R |

Accelerating Py Torch
models with LLM

augmented HIP kernels

Presenter: Giacomo Capodaglio
October 15th, 2025
AMD @ CASTIEL

AMD 1

together we advance_

Agenda

Background Information
Introduction
Motivation
Recipe for accelerating kernels
General LLM workflow approach
BitNet inference
Neck-and-neck performance with CUDA PTX BitNet kernels
Key takeaways

Generated by ChatGPT

AMD @ CASTIEL AMDZ1

together we advance_

Intro

Main goal: accelerating PyTorch models with LLM-augmented HIP kernels

We focus on accelerating Microsoft BitNet, a novel 1.58-bit quantized LLM
20k GitHub stars and no current AMD GPU support

Subjects
adding AMD support to PyTorch models
greatly enhancing developer productivity with state-of-the-art LLMs
setting up a workflow for easy kernel iteration with LLMs
leveraging PyTorch compile for optimized model execution
calling HIP kernels in PyTorch with custom C++ operator registration

Our LLM-augmented HIP kernel and optimizations demonstrate significant performance gains
Over a 2x speedup over baseline PyTorch on RDNA-based GPUs

We also highlight the same kernel on an MI300x outperforming H100's using Microsoft's official CUDA+PTX
inference kernels in peak tokens-per-second

AMD @ CASTIEL AMDZ1

together we advance_

Software Hardware

Python 3.12.11

PyTorch 2.7.1 CDlClléoo 1300
- Wheel respective to ROCm or CUDA) ’
Pip versions
- Documented in /bitnet/pip_freeze.txt
RDNA

- 6900XT, Navi3

CUDA
- A100, H100

AMD @ CASTIEL AMD ¢\
Note: Images from AMD and NVIDIA together we advance_

Background Information

PyTorch

- The most popular deep learning framework “mmm
PyTOl'Ch 2.X ani::_ Z:ﬁ;ql

- Introduced torch compile, a JIT Compiler to optimized kernels didn_ didn_

- https://pytorch.org/get-started/pytorch-2-x/ N N
Self-Attention ol cross-
- Allows each token to determine how much to weight other tokens street_ sireet._
FlashAttention BB —
- Fast and Memory-Efficient Exact Attention with |O-Awareness

Cther PyTorch TensarFlow

Self-Attention
PyTorch usage
over time
Jan 2018 Jan 2019 Jan 2020 Jan 2021
Repository creation date AMD @ CASTIEL Note:lmages from Medium and Jay Alamar AMD“"

together we advance_

FlashAttention: https://arxiv.org/abs/2205.14135

Inspiration
CambridgelOA @

at EPCC in Edinburgh UK
"Parallelized affine invariant MCMC sampling"

Converted PyTorch code to HIP using Claude

LLM

Resulted in a 5.8x speedup

Speedup comes from HIP generating fewer
kernels than PyTorch

PyTorch: Total kernels:
HIP: Total kernels:

29779
8978

Does this extend to deep
learning models?

Samples per Second

PyTorch CUDA vs HIP GPU Performance on AMD MI300A
Ensemble Sampler Comparison

Execution Time Comparison_ Perjform_ance S;aling (Log Sc_ale) HIP Speedup over PyTorch

[A6%
At i PyTorch CUDA
HIP GPU
37.

5.8x
6
5.2x
5
28.5 : 1.
1 ; . 4
Y -@- PyTorch CUDA
HIP GPU =3 2.6x
i 101 2
5.7 1
= 3 —] 0 I
- 128 256

56 384 512 200 300 400 384 512
Number of Walkers Number of Walkers Number of Walkers

Time (seconds)
Time (seconds, log scale)
PyTorch/HIP

Speedup

Sampling Throughput » Sampling Efficiency

-@®~ PyTorch CUDA
400000 4 HIP GPU

Performance Summary

Average Speedup: 4.7x
Maximum Speedup: 5.8x (at 128 walkers)
Minimum Speedup: 2.6x
300000
PyTorch CUDA:
~@~ PyTorch CUDA Total Time: 145.6s
ey HIP GPU Avg Time: 36.4s
HIP GPU:
Total Time: 34.3s
Avg Time: 8.6s

100000 4
.//‘__’/ r”/‘.\—.—’/,. Platform: AMD Instinct MI300A
5

0 1 T T T T T T
300 400 5 200 300 400
Number of Walkers Number of Walkers

Samples/Second/Walker

Hardware: AMD Instinct MI300A | Test: 5000 steps, 10 parameters, 1000 burn-in

Cambridge's Results
NOTE: PyTorch CUDA means pure PyTorch in the plots

AMD @ CASTIEL AMDZ

together we advance_

How we used LLMs

AMD @ CASTIEL AMDZ

together we advance_

Which LLMs have been used

Proprietary
ChatGPT
03, 04-mini, 04-mini-high
Gemini
2.5 Flash, 2.5 Pro
Open Source
DeepSeek-R1 (671B params)
Qwen3-Coder (405B params)

We found best results from reasoning models Gemini 2.5 Pro and ChatGPT o3
Qwen3-Coder is a great free alternative

Models with more parameters are, in general, more capable
Due to scaling laws: https://arxiv.org/abs/2001.08361

Use whichever model is the most powerful
Find the best LLMs at https://www.vellum.ai/llm-leaderboard/

AMD @ CASTIEL AMDZ

together we advance_

https://arxiv.org/abs/2001.08361
https://www.vellum.ai/llm-leaderboard/
https://www.vellum.ai/llm-leaderboard/
https://www.vellum.ai/llm-leaderboard/

Differences between LLMs

ChatGPT
Great for generating ideas for optimization or areas to debug
Doesn't like to paste entire output
In our experience, Canvas mode is worse than just outputting in the chat
Will completely change the style of your code

Gemini
Very consistent, strong coder
Great for implementing the code you tell it to write
Will not diverge from your coding style
Not lazy, will paste entire files

Open-source models
In our experience they are less capable at coding
Very hard to out compete large (1T+ param) proprietary models
Extremely cheap and fast for simple tasks
Qwen3-Coder can compete with proprietary models

AMD @ CASTIEL

AMDZU

together we advance_

Switching between models

- Sometimes we found that switching between ChatGPT and Gemini chats could unlock the benefits of
both models

- Models can get stuck in a repetitive loop
+ Having fresh context can help

- Example
Generate optimization ideas with ChatGPT
- Decide which one to implement
* Prompt Gemini to start that optimization

Generated by ChatGPT

AMD @ CASTIEL AMDZ

together we advance_

How to use and find different models

Where to find models
Gemini: gemini.google.com
ChatGPT: chatgpt.com
Qwen: chat.qwen.ai

Open Source
HuggingFace
Ollama
LM Studio

Hugging Face Gemini Qwen ChatGPT

8+

Note: logos from company front pages

AMD @ CASTIEL

LM Studio

AMDZU

together we advance_

Prompting

We have used very simple prompting techniques
"optimize this kernel for "
"please fix this error"

However, you must be very specific in detailing the changes you want made
lterative, small changes work better than large refactors

Context lengths are becoming quite large, take advantage of them
Paste entire documentation and source code files into your chat
rocminfo output, console error logs
The more the better
For fast iteration time, tell it to print the entire function or source file
Make sure to verify changes
Side-by-side git diffs are extremely useful for this type of work
One-shot solutions rarely work. Usually within 10 prompts you can resolve an error
If taking longer than this, retry in a new tab

AMD @ CASTIEL

AMDZU

together we advance_

LLMs + GPU kernels

AMD @ CASTIEL AMDZ

together we advance_

Why LLM inference (and not training)

Low(er) hardware requirements

Don’t need to store optimizers or the backward pass in
RAM, resulting in a much smaller memory footprint

Easily ensure accuracy with LLMs — does the output
make sense?

With proper optimization, we can run LLMs on a
Radeon GPU, and possibly on a mini-pc or consumer
laptop

Kernels are usually short (1000 lines of code)
Perfect for pasting into your LLM

End result: chat with LLM on your local machine!

AMD @ CASTIEL

RAOD=0N

RAD=0N

Note: image from Reddit

AMDZU

together we advance_

Recipe for accelerating GPU kernels

Ideally this process can be largely automated

General LLM workflow
Set up boilerplate and minimum-viable working solution
Ask LLM to optimize
Compile and run file
Ensure correct output.
o Does this match the correct, unoptimized output?
If error, feed back to LLM
Save working kernel
Generate rocprof stats
Feed LLM context the rocprof stats and working kernel
lterate!

hwn -~

© 0N O

AMD @ CASTIEL

The key is properly

guiding the LLM to

success

« Useful context

« Expertise in
knowing what to
optimize

AMDZU

together we advance_

Use case: BitNet Inference

AMD @ CASTIEL AMDZ1

together we advance_

BitNet b1.58 2B4T

AMD @ CASTIEL

AMDZU

together we advance_

Ternary weights {-1,0,1}
- log_2(3) ~=1.58

\ Trained on 4
Trillion tokens
BitNet b1.58 2B84T —

|

2 billion parameters

AMD @ CASTIEL

AMDZU

together we advance_

What is BitNet?

TLDR; "a super efficient LLaMa-style transformer"
Replaces LLaMa linear layer
2B parameters, trained on 4T tokens

Very efficient due to "1.58 bit" weights
{-1,0,1} encoded as INT2 instead of FP16/FP32
log_2(3) ~=1.58

Optimized inference code
CUDA/PTX kernel replaces torch.nn.linear

Open-source LLM developed by Microsoft
20k stars on GitHub

Paper: https://arxiv.org/abs/2402.17764

INT8 Add
FP16 Add
FP16 Mul

template <typename T1, typename T2>
__device__ wvoid decode_i2s_to_i8s(T1 *_iZs, T2 *_1iB8s, const int N = 16)
{

// convert 8 int2b_t to 8 int8b_t -> 2 int32
uint *i8s = reinterpret_cast<uint *>(_iB8s);
/f 125 = {e®, ed, eB,

uint const i2s = *_1i32s;

el?2, el, e5, e9, el3, e2, e6, el0, eld, e3, e7, ell, el5}

static constexpr uint immLut = (Oxf@ & Oxcc) | Oxaa;
static constexpr uint BOTTOM_MASK = 0x03030303;
static constexpr uint I4s _TO _I8s MAGIC NUM = 0x00000000;

£/ ©8b11181010

/f oxft -> 0bll select 0,3

#pragma unroll

for (int 1 = 8; 1 < (N / 4); i++)

{
asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n"
: "=r"(iss[i])
: "r"(i2s >> (2 * i)), "n"(BOTTOM_MASK), "n"(I4s_TO_I8s_MAGIC_NUM),
iBs[i] = _ wsubss4(iBs[i], 0x02020202);
}

"n" (immLut));

BitNet energy
efficiency
compared to
LLaMa

BitNet b1.58

BitNet kernel containing PTX

AMD @ CASTIEL

AMDZU

together we advance_

https://arxiv.org/abs/2402.17764

Adding AMD support

Enhanced official code

Fixed eot_id bug, CUDA compile bug, added - -pytorch flag
Set up HIP kernel bindings

Resolved Meta Xformers library incompatibility

No support for flash attention (flash.FwOp) backend on ROCm

ROCm installation provides composable kernel operator at the moment

output = fmha.memory efficient_attention_forward(

xq, cache_k, cache_v, attn_bias, op = fmha.flash.FwOp

] NVIDIA version, fast

output = fmha.memory efficient_attention_forward(
xq, cache_k, cache_v, attn_bias,

op = fmha.ck.FwOp ROCm version, slower
)

2 AMD @ CASTIEL AMDZ

together we advance_

21

BitNet Linear Kernel

w2a8 GEMV
2-bit weights x 8-bit activations
Super optimized linear transformation

Sixteen packed INT2 weights into a single INT32

INT2 weights in 16x32 blocks with interleaved
swizzle pattern for coalesced memory accesses

Replaces torch.nn.Linear

How the w2a8 GEMV works: 2. Multiple sdot4

1. Decode swizzled data to int8

[e, 4, 8, 12, 1, 5, 9, 13, 2, 6, 18, 14, 3, 7, 11, 15]

Special interleaving pattern for
packed INT2 weights

dp4a/sdot4

3. Shuffle down accumulate

Note: diagram from
https://developer.nvidia.com/blog/mixe

d-presMEh-EoGradrhifmlcuda-8/

Note: diagram from Science Direct

AMDZU

together we advance_

22

PyTorch bindings to HIP kernel

Compile kernel as shared library and call with ctypes
Little to no set up
Quick for experimentation

Custom C++ PyTorch operator
Fast, allows for greater fusion

Dynamo/AOTAutograd can reason about shapes/dtypes for the custom HIP
operator without tracing into it

We saw 5%-7% end-to-end speedups over method #1
Takes time to set up

AMD @ CASTIEL

AMDZU

together we advance_

#1. Compile kernel as shared library and call with ctypes

1. Create a dispatch function in .hip
extern "C" void bitlinear_int8xint2(int8 t* input®, int8 t* inputl, hip bfloatlé* output®, hip bfloatlé* s, hip bfloatlé* ws, int M, int N, int K, hipStream t stream){

2. Define your kernel in .h 4. Link shared library to PyTorch with ctypes

import ctypes
template <int M, int N, int K, int ws num, int K block size, int N_block size> bitnet lib = ctypes.CDLL('bitnet_kernels_hip/libbitnet.so")

global wvoid _ launch bounds (128) ladder int8xint2 kernel(int8 t* restrict A, . .) . , .
— = = = — - = - - def bitnet int8xint2 linear(input®, inputl, s, ws, amd=False)

out shape = list(input@.shape)
out_shape[-1] = inputl.shape[0@]

stream = torch.cuda.current stream()

3. Compile as a shared library

bitnet > bitnet_kernels_hip > § compile.sh

1: hipcc -std=c++17 -fPIC --shared bitnet kernels.cpp -o libbitnet.so N
K

M = input@.shape[@]

if len(out shape) == 3:
M *= ipput®.shape[1]
inputl.shape[@]
inputl.shape[l] * 4

ret = torch.zeros(*out shape, dtype=torch.bfloatl6, device=input®.device)

bitnet_lib.bitlinear_int8xint2(*[ctypes.c void p(input@.data_ptr(}),
ctypes.c void p(inputl.data ptr()),
ctypes.c void p(ret.data ptr()}),
ctypes.c void p(s.data ptr()),
ctypes.c_void p(ws.data_ptr()),
ctypes.c_int(M),
ctypes.c_int(N),
ctypes.c int(K),
ctypes.c_void p(stream.cuda_stream)])

return ret

AMD @ CASTIEL AMDZ

23 together we advance_

24

#2. Custom C++ PyTorch operator Custom op folder

Create directory to hold operator

/bitnet_op
Create .hip file with PyTorch bindings g
Create setup.py ‘
uv pip install -e . --no-build-isolation ;
export PYTORCH_ROCM_ARCH=gfx942 setuppy .
Move .so library from /build to /bitnet_op .
Import custom op folder into PyTorch code -

TORCH_LIBRARY(bitnet op, m) {

AMD @ CASTIEL

v bitnet_op

@ _init_.py

= _C.cpython-312-x86_64-linux-gnu.so
= kernel_hip.hip

= kemnel.hip

from setuptools import setup

from torch.utils.cpp extension import BuildExtension, CUDAExtension

change bitnet_op to bitnet_vl for rdna
setup(
name="bitnet op”,
version="1.08",
packages=["bitnet_op'],
ext_modules=[
CUDAExtension(bitnet_op. C", ['bitnet_op/kernel.hip'],)
1,
cmdclass={
"build_ext": BuildExtension

¥

m.def("bitlinear(Tensor input®, Tensor inputl, Tensor s, Tensor ws) -> Tensor");
PyTorch tutorial: Register with }
https://docs.pytorch.org PyTorch inside
/tutorials/advanced/cpp kernel.hip TLE [t LSt gy Sin)]
_CUStom_OpS.htmI m.impl({"bitlinear”, &bitlinear pytorch);
¥

AMDZU

together we advance_

BitNet runs locally!

Run the full 2B BitNet on your local ROCm machine

Need >= 8GB GPU ram
Github Repository

Currently internal
github.com/AMD-HPC/bitnet/

RDNA and CDNA support

Entire setup

Chat with model!

Flags
--interactive
--chat_format
--pytorch

25

qgithub.com/AMD-HPC/bitnet/blob/main/setup.sh

uv venv --python 3.12 # uv venv because built-in venv runs out of memory when installing rocm torch with pip

source .venv/bin/activate

install dependencies

uv pip install torch torchvision torchaudio xformers --index-url https://download.pytorch.org/whl/rocmé6.3
uv pip install fire sentencepiece tiktoken blobfile flask einops transformers

uv pip install -U xformers --index-url https://download.pytorch.org/whl/rocmé.3

cd src/hip/
bash compile.sh # if on rdna, comment the first line and uncomment the second
&) oo

download and convert the BitNet-b1.58-2B model

mkdir checkpoints

huggingface-cli download microsoft/bitnet-b1.58-2B-4T-bf16 --local-dir ./checkpoints/bitnet-b1.58-2B-4T-bf16

python3 ./convert_safetensors.py --safetensors_file ./checkpoints/bitnet-bl.58-2B-4T-bf16/model.safetensors --output checkpoints/model_state.pt --model_name 2B

python3 ./convert_checkpoint.py --input ./checkpoints/model_state.pt

rm ./checkpoints/model_state.pt

(bitnet-gpu) [kebuhler@TheraCle gpu]$ python3 generate.py ./checkpoints/ --interactive --chat
format

loaded model in 2.97 seconds

compiled model in 2.61 seconds

enter prompt: what is AMD

[[128000, 1502, 25, 220, 12840, 374, 25300, 128009, 72803, 25, 220]]

11::32

> what is AMD

AMD stands for Advanced Micro Devices. It is a multinational technology company that designs,
manufactures, and markets microprocessors, graphics processing units (GPUs), and other

2 mmem

AMDZU

together we advance_

AMD @ CASTIEL

http://../../00-01%20Python_AI%20Presentations/github.com/AMD-HPC/bitnet
http://../../00-01%20Python_AI%20Presentations/github.com/AMD-HPC/bitnet
http://../../00-01%20Python_AI%20Presentations/github.com/AMD-HPC/bitnet
http://../../00-01%20Python_AI%20Presentations/github.com/AMD-HPC/bitnet
http://../../00-01%20Python_AI%20Presentations/github.com/AMD-HPC/bitnet
http://../../00-01%20Python_AI%20Presentations/github.com/AMD-HPC/bitnet
../../00-01%20Python_AI%20Presentations/github.com/AMD-HPC/bitnet/blob/main/setup.sh
../../00-01%20Python_AI%20Presentations/github.com/AMD-HPC/bitnet/blob/main/setup.sh
../../00-01%20Python_AI%20Presentations/github.com/AMD-HPC/bitnet/blob/main/setup.sh

Matching CUDA/PTX performance

AMD @ CASTIEL AMDZ

together we advance_

BitNet inference performance

Measured in peak tokens per second (tok/s)
- Human reading speed: 5-7 tok/s
- Prompt: “what is an eigenvalue”

128 output tokens

Measured on MI300x

Three different types of models to test

PyTorch
AMD and NVIDIA hardware

PyTorch + CUDA/PTX w2a8 kernel
NVIDIA hardware

PyTorch + HIP w2a8 kernel
AMD hardware

27

Tokens Characters

D Show text

<|begin_of_text|> give me an example of what a token is - ke vin

<|end_of_text|>

Llama 3 tokenizer example

4

%
[Y
L /]
A @
® y 4
4

AMD ¢

ROCm <&

Note: logos from company front pages

AMD @ CASTIEL AMDZ
together we advance_

d

///////////////////////////M

by GPU Architecture, tokens/secon

-l
Ll
=
7))
<
®)
©)
o
=
<

BitNet Inference

for smaller GPUs

o Larger speedups E
o MI300x faster than

o 6900XT: 2.28x

o MI300a: 1.43x
o MI250x: 1.98x
- Trend

over PyTorch
o MI300x: 1.47x

- End-to-end speedups
H100!

Consistent
speedups

29

Memory Differences

Memory dropped from
11.43 GB to 7.64GB
~33% decrease

=
o

—_
m
O
—
=]
()]
w
-
o
@]
=
(]
=

BitNet Memory Usage

PyTorch Baseline

AMD @ CASTIEL

AMDZU

together we advance_

30

BitNet w2a8 Kernel

The main driver of our speedups

AMD @ CASTIEL

AMDZU

together we advance_

31

BitNet w2a8 Kernel

In total, we created 10 different versions of this kernel

We will be focusing on three kernels:
V1: Converted from CUDA to pure C++ HIP
V2: AMD intrinsic builtin
V10: Unified RDNA/CDNA kernel
Code soon to make public (now in private repo)
https://github.com/AMD-HPC/bitnet/tree/main/src/hip

AMD @ CASTIEL

00O 00000 0006 0

compile.sh

vi.cpp

v10.cpp

vZ2.cpp

v3.cpp

vd.cpp

vh.cpp

vb.cpp

vi.cpp

va.cpp

vO.cpp

AMDZU

together we advance_

https://github.com/AMD-HPC/bitnet/tree/main/src/hip
https://github.com/AMD-HPC/bitnet/tree/main/src/hip
https://github.com/AMD-HPC/bitnet/tree/main/src/hip
https://github.com/AMD-HPC/bitnet/tree/main/src/hip

32

RDNA support for w2a8

As a reminder, AMD provides two different ISAs
CDNA (Compute DNA), used in datacenter GPUs
RDNA (Radeon DNA), used in consumer GPUs

Adding RDNA support requires two changes

Change #1
Problem: Xformers CK backend for memory efficient attention is not supported on RDNA

Solution: Rewrite the Attention mechanism from scratch in pure PyTorch
Results in two files: rdna_model.py and rdna_generate.py

Change #2
Problem: __ builtin_amdgcn_sdot4 is only available on CDNA
Solution: A unified RDNA/CDNA kernel. Next slide...

AMD @ CASTIEL

AMDZU

together we advance_

V_DOT4C_I32_I8

Compute the dot product of two packed 4-D signed 8-bit integer inputs in the signed 32-bit integer domain and

U n ifi e d RD NAIC D N A ke rn e I accumulate with the signed 32-bit integer value in the destination register.
t) =
i32

__builtin_amdgcn_sdot4 intrinsic isn't CDNA

portable
LLVM target must be 'mai-insts'
Assembly dump V_DOT4_132_IUS
Compiles to V_DOT4C_I132_18 instructions Dot product of signed or unsigned bytes.
Not available in RDNA ISA

However, RDNA has V_DOT4 |32 IU8

An alias for V_DOT4 132 I8 RDNA .

Or, V_DOT4C_I32_I8 without an e

accumulator i adter . Extend umeionad sroue wich londing &
Result: same kernels works on both s e

RDNA/CDNA! A L

asm volatile("V DOT4 I32 I8 %@, ¥1, %2, X3"

: "=v"{acc) ff %@: Dst

: "wv"(packed A), ff %1: Srce Unified kernel
"v"(packed W), // %2: Srcil inline assembly
“vw"(acc)); f/ %3: Src2 (accumulator)

AMDZU

together we advance_

., https://github.com/AMD-HPC/bitnet/blob/main/src/hip/v104sfip@ CASTIEL

Striped bars mean
Tunable Op Enabled

Extra Performance: PyTorch Tunable Op

Environment flag to squeeze extra juice out of AMD GPUs

Profiles different versions of our GEMMs and then runs the

fastest

We see noticeable boosts in runtime speedups when enabling

Some errors when using on RDNA

More information
https://docs.pytorch.org/docs/stable/cuda.tunable.html
https://rocm.blogs.amd.com/artificial-intelligence/pytorch-
tunableop/README.html

toks/s

MI300x ' AMDAA

together we advance_

AMD @ CASTIEL

https://docs.pytorch.org/docs/stable/cuda.tunable.html
https://docs.pytorch.org/docs/stable/cuda.tunable.html
https://docs.pytorch.org/docs/stable/cuda.tunable.html
https://docs.pytorch.org/docs/stable/cuda.tunable.html
https://docs.pytorch.org/docs/stable/cuda.tunable.html
https://docs.pytorch.org/docs/stable/cuda.tunable.html
https://docs.pytorch.org/docs/stable/cuda.tunable.html
https://docs.pytorch.org/docs/stable/cuda.tunable.html

vO

PyTorch

35

Tokens per Second (t/s)

AW

__builtin_amdgcn_sdot4

vl
PTX ->pure C++

310.1

PyTorch

v3 V8

Removed .
launch bounds Final sdot

Kernel Performance Comparison: Tokens per Second

360.2 362.3 3697 362.2

intrinsic
Kernel th_lon

AMD @ CASTIEL

V9
4x4x4 MFMA

351.1

vi0

V10

Unified Kernel

When controlling for just the
kernel used, V10 Unified
kernel performs worse than
V8/V9?

- However, it empirically
has the best
performance with fusion
and Tunable Op

- Works on both
RDNA/CDNA

AMDZU

together we advance_

v1 - Porting CUDA to HIP C++

LLMs are great at translating and optimizing pre-existing kernels

LLM was able to easily translate CUDA kernel with PTX instructions to a naive C++ HIP kernel
Worked better than HIPIFY-perl and HIPIFY-clang, which gave a myriad of errors
, similar performance to PyTorch

"translate to HIP C++"

G + . Cl*d AMDA1
emini Rocm

AMD @ CASTIEL AMDZ

36 together we advance_

v2 - builtin_amdgcn_sdot4

- Intrinsics and AMD ISA assembly are great places to find speedups
- This code block can be replaced by one intrinsic or assembly call

- Where to find intrinsics
o https://github.com/llvm/llvm-project/blob/main/clang/include/clang/Basic/BuiltinsAMDGPU .def

__device inline int dpda_hip{int a, int b, int c} {
int result = c;
result 4= static cast<int»{reinterpret_cast<const signed char*:(Ra)[@]) * static_cast<int>(reinterpret cast<{const signed char*:{2b}[8]);

IntrInSIC replaces result += static_cast<int>{reinterpret_cast<const signed char*>(&a}[2 * static_cast<int>(reinterpret_cast<const signed char*>(&b)[2]);

entire function

1)

result += static_cast<int>{reinterpret_cast<const signed char*:>(%a)[1]) * static_cast<int>(reinterpret_cast{const signed char*:>(&)[1]);
1)
1)

result += static cast<int»>{reinterpret_cast<const signed char*:>(Ra)[3]) * static_cast<int>(reinterpret_cast<const signed char*:>(2b}[3]);

return result;

#pragma unroll

for {int k2 = 85 k2 < 4; ++k2) acc = _ builtin_amdgcn_sdotd(*{int*)(8A loc[k2 * 4]}, *(int*)({&W loc[k2 * 4]), acc, @);

AMD @ CASTIEL AMDZ

37 together we advance_

https://github.com/llvm/llvm-project/blob/main/clang/include/clang/Basic/BuiltinsAMDGPU.def
https://github.com/llvm/llvm-project/blob/main/clang/include/clang/Basic/BuiltinsAMDGPU.def
https://github.com/llvm/llvm-project/blob/main/clang/include/clang/Basic/BuiltinsAMDGPU.def
https://github.com/llvm/llvm-project/blob/main/clang/include/clang/Basic/BuiltinsAMDGPU.def

v2 - builtin_amdgcn_sdot4

- We saw that we can replace a big chunk of code with one intrinsic, _ builtin_amdgcn_sdot4
- What does this even do?
- Four INT8 dot products into a single INT32

2. Multiple sdot4

Step 2 of our
w2a8 GEMV
kernel

dp4a/sdot4

AMD @ CASTIEL AMDZ

together we advance_

39

Kernel summary

10 different versions

v1: LLM naively translated PTX/CUDA to HIP C++

v2: sdot4 intrinsic

v10: Unified RDNA/CDNA kernel
LLM

ChatGPT 03 to generate optimization ideas, Gemini 2.5 Pro to help implement them
Changes from v1 to v10

Aggregate runtime decreased from 30.85% to 22.44%

Achieved Roofline utilization increased from 29.6% to 74.5%

Wall duration of w2a8 kernels: 784.505 / 204.235 ms = 3.84x speedup

Generated with rocprof --hip-trace python3 generate.py checkpoints on an MI250x

Final kernel

https://github.com/AMD-HPC/bitnet/blob/main/src/hip/v10.cpp

AMD @ CASTIEL

AMDZU

together we advance_

https://github.com/AMD-HPC/bitnet/blob/main/src/hip/v10.cpp
https://github.com/AMD-HPC/bitnet/blob/main/src/hip/v10.cpp
https://github.com/AMD-HPC/bitnet/blob/main/src/hip/v10.cpp
https://github.com/AMD-HPC/bitnet/blob/main/src/hip/v10.cpp

40

Summary: Matching CUDA performance

LLM and | were able to get neck-and-neck CUDA performance with HIP and AMD ISA with ~2 weeks of

pure work
Decode special swizzle pattern
Unpack INT2 weights into INT8 at runtime
Unrolling loops
Removing launch bounds
AMDGPU LLVM intrinsics

__builtin_amdgcn_sdot4 isn't officially documented but LLM found it?
__frep_rn, __shfl _xor

AMD ISA instructions
Use PYTORCH _TUNABLEOP_ENABLED=1 for max performance

Compiler flags seem to have a small impact
Comp”ed with hipcc -03 -fPIC --shared -o libbitnet.so v1@.cpp

Register your kernel with PyTorch to allow more kernel fusion
5-10% speedup

Intrinsics/AMD ISA provide the majority of the speedup
Try to take advantage of them

AMD @ CASTIEL

AMDZU

together we advance_

41

Key Takeaways: PyTorch + HIP

Operations that are not natively support by PyTorch are prime for converting to HIP kernels
For example, w2a8 is not natively supported

First convert your code to pure C++ (no intrinsics) HIP kernels, then repeatedly optimize
AMDGPU LLVM intrinsics and ISA give 80% of the speedup comes for 20% of the effort

Create a custom PyTorch operator for your kernel
Faster runtime as it allows greater kernel fusion for torch.compile()

Use PYTORCH_TUNABLEOP_ ENABLED=1 environment flag for maximum performance

Kernel optimization process could likely be automated
Start LLM on a certain task and repeatedly feed in errors until working solution

Custom HIP kernels use significantly less memory than PyTorch

AMDA

QP+ ROCM

AMD @ CASTIEL AMDZ

together we advance_

42

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The
information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes,
component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS
flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no
obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time
to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS 1S.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF

AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD
SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN
NO EVENT WILLAMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING
FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY CONTENT IS
PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR SOLE DISCRETION AND UNDER NO
CIRCUMSTANCES WILLAMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR ANY
DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD CDNA, AMD ROCm, AMD Instinct, and combinations thereof are
trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of
their respective owners.

LLVM is a trademark of LLVM Foundation
The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board

OCt 13-16, 2025 AMD @ CASTIEL AMDZ\

together we advance_

	Slide 1: Accelerating PyTorch models with LLM augmented HIP kernels
	Slide 2: Agenda
	Slide 3: Intro
	Slide 4: Software Hardware
	Slide 5: Background Information
	Slide 6: Inspiration
	Slide 7: How we used LLMs
	Slide 8: Which LLMs have been used
	Slide 9: Differences between LLMs
	Slide 10: Switching between models
	Slide 11: How to use and find different models
	Slide 12: Prompting
	Slide 13: LLMs + GPU kernels
	Slide 14: Why LLM inference (and not training)
	Slide 15: Recipe for accelerating GPU kernels
	Slide 16: Use case: BitNet Inference
	Slide 17: BitNet b1.58 2B4T
	Slide 18: BitNet b1.58 2B4T
	Slide 19: What is BitNet?
	Slide 20: Adding AMD support
	Slide 21: BitNet Linear Kernel
	Slide 22: PyTorch bindings to HIP kernel
	Slide 23: #1. Compile kernel as shared library and call with ctypes
	Slide 24: #2. Custom C++ PyTorch operator
	Slide 25: BitNet runs locally!
	Slide 26: Matching CUDA/PTX performance
	Slide 27: BitNet inference performance
	Slide 28: Consistent speedups
	Slide 29: Memory Differences
	Slide 30: BitNet w2a8 Kernel The main driver of our speedups
	Slide 31: BitNet w2a8 Kernel
	Slide 32: RDNA support for w2a8
	Slide 33: Unified RDNA/CDNA kernel
	Slide 34: Extra Performance: PyTorch Tunable Op
	Slide 35
	Slide 36: v1 - Porting CUDA to HIP C++
	Slide 37: v2 - __builtin_amdgcn_sdot4
	Slide 38: v2 - __builtin_amdgcn_sdot4
	Slide 39: Kernel summary
	Slide 40: Summary: Matching CUDA performance
	Slide 41: Key Takeaways: PyTorch + HIP
	Slide 42: Disclaimer
	Slide 43

