD @ Tsukuba University

𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =
𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝐵𝑦𝑡𝑒𝑠 𝑚𝑜𝑣𝑒𝑑

5 |

[Public]

• Attainable FLOPs/s =

• 𝑚𝑖𝑛 ቊ
𝑃𝑒𝑎𝑘 𝐹𝐿𝑂𝑃𝑠/𝑠
𝐴𝐼 ∗ 𝑃𝑒𝑎𝑘 𝐺𝐵/𝑠

• Machine Balance:

• Where 𝐴𝐼 =
𝑃𝑒𝑎𝑘 𝐹𝐿𝑂𝑃𝑠/𝑠

𝑃𝑒𝑎𝑘 𝐺𝐵/𝑠

• Five Performance Regions:

• Unattainable Compute

• Unattainable Bandwidth

• Compute Bound

• Bandwidth Bound

• Poor Performance A
tt

ai
n

ab
le

 F
LO

P
s/

s

Arithmetic Intensity (FLOPs/Byte)

1010.1

1000

100

10

Peak FLOPs/s
Unattainable performance
(greater than peak FLOPs/s)

Compute Bound

Background – What is Roofline

Oct 21-23, 2025 AMD @ Tsukuba University

[Public]

6

Memory Bandwidth Bound

Oct 21-23, 2025 AMD @ Tsukuba University

7 |

[Public]

Data Movement

• Reducing data movement is still very important for GPU performance

• Move data, compute as much as possible with that data

• Reuse data when possible – temporal reuse and spatial reuse

• Stage data in shared memory (LDS) or registers for faster access

• Lower precision data types move fewer bytes, evaluate their use for your algorithm

• Move more data per work-item to improve streaming efficiency

Oct 21-23, 2025 AMD @ Tsukuba University

8 |

[Public]

Data Access Considerations

• Coalesced loads/stores improve achieved bandwidth of transfers

• L1 cacheline size is 64 bytes in MI200 GPUs, and 128 bytes in MI300 GPUs

• Use as much as possible of each cacheline read

• Strided accesses may load more data than needed (more details in rocprof-compute by Examples talk)

• Use vector data types such as float4, float2

• Compiler generates fewer, wider load instructions

• Amortize on cost of address/index calculations

• Improve data streaming efficiency

• Use non-temporal loads for data that will not be reused

• Aligned memory accesses avoid excess data from being fetched

Oct 21-23, 2025 AMD @ Tsukuba University

9 |

[Public]

Sometimes compiler generates wider loads/stores for free

Oct 21-23, 2025 AMD @ Tsukuba University

https://godbolt.org/z/WYzMjxKzr

https://godbolt.org/z/WYzMjxKzr
https://godbolt.org/z/WYzMjxKzr
https://godbolt.org/z/WYzMjxKzr
https://godbolt.org/z/WYzMjxKzr

[Public]

10

Compute Bound

Oct 21-23, 2025 AMD @ Tsukuba University

11 |

[Public]

Compute Optimizations

• Compute bound kernels perform O(100) operations per byte loaded

• Large GEMMs are an example of compute bound kernels, but HPC workloads are typically memory bound

• Pre-compute values to look up in kernel

• Use faster math intrinsic functions, e.g., __cosf(x) instead of cosf(x)

• More details: https://rocm.docs.amd.com/projects/HIP/en/latest/reference/math_api.html

• Avoid general math functions where possible

• a * a * a uses two instructions whereas pow(a, 3.0f) uses many

• Godbolt link: https://godbolt.org/z/8hz8P4oc9

• Explore use of packed FP32 operations that process two FP32 values in one instruction

• For example, using float2 instead of float can result in the use of packed instructions

Oct 21-23, 2025 AMD @ Tsukuba University

https://rocm.docs.amd.com/projects/HIP/en/latest/reference/math_api.html
https://godbolt.org/z/8hz8P4oc9

12 |

[Public]

Compute Optimizations (contd.)

• Where you stage data for your compute matters

• To make your kernel truly compute-bound, read from registers

• Moving data from shared memory and/or cache takes O(10) cycles

• For specific matrix multiplication like calculations, special hardware units exist (rocWMMA)

• AMD Matrix Cores ROCm Blog: https://rocm.blogs.amd.com/software-tools-optimization/matrix-cores/README.html

Oct 21-23, 2025 AMD @ Tsukuba University

https://rocm.blogs.amd.com/software-tools-optimization/matrix-cores/README.html
https://rocm.blogs.amd.com/software-tools-optimization/matrix-cores/README.html
https://rocm.blogs.amd.com/software-tools-optimization/matrix-cores/README.html
https://rocm.blogs.amd.com/software-tools-optimization/matrix-cores/README.html
https://rocm.blogs.amd.com/software-tools-optimization/matrix-cores/README.html
https://rocm.blogs.amd.com/software-tools-optimization/matrix-cores/README.html
https://rocm.blogs.amd.com/software-tools-optimization/matrix-cores/README.html

13 |

[Public]

Unexpected Instructions

Oct 21-23, 2025 AMD @ Tsukuba University

__global__ void conversions (float *a) {
 float f1 = a[threadIdx.x] * 0.3;
 float f2 = 2.0 * (f1 * 3.0);
 a[threadIdx.x] = f1 + f2;

}

s_load_dwordx2 s[0:1], s[4:5], 0x0
v_lshlrev_b32_e32 v4, 2, v0
s_mov_b32 s2, 0x33333333
s_mov_b32 s3, 0x3fd33333
s_waitcnt lgkmcnt(0)
global_load_dword v0, v4, s[0:1]
s_waitcnt vmcnt(0)
v_cvt_f64_f32_e32 v[0:1], v0
v_mul_f64 v[0:1], v[0:1], s[2:3]
v_cvt_f32_f64_e32 v5, v[0:1]
s_mov_b32 s2, 0
v_cvt_f64_f32_e32 v[0:1], v5
s_mov_b32 s3, 0x40080000
v_mul_f64 v[2:3], v[0:1], s[2:3]
v_fmac_f64_e32 v[2:3], s[2:3], v[0:1]
v_cvt_f32_f64_e32 v0, v[2:3]
v_add_f32_e32 v0, v5, v0
global_store_dword v4, v0, s[0:1]
s_endpgm

Fewer instructions, FP32 ops

Wait, what?!

__global__ void no_conversions (float *a) {
 float f1 = a[threadIdx.x] * 0.3f;
 float f2 = 2.0f * (f1 * 3.0f);
 a[threadIdx.x] = f1 + f2;
}

s_load_dwordx2 s[0:1], s[4:5], 0x0
v_lshlrev_b32_e32 v0, 2, v0
s_waitcnt lgkmcnt(0)
global_load_dword v1, v0, s[0:1]
s_waitcnt vmcnt(0)
v_mul_f32_e32 v1, 0x3e99999a, v1
v_mul_f32_e32 v2, 0x40400000, v1
v_fmac_f32_e32 v1, 2.0, v2
global_store_dword v0, v1, s[0:1]
s_endpgm

[Public]

14

Latency bound

Oct 21-23, 2025 AMD @ Tsukuba University

15 |

[Public]

Main Ideas for Optimizing Latency Bound Kernels

• Increase parallelism to utilize all GPU resources

• Reduce number of synchronization barriers

• Reduce thread divergence

• Avoid register spilling to slower "scratch" memory

Oct 21-23, 2025 AMD @ Tsukuba University

16 |

[Public]

Motivation for Launching Many Wavefronts

• The GPU has a lot of resources

• Wavefronts can stall for various reasons:

• Waiting for data to load

• Waiting at a synchronization barrier

• GPU is good at switching to wavefronts with instructions ready to be executed

➔ Good to launch a lot of wavefronts and hide latencies of stalls

Oct 21-23, 2025 AMD @ Tsukuba University

17 |

[Public]

What is Occupancy?

• # Resident wavefronts / Maximum #wavefronts the GPU can have in-flight

• Hardware Perspective (let’s consider a MI210 GPU):

• There are 104 Compute Units (CU)

• Up to 32 wavefronts can be scheduled to each CU = max 3328 wavefronts

• Developers’ Perspective:

• Am I launching enough units of work to use all CUs?

• Am I launching more wavefronts than the number of CUs to hide latencies?

• Higher occupancy can help improve performance, but not always

Oct 21-23, 2025 AMD @ Tsukuba University

18 |

[Public]

Occupancy by Example (daxpy)

Z = aX + Y where Z, X and Y are 1D arrays of length N = 1,000,000 elements

We know that

• a workgroup can have 64 to 1024 work-items = 1 to 16 wavefronts

• all wavefronts of a workgroup will be scheduled to the same CU

We can launch the daxpy kernel in many ways:

1 workgroup with 64 work-items

Only 1 wave on 1 CU = No latency hiding

1 workgroup with 256 work-items

Only 4 waves on 1 CU = All other CUs idle

N/1024 workgroups, each workgroup has 16 waves

~1000 workgroups = ~16000 waves = good occupancy

But that’s not the whole picture..

Oct 21-23, 2025 AMD @ Tsukuba University

GPUCU

GPUCU

GPUCU CU CU CU CU

19 |

[Public]

Memory Resources that affect Occupancy

Compute Units have finite resources that are shared between work items

• Local Data Share (LDS)

• Vector General Purpose Registers (VGPRs)

• Scalar General Purpose Registers (SGPRs)

Oct 21-23, 2025 AMD @ Tsukuba University

The GPU can only schedule more work if there are enough resources available

20 |

[Public]

How LDS affects Occupancy

• Fast, on-CU, software managed memory to efficiently share data between work-items of a workgroup

• Each CU in a MI200 GPU has 64 KiB of LDS available

• Shared among workgroups on CU

Oct 21-23, 2025 AMD @ Tsukuba University

No LDS used, LDS

does not limit

occupancy

8 KiB of LDS per WG,

8 WGs can fit in CU

48 KiB of LDS per WG,

only 1 WG can fit in CU

21 |

[Public]

What is Register Pressure?

• Register pressure is a commonly used slang term for the demand in GPU kernel code for both vector and

scalar registers

• Vector registers are often referred to as VGPRs, which stands for Vector General Purpose Registers
• These registers have an array of values with one value for each thread in a wavefront

• Scalar registers are often referred to as SGPRs, which stands for Sector General Purpose Registers
• These registers have one value for all the threads in a wavefront

• When there is high usage of vector registers, it can have effects on program performance.

• Reduces occupancy by limiting the number of waves that can be schedule on a GPU compute unit.

• For very high usage, can result in “spilling” of registers to global memory and the slower access times for variables

• More generally, memory pressure and resource pressure are similar terms used to refer to the demand for

other types of resources for GPU kernels.

• Register pressure also occurs on CPUs. In both CPU and GPU architectures, registers are a scarce

resource that compilers use to locate variables close to the processor.

For a quick review of the GPU resources ➔ next slides

Oct 21-23, 2025 AMD @ Tsukuba University

22 |

[Public]

How Vector Registers affect Occupancy

• In VGPRs, each thread in the wavefront can save its own value

• Each MI200 CU has a limited size vector register file (max 512

VGPRs of size 4 bytes)

Oct 21-23, 2025 AMD @ Tsukuba University

Num VGPRs Occupancy per SIMD Occupancy per CU

<= 64 8 waves 32 waves

<= 72 7 waves 28 waves

<= 80 6 waves 24 waves

<= 96 5 waves 20 waves

<= 128 4 waves 16 waves

<= 168 3 waves 12 waves

<= 256 2 waves 8 waves

> 256 1 waves 4 waves

This is the column that corresponds to the compiler and profiler report.

23 |

[Public]

How Scalar Registers (SGPRs) affect Occupancy

• In SGPRs, one value is shared across all work-items of the wavefront

• Each MI200 CU has a limited size scalar register file (max 102 SGPRs of size 4 bytes per wavefront)

Oct 21-23, 2025 AMD @ Tsukuba University

24 |

[Public]

A Note about Register Spilling

• Register allocation is done by the compiler at compilation time

• When the required number of VGPRs is too much (i.e., > 256), the compiler may “spill” registers to slower

“scratch” memory

• Better to avoid spilling in most cases

• By default, the compiler assumes workgroups are going to have 1024 work-items

• Use __launch_bounds__ on smaller workgroups to allow the compiler to use more registers

• The compiler may spill SGPRs to VGPRs, this seldom limits scheduling

• Don’t take this as a challenge

Oct 21-23, 2025 AMD @ Tsukuba University

ROCm blog about Register Pressure:

https://rocm.blogs.amd.com/software-tools-optimization/register-pressure/README.html

https://rocm.blogs.amd.com/software-tools-optimization/register-pressure/README.html
https://rocm.blogs.amd.com/software-tools-optimization/register-pressure/README.html
https://rocm.blogs.amd.com/software-tools-optimization/register-pressure/README.html
https://rocm.blogs.amd.com/software-tools-optimization/register-pressure/README.html
https://rocm.blogs.amd.com/software-tools-optimization/register-pressure/README.html
https://rocm.blogs.amd.com/software-tools-optimization/register-pressure/README.html
https://rocm.blogs.amd.com/software-tools-optimization/register-pressure/README.html

25 |

[Public]

Register Pressure Hints - See Register pressure in AMD CDNA 2 GPUs

• Compiler for GPU kernels will generally keep data in registers

• Registers/variables in functions will persist (functions are currently in-lined)

• Vector registers greater than 256 will spill to main memory

• Reducing number of vector registers can help occupancy

• Methods to try and reduce vector registers
• Reduce the scope where variable is live

• Limit register usage by reducing workgroup size (__launch_bounds__)

• Avoid asserts

• Avoid mathematical intrinsics

• Use LDS to store some variables

• Manually reuse variables

• Use restrict keyword

• Avoid stack arrays and keep them as small as possible

• Use constexpr when variables are constants (or #define or equivalent compile time constant)

• Scalar registers – spill to vector registers
• Generally not a performance issue

• Avoid passing in large structs of scalar variables with only a few actually used

Oct 21-23, 2025 AMD @ Tsukuba University

https://rocm.blogs.amd.com/software-tools-optimization/register-pressure/README.html
https://rocm.blogs.amd.com/software-tools-optimization/register-pressure/README.html
https://rocm.blogs.amd.com/software-tools-optimization/register-pressure/README.html

26 |

[Public]

Fuse kernels to reduce launch latencies

• Also reduce data movement as shown here:

Oct 21-23, 2025 AMD @ Tsukuba University

__global__ void kernel1 (float *a, float *b, float *c) {
 int32_t tid = blockIdx.x * blockDim.x + threadIdx.x;
 c[tid] = a[tid] + 2 * b[tid];

}
__global__ void kernel2 (float *a, float *b, float *c) {
 int32_t tid = blockIdx.x * blockDim.x + threadIdx.x
 c[tid] = c[tid] - a[tid] * b[tid];

}

__global__ void kernel_fused (float *a, float *b, float *c) {
 int32_t tid = blockIdx.x * blockDim.x + threadIdx.x;
 float a = a[tid];
 float b = b[tid];
 c[tid] = a + 2 * b – a * b;
}

One read of “a” and “b” and one write of “c”

2 reads of “a” and “b”, “c” written out and read back before being written out again!

27 |

[Public]

Reduce or Avoid Synchronization

• Thread block synchronization

• Synchronizes wavefronts in a thread block

• Expensive in large work groups, don’t over use it

• Host-side synchronization

• Memory operations (hipMalloc, hipFree, etc.) implicitly synchronize activity on the device => unexpected low perf

• Move memory allocations out of inner loops. This may cause a rethinking of the current algorithm

• Use asynchronous memory copies (H<->D) with pinned host buffers

• avoid host-side synchronization

• overlap copies with compute

Oct 21-23, 2025 AMD @ Tsukuba University

28 |

[Public]

A Note about Atomics

• If using atomic operations on MI200, compile with -munsafe-fp-atomics to use hardware atomics on FP

data in GPU memory

• Not needed on MI300

• Reducing contention in atomic operations can improve performance

• On MI300 GPUs, atomics are performed in the AMD Infinity Cache instead of the L2 cache

• Infinity Cache is a Memory Adjacent Last Level (MALL) cache

• L2 is distributed and local to Accelerator Compute Dies (XCDs)

Oct 21-23, 2025 AMD @ Tsukuba University

29 |

[Public]

Minimize Thread Divergence

• Instructions in divergent paths are executed multiple times, some threads masked off each time

• Try minimizing divergent sections even if it means values computed by some threads will be discarded

eventually

Oct 21-23, 2025 AMD @ Tsukuba University

size_t idx = threadIdx.x + blockDim.x * blockIdx.x;
if (threadIdx.x % 2 == 0) {

 out[2 * idx] = 1.0;
} else {

 out[2 * idx + 1] = 0.0;
}

size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
double2 *ptr = (double2 *)(out + idx);
ptr[0] = {1.0, 0.0};

To compare assembly for both cases: https://godbolt.org/z/4fEqvE8zP

https://godbolt.org/z/4fEqvE8zP

30 |

[Public]

Warp shuffle/cross-lane functions

• Exchange data in registers between threads in wavefront

• Uses the same hardware fabric as LDS, but no storage in LDS

• Works on a common “width” where every thread is using the same width up to the wavefront size of 64

Oct 21-23, 2025 AMD @ Tsukuba University

31 |

[Public]

Considerations for the MI300A APU architecture

• Single allocation, zero copy

• No page migrations, CPU and GPU share same physical memory

• Choice of allocator can affect latency of first touch

• hipMalloc - device page tables populated, registered on CPU only on first touch

• hipHostMalloc (or) malloc + hipHostRegister – page tables populated on both CPU and device

• malloc – CPU page tables populated, GPU only registers them on first touch

• Page size matters

• System allocators defaults to 4KB pages, GPU prefers 2MB pages

• hipMalloc everything to guarantee 2MB pages

• What resources on the device do you want to use for copies?

• SDMA engines or kernels

• Single or multi-threaded on CPU

Oct 21-23, 2025 AMD @ Tsukuba University

32 |

[Public]

Summary

• Kernel performance may be limited by

• memory bandwidth

• lack of compute resources

• latencies

• Performance optimization involves balancing many constraints

• Reduce data movement and access data in a coalesced manner

• Avoid unnecessary compute and excessive synchronization

• Adjust occupancy while considering resource requirements

Oct 21-23, 2025 AMD @ Tsukuba University

33 |

[Public]

Hands-on exercises

Located in our HPC Training Examples repo:

 https://github.com/amd/HPCTrainingExamples

A table of contents for the READMEs if available at the top-level README in the repo

Relevant exercises for this presentation located in:

• HIP-Optimizations directory

Link to instructions on how to run the HIPIFY tests: HIP-Optimizations/daxpy/README.md

Log into the AAC node and clone the repo:

 ssh <username>@aac6.amd.com –p 7000 -i <path_to_ssh_key>

 git clone https://github.com/amd/HPCTrainingExamples.git

Oct 21-23, 2025 AMD @ Tsukuba University

https://github.com/amd/HPCTrainingExamples
https://github.com/amd/HPCTrainingExamples/blob/main/README.md
https://github.com/amd/HPCTrainingExamples/tree/main/HIP-Optimizations
https://github.com/amd/HPCTrainingExamples/tree/main/HIP-Optimizations
https://github.com/amd/HPCTrainingExamples/tree/main/HIP-Optimizations
https://github.com/amd/HPCTrainingExamples/tree/main/HIP-Optimizations
https://github.com/amd/HPCTrainingExamples/blob/main/HIP-Optimizations/daxpy/README.md
https://github.com/amd/HPCTrainingExamples/blob/main/HIP-Optimizations/daxpy/README.md
https://github.com/amd/HPCTrainingExamples/blob/main/HIP-Optimizations/daxpy/README.md
https://github.com/amd/HPCTrainingExamples/blob/main/HIP-Optimizations/daxpy/README.md

34 |

[Public]

Hands-on Exercises and Examples

• Try the following suggestions on the example code for blog post

• First retrieve the examples and find the directory where they are located
git clone https://github.com/amd/HPCTrainingExamples

cd HPCTrainingExamples/rocm-blogs-codes/registerpressure

• Get the compiler resource report for the kernel
hipcc --offload-arch=<gfxcode> lbm.cpp -Rpass-analysis=kernel-resource-usage –c

• Note that the number of registers (SGPRs and VGPRs) are slightly different than in the blog. They will

vary slightly for different compiler versions. Also note that the Occupancy is 4 waves/SIMD. We want to

improve that. To accomplish that, we need to get the VGPRs down to 96 as seen from the earlier table.

lbm.cpp:16:1: remark: SGPRs: 100 [-Rpass-analysis=kernel-resource-usage]
lbm.cpp:16:1: remark: VGPRs: 104 [-Rpass-analysis=kernel-resource-usage]
lbm.cpp:16:1: remark: AGPRs: 0 [-Rpass-analysis=kernel-resource-usage]
lbm.cpp:16:1: remark: ScratchSize [bytes/lane]: 0 [-Rpass-analysis=kernel-resource-usage]
lbm.cpp:16:1: remark: Dynamic Stack: False [-Rpass-analysis=kernel-resource-usage]
lbm.cpp:16:1: remark: Occupancy [waves/SIMD]: 4 [-Rpass-analysis=kernel-resource-usage]
lbm.cpp:16:1: remark: SGPRs Spill: 0 [-Rpass-analysis=kernel-resource-usage]
lbm.cpp:16:1: remark: VGPRs Spill: 0 [-Rpass-analysis=kernel-resource-usage]
lbm.cpp:16:1: remark: LDS Size [bytes/block]: 0 [-Rpass-analysis=kernel-resource-usage

Oct 21-23, 2025 AMD @ Tsukuba University

https://github.com/amd/HPCTrainingExamples

35 |

[Public]

Things to try from the blog post

1. Remove unnecessary math functions

• pow(current_phi, 2.0) on line 37 can be changed to current_phi * current_phi

• This C function raises the argument to a floating point power in software. It is not a very efficient way to do the

operation and also consumes a lot of registers.

2. Rearrange code so variables are declared close to use

3. Add restrict attribute to function arguments

Result of optimizations

In this case, we have not been able to get the VGPRs to 96 or below. Try adding restrict to more arguments

and see if you can.

SGPRs VGPRs Occupancy

lbm.cpp 100 104 4

lbm_1_nopow.cpp 88 104 4

lbm_2_rearrange.cpp 100 104 4

lbm_3_restrict.cpp 84 100 4

Oct 21-23, 2025 AMD @ Tsukuba University

36 |

[Public]

Extra credit

• Add __launch_bounds__(256) to function attributes

• Drops SGPRs to 84 and VGPRs to 96. Occupancy jumps to 5 waves per SIMD

Oct 21-23, 2025 AMD @ Tsukuba University

37 |

[Public]

Register usage is reported by most tools

• For OpenMP® offload, use export LIBOMPTARGET_KERNEL_TRACE=1​, compile and run, more recent

compiler versions will also report occupancy

• Rocprofv3 reports registers in some of the .csv files and in traces

• Rocprof-sys shows registers in the kernel details popup

• Rocprof-compute shows registers in the counter output tables

• Rocgdb will show registers and their data when stopped in a GPU routine – use ‘info registers’

LIBOMPTARGET_KERNEL_TRACE Report
DEVID: 0 SGN:2 ConstWGSize:256 args: 3 teamsXthrds:(391X 256) reqd:(0X 0) lds_usage:9784B sgpr_count:106 vgpr_count:58 sgpr_spill_count:39 vgpr_spill_count:0

tripcount:100000 rpc:1 n:__omp_offloading_3d_1a2def2_main_l52

DEVID: 0 SGN:2 ConstWGSize:256 args: 5 teamsXthrds:(391X 256) reqd:(0X 0) lds_usage:9784B sgpr_count:106 vgpr_count:56 sgpr_spill_count:47 vgpr_spill_count:0

tripcount:100000 rpc:1 n:__omp_offloading_3d_1a2def2__Z5daxpyidPdS_S__l97

Oct 21-23, 2025 AMD @ Tsukuba University

Transpose Examples
Data Ordering and Coalescing

Memory Loads

39 |

[Public]

Goals

• Examine data ordering and its effects on performance

• Understand what contiguous means in the context of GPUs

• Understand what coalesced memory load means

• Know how to use local data share (LDS) to mitigate non-contiguous memory access

• Know how to avoid bank conflicts

Oct 21-23, 2025 AMD @ Tsukuba University

40 |

[Public]

Data ordering

• The order that data is processed has a large effect on performance

• Contiguous data will allow the GPU to coalesce memory reads and/or writes

• Result is that fewer cache lines need to be fetched

• Also, fewer page loads will be needed

Oct 21-23, 2025 AMD @ Tsukuba University

41 |

[Public]

What are “coalesced” memory loads

• If the threads in a wavefront access contiguous data, it will be loaded in a minimal number cache line loads

• If the data is aligned, and if the data the wavefront touches fits wholly inside one 64-128 byte cache, it can be done in

one cache line load (64-128 bytes on Instinct GPUs)

• If the data is scattered, multiple cache line loads are necessary

• Once the data is in the GPU, the GPU is very efficient at using the data

• Similar for vector operations on the CPU

• But with memory bandwidth limited kernels, these multiple cache line loads limit performance

• When we say an application is memory bandwidth limited, we are saying that it is cache line load limited or page

table limited. We cannot load less than a cache line or a partial page. This results in wasted bandwidth.

Oct 21-23, 2025 AMD @ Tsukuba University

42 |

[Public]

How to write kernels for “coalesced” memory loads 1/2

• Use contiguous, unit-stride access per thread:

• Every 64-byte cache line brought into the L1/L2 cache is fully consumed before the next line is needed

• Do it by having threads in a wavefront access sequential indices

• If looping, map by strides to keep waves in lockstep over contiguous ranges.

• Prefer Structure of Arrays (SoA) over Array of Structures (AoS) for vectorized field-wise access:

• If each lane needs field x from many records, SoA keeps the x values contiguous, enabling full coalescing.

SoA AoS

Code generated with GPT-OSS:20b

Oct 21-23, 2025 AMD @ Tsukuba University

43 |

[Public]

How to write kernels for “coalesced” memory loads 2/2

• Align data:

• Ensure arrays of 4/8/16-byte elements are aligned to 64 B or 128 B if possible.

• Use hipMalloc – it generally does the correct alignment for the GPU

• Pad/promise alignment on structs and arrays (e.g., alignas(16/32/64)) so that common vector types (float2/float4) are

naturally aligned.

• Use vector types to encourage wide loads:

• float2/float4, int2/int4 map to global_load_dwordx2/x4 in ISA and can reduce instruction count and improve alignment

handling, provided the pointer is correctly aligned.

The pad float is not necessary with alignas

but it would be useful without

Code generated with OpenAI o3

Oct 21-23, 2025 AMD @ Tsukuba University

44 |

[Public]

Effects of misalignment and non-contiguous memory access

• Misalignment:

• If the first lane’s address is not at a “good” boundary, the wave’s combined footprint can span an extra cache-line.
• May require an additional cache line load, i.e. 9 cache line loads instead of 8 for a 12.5% penalty

• Strides greater than 1 or random memory access:

• Loops in kernels where threads access i in first iteration and i+1 in second so that wavefront is accessing every

other value.

• column-wise access to row-major matrices,

• AoS when each lane (thread) needs the same field but fields are interleaved in memory.

• Remedies:

• transpose,

• use SoA, or

• stage through local data share (LDS).

• If must use AoS, might help to pad/align and use vector loads.

Oct 21-23, 2025 AMD @ Tsukuba University

45 |

[Public]

Using LDS to mitigate non-sequential memory access
• Background on LDS banks

• To deliver high bandwidth at modest area cost, LDS is physically split into 32 independent banks, each 4 bytes wide

per port.

• NOTE: memory loads to LDS and from LDS to vector unit use Data Share instructions and do not need

coalescing

• Rather, LDS memory performance is subject to bank conflicts

• A bank conflict happens when two or more wavefront lanes attempt to access the same LDS bank in the same clock

cycle, and the ports on that bank cannot serve all those requests concurrently

• Bank conflicts most commonly arise when the memory access pattern uses a stride that’s a multiple of the number of

banks (32)

• Typical pattern for performance

• Load a tile from global memory with coalesced vector accesses.

• Store to LDS in a pattern convenient for the compute (e.g., transposed).

• Compute using LDS-resident data with bank-conflict-aware indexing.

• Write results back to global in a coalesced way.

• Tips for using LDS

• Add padding to avoid bank conflicts when accessing columns (e.g., K+1 stride in shared tiles).

• Keep LDS usage per workgroup within the hardware limit to maintain occupancy.

Oct 21-23, 2025 AMD @ Tsukuba University

46 |

[Public]

Vectorized loads and when to use them

• Vectorized loads include
• double2/double3/double4,

• float2/float3/float4,

• int2/int3/int4,

• uint2/uint3/uint4

• Pros:
• fewer instructions

• better alignment guarantees

• often improves bandwidth utilization when data is aligned and grouped

• naturally leads to loop unrolling

• Cons:
• Requires alignment

• Must handle tails if length not divisible by the vector width

• Vectors of 3 may not be as performant as vectors that are powers of 2 due to alignment issues

• Compiler hints:
• Use restrict to help alias analysis.

• Use alignas or attribute((aligned(N))) on allocations/structs.

• In HIP, __builtin_assume_aligned(ptr, N) can help the compiler pick wide ops if you guarantee alignment.

Oct 21-23, 2025 AMD @ Tsukuba University

47 |

[Public]

Transpose example

• We examine the programming advice in the context of a transpose example

• The examples are in the HPCTrainingExamples repository

• git clone https://github.com/AMD/HPCTrainingExamples

• cd HPCTrainingExamples/HIP/transpose

• We'll look at the examples in the following sequence

1. Transpose_read_contiguous

2. Transpose_write_contiguous

3. Transpose_tiled

tid_linear = threadIdx.x
 + threadIdx.y * blockDim.x
 + threadIdx.z * blockDim.x * blockDim.y;

Keep in mind, the global index of a thread, with the x-dimension

varying faster, followed by the y and then the z

Oct 21-23, 2025 AMD @ Tsukuba University

https://github.com/amd/HPCTrainingExamples/tree/main/MPI-examples/GhostExchange/GhostExchange_ArrayAssign_HIP/Ver8
https://github.com/AMD/HPCTrainingExamples

48 |

[Public]

Transpose_read_contiguous example

• It is natural to read the data in the input

data array pattern

• The input data in a C/C++ allocated array is

generally row-major.

• Host allocation is done as a 1D array and

then the indexing is done manually

• We do the 2D indexing in the kernel with a

define statement to make it easier to

understand

#define GIDX(y, x, sizex) y * sizex + x

• The transpose operation then looks like the

following with the read contiguous and the

write striding through the data

// Transpose: output[x][y] = input[y][x]

Oct 21-23, 2025 AMD @ Tsukuba University

49 |

[Public]

Read contiguous kernel code
• See the kernel code in transpose_kernel_read_contiguous.cpp

17 #define GIDX(y, x, sizex) y * sizex + x

18

19 __global__ void transpose_kernel_read_contiguous(

20 const double* __restrict__ input, double* __restrict__ output,

21 int srcHeight, int srcWidth) {

22 // Calculate source global thread indices

23 const int srcX = blockIdx.x * blockDim.x + threadIdx.x;

24 const int srcY = blockIdx.y * blockDim.y + threadIdx.y;

25

26 // Boundary check

27 if (srcY < srcHeight && srcX < srcWidth) {

28 // Transpose: output[x][y] = input[y][x]

29 const int input_gid = GIDX(srcY,srcX,srcWidth);

30 const int output_gid = GIDX(srcX,srcY,srcHeight); // flipped axis

31 output[output_gid] = input[input_gid];

32 }
33 }

• Build and run the code
make transpose_read_contiguous
./transpose_read_contiguous

• Output – selected
 Testing Matrix dimensions: 8192 x 8192
 Basic Transpose, Read Contiguous - Average Time: 4450.20 μs

Oct 21-23, 2025 AMD @ Tsukuba University

50 |

[Public]

Transpose_write_contiguous example

• How about if we make the data write contiguous?

• The transpose operation then looks like the following with the write contiguous and the read striding

through the data

// Transpose: output[y][x] = input[x][y]

Oct 21-23, 2025 AMD @ Tsukuba University

51 |

[Public]

Write contiguous kernel code
• See the kernel code in transpose_kernel_write_contiguous.cpp

16 #define GIDX(y, x, sizex) y * sizex + x

17

18 __global__ void transpose_kernel_write_contiguous(

19 const double* __restrict__ input, double* __restrict__ output,

20 int srcHeight, int srcWidth) {

21 // Calculate destination global thread indices

22 const int dstX = blockIdx.x * blockDim.x + threadIdx.x;

23 const int dstY = blockIdx.y * blockDim.y + threadIdx.y;

24 const int dstWidth = srcHeight;

25 const int dstHeight = srcWidth;

26

27 // Boundary check

28 if (dstY < dstHeight && dstX < dstWidth) {

29 // Transpose: output[y][x] = input[x][y]

30 const int input_gid = GIDX(dstX,dstY,srcWidth); // flipped axis

31 const int output_gid = GIDX(dstY,dstX,dstWidth);

32

33 output[output_gid] = input[input_gid];

34 }

35 }

• Build and run the code
make transpose_write_contiguous
./transpose_write_contiguous

• Output – selected
 Testing Matrix dimensions: 8192 x 8192
 Basic Transpose, Write Contiguous - Average Time: 2901.80 μs

This is substantially faster than the read contiguous version! Write has to do a load/store which is more work. If there were a lot
of arrays being read, read contiguous might come out ahead.

Oct 21-23, 2025 AMD @ Tsukuba University

52 |

[Public]

Applying some of the ideas above

• We’ll use the shared memory (LDS) on the Compute Unit to create a small memory tile

• This allows us to read contiguous and write contiguous data from/to arrays

• We will pad the LDS tile to avoid bank conflicts

• shared-memory tile ➔ __shared__ double tile[TILE_SIZE][TILE_SIZE+PAD]

• Note that the pad should be added to the second dimension, because that dimension is what impacts the striding

pattern that is involved in the selection of an LDS bank

• We need to add a synchronization after loading the tile

• __syncthreads();

• We use restrict on the function arguments

• We also use const for variables

• We use the same integer type for variables in the if tests to avoid having the compiler add instructions

• The TILE_SIZE variable is limited to the workgroup size of 1024. This means 32x32 is the largest tile that

can be used.

Oct 21-23, 2025 AMD @ Tsukuba University

53 |

[Public]

Tiled transpose kernel
14 __global__ void transpose_kernel_tiled(

 15 double* __restrict input, double* __restrict output,

 16 const int srcHeight, const int srcWidth)

 17 {

 18 // thread coordinates in the source matrix

 19 const int tx = threadIdx.x;

 20 const int ty = threadIdx.y;

 21

 22 // source global coordinates this thread will read

 23 const int srcX = blockIdx.x * TILE_SIZE + tx;

 24 const int srcY = blockIdx.y * TILE_SIZE + ty;

 25

 26 // allocate a shared (LDS) memory tile with padding to avoid bank conflicts

 27 __shared__ double tile[TILE_SIZE][TILE_SIZE + PAD];

 28

 29 // Read from global memory into tile with coalesced reads

 30 if (srcY < srcHeight && srcX < srcWidth) {

 31 tile[ty][tx] = input[GIDX(srcY, srcX, srcWidth)];

 32 } else {

 33 tile[ty][tx] = 0.0; // guard value – never used for writes

 34 }

 35

 36 // Synchronize to make sure all of the tile is updated before using it

 37 __syncthreads();

 38

 39 // destination global coordinates this thread will write

 40 const int dstY = blockIdx.x * TILE_SIZE + ty; // swapped axes

 41 const int dstX = blockIdx.y * TILE_SIZE + tx;

 42

 43 // Write back to global memory with coalesced writes

 44 if (dstY < srcWidth && dstX < srcHeight) {

 45 output[GIDX(dstY, dstX, srcWidth)] = tile[tx][ty];

 46 }

 47 }

swapping the order for the tile does not create memory access issues

because memory loads to LDS and from LDS do not need coalescing

Oct 21-23, 2025 AMD @ Tsukuba University

54 |

[Public]

Build tiled version and run

Build and run the tiled transpose
make transpose_tiled

./transpose_tiled

• Output
Tiled Transpose, Read and Write Contiguous - Average Time: 2686.40 μs

Oct 21-23, 2025 AMD @ Tsukuba University

55 |

[Public]

Build timed version that compares all versions

• We can run a combined version that does a comparison of all of the versions
make transpose_timed

./transpose_timed

• Output
Performance Summary:

Basic read contiguous 4439.60 μs

Basic write contiguous 2899.80 μs

Tiled - both contiguous 2686.80 μs

Speedup (Write Contiguous): 1.53x

Speedup (Tiled - Both Contiguous): 1.65x

Speedup (ROCBlas): 1.22x

Verification: PASSED

There is a 1.53x speedup by using the contiguous write and 1.65x for this 8192x8192 matrix size on an

MI210 GPU running ROCm 6.4.1.

Oct 21-23, 2025 AMD @ Tsukuba University

56 |

[Public]

Disclaimer
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions,
and typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons,
including but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product
releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any
computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to
update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from
time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY
APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR
ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY
INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, ROCm, Radeon, CDNA, Instinct, Infinity Cache and
combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for identification
purposes only and may be trademarks of their respective companies.

Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git
Project, in the United States and/or other countries

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board

Oct 21-23, 2025 AMD @ Tsukuba University

	Default Section
	Slide 1: Optimizing HIP Applications
	Slide 2: Agenda
	Slide 3: GPUs are high throughput devices
	Slide 4: Optimization strategy depends on performance limiters
	Slide 5: Background – What is Roofline
	Slide 6: Memory Bandwidth Bound
	Slide 7: Data Movement
	Slide 8: Data Access Considerations
	Slide 9: Sometimes compiler generates wider loads/stores for free
	Slide 10: Compute Bound
	Slide 11: Compute Optimizations
	Slide 12: Compute Optimizations (contd.)
	Slide 13: Unexpected Instructions
	Slide 14: Latency bound
	Slide 15: Main Ideas for Optimizing Latency Bound Kernels
	Slide 16: Motivation for Launching Many Wavefronts
	Slide 17: What is Occupancy?
	Slide 18: Occupancy by Example (daxpy)
	Slide 19: Memory Resources that affect Occupancy
	Slide 20: How LDS affects Occupancy
	Slide 21: What is Register Pressure?
	Slide 22: How Vector Registers affect Occupancy
	Slide 23: How Scalar Registers (SGPRs) affect Occupancy
	Slide 24: A Note about Register Spilling
	Slide 25: Register Pressure Hints - See Register pressure in AMD CDNA™ 2 GPUs
	Slide 26: Fuse kernels to reduce launch latencies
	Slide 27: Reduce or Avoid Synchronization
	Slide 28: A Note about Atomics
	Slide 29: Minimize Thread Divergence
	Slide 30: Warp shuffle/cross-lane functions
	Slide 31: Considerations for the MI300A APU architecture
	Slide 32: Summary
	Slide 33: Hands-on exercises
	Slide 34: Hands-on Exercises and Examples
	Slide 35: Things to try from the blog post
	Slide 36: Extra credit
	Slide 37: Register usage is reported by most tools
	Slide 38: Transpose Examples Data Ordering and Coalescing Memory Loads
	Slide 39: Goals
	Slide 40: Data ordering
	Slide 41: What are “coalesced” memory loads
	Slide 42: How to write kernels for “coalesced” memory loads 1/2
	Slide 43: How to write kernels for “coalesced” memory loads 2/2
	Slide 44: Effects of misalignment and non-contiguous memory access
	Slide 45: Using LDS to mitigate non-sequential memory access
	Slide 46: Vectorized loads and when to use them
	Slide 47: Transpose example
	Slide 48: Transpose_read_contiguous example
	Slide 49: Read contiguous kernel code
	Slide 50: Transpose_write_contiguous example
	Slide 51: Write contiguous kernel code
	Slide 52: Applying some of the ideas above
	Slide 53: Tiled transpose kernel
	Slide 54: Build tiled version and run
	Slide 55: Build timed version that compares all versions
	Slide 56: Disclaimer
	Slide 57

