
Accelerating PyTorch

models with LLM

augmented HIP kernels

Presenter: Giacomo Capodaglio

October 15th, 2025

AMD @ CASTIEL

2 |

1. Background Information

2. Introduction

3. Motivation

4. Recipe for accelerating kernels

- General LLM workflow approach

5. BitNet inference

6. Neck-and-neck performance with CUDA PTX BitNet kernels

7. Key takeaways

Agenda

Generated by ChatGPT

AMD @ CASTIEL

3 |

• Main goal: accelerating PyTorch models with LLM-augmented HIP kernels

• We focus on accelerating Microsoft BitNet, a novel 1.58-bit quantized LLM

o 20k GitHub stars and no current AMD GPU support

• Subjects

o adding AMD support to PyTorch models

o greatly enhancing developer productivity with state-of-the-art LLMs

o setting up a workflow for easy kernel iteration with LLMs

o leveraging PyTorch compile for optimized model execution

o calling HIP kernels in PyTorch with custom C++ operator registration

• Our LLM-augmented HIP kernel and optimizations demonstrate significant performance gains

o Over a 2x speedup over baseline PyTorch on RDNA-based GPUs

o We also highlight the same kernel on an MI300x outperforming H100's using Microsoft's official CUDA+PTX

inference kernels in peak tokens-per-second

Intro

AMD @ CASTIEL

4 |

Software Hardware

RDNA

- 6900XT, Navi3

CDNA

- MI200, MI300

CUDA

- A100, H100

Python 3.12.11

PyTorch 2.7.1

- Wheel respective to ROCm or CUDA

Pip versions

- Documented in /bitnet/pip_freeze.txt

Note: Images from AMD and NVIDIA

AMD @ CASTIEL

5 |

Background Information

PyTorch

- The most popular deep learning framework

PyTorch 2.x

- Introduced torch compile, a JIT Compiler to optimized kernels

- https://pytorch.org/get-started/pytorch-2-x/

Self-Attention

- Allows each token to determine how much to weight other tokens

FlashAttention

- Fast and Memory-Efficient Exact Attention with IO-Awareness

PyTorch usage

over time

Self-Attention

Note:Images from Medium and Jay Alamar

FlashAttention: https://arxiv.org/abs/2205.14135

AMD @ CASTIEL

6 |

Inspiration

- CambridgeIOA @ AMD Hackathon
at EPCC in Edinburgh UK
• "Parallelized affine invariant MCMC sampling"

- Converted PyTorch code to HIP using Claude
LLM

- Resulted in a 5.8x speedup

- Speedup comes from HIP generating fewer
kernels than PyTorch

• PyTorch: Total kernels: 29779

• HIP: Total kernels: 8978

Cambridge's Results

NOTE: PyTorch CUDA means pure PyTorch in the plots

Does this extend to deep
learning models?​

AMD @ CASTIEL

7 |

How we used LLMs

AMD @ CASTIEL

8 |

Which LLMs have been used

- Proprietary

o ChatGPT

▪ 03, o4-mini, o4-mini-high

o Gemini

▪ 2.5 Flash, 2.5 Pro

- Open Source

o DeepSeek-R1 (671B params)

o Qwen3-Coder (405B params)

- We found best results from reasoning models Gemini 2.5 Pro and ChatGPT o3

o Qwen3-Coder is a great free alternative

- Models with more parameters are, in general, more capable

o Due to scaling laws: https://arxiv.org/abs/2001.08361

- Use whichever model is the most powerful

o Find the best LLMs at https://www.vellum.ai/llm-leaderboard/

AMD @ CASTIEL

https://arxiv.org/abs/2001.08361
https://www.vellum.ai/llm-leaderboard/
https://www.vellum.ai/llm-leaderboard/
https://www.vellum.ai/llm-leaderboard/

9 |

Differences between LLMs

- ChatGPT

• Great for generating ideas for optimization or areas to debug

• Doesn't like to paste entire output

• In our experience, Canvas mode is worse than just outputting in the chat

• Will completely change the style of your code

- Gemini

• Very consistent, strong coder

• Great for implementing the code you tell it to write

• Will not diverge from your coding style

• Not lazy, will paste entire files

- Open-source models

• In our experience they are less capable at coding

• Very hard to out compete large (1T+ param) proprietary models

• Extremely cheap and fast for simple tasks

• Qwen3-Coder can compete with proprietary models

AMD @ CASTIEL

10 |

Switching between models

- Sometimes we found that switching between ChatGPT and Gemini chats could unlock the benefits of

both models

- Models can get stuck in a repetitive loop

• Having fresh context can help

- Example

• Generate optimization ideas with ChatGPT

• Decide which one to implement

• Prompt Gemini to start that optimization

Generated by ChatGPT

AMD @ CASTIEL

11 |

How to use and find different models

- Where to find models

• Gemini: gemini.google.com

• ChatGPT: chatgpt.com

• Qwen: chat.qwen.ai

- Open Source

• HuggingFace

• Ollama

• LM Studio

Hugging Face Gemini Qwen ChatGPT LM Studio Ollama

Note: logos from company front pages

AMD @ CASTIEL

12 |

Prompting

- We have used very simple prompting techniques

o "optimize this kernel for ___ "

o "please fix this error"

- However, you must be very specific in detailing the changes you want made

o Iterative, small changes work better than large refactors

- Context lengths are becoming quite large, take advantage of them

o Paste entire documentation and source code files into your chat

o rocminfo output, console error logs

o The more the better

- For fast iteration time, tell it to print the entire function or source file

o Make sure to verify changes

o Side-by-side git diffs are extremely useful for this type of work

- One-shot solutions rarely work. Usually within 10 prompts you can resolve an error

o If taking longer than this, retry in a new tab

AMD @ CASTIEL

13 |

LLMs + GPU kernels

AMD @ CASTIEL

14 |

Why LLM inference (and not training)

• Low(er) hardware requirements

o Don’t need to store optimizers or the backward pass in

RAM, resulting in a much smaller memory footprint

• Easily ensure accuracy with LLMs – does the output

make sense?

• With proper optimization, we can run LLMs on a

Radeon GPU, and possibly on a mini-pc or consumer

laptop

• Kernels are usually short (1000 lines of code)

o Perfect for pasting into your LLM

• End result: chat with LLM on your local machine!

Note: image from Reddit

AMD @ CASTIEL

15 |

Recipe for accelerating GPU kernels

Ideally this process can be largely automated

General LLM workflow

1. Set up boilerplate and minimum-viable working solution

2. Ask LLM to optimize

3. Compile and run file

4. Ensure correct output.

o Does this match the correct, unoptimized output?

5. If error, feed back to LLM

6. Save working kernel

7. Generate rocprof stats

8. Feed LLM context the rocprof stats and working kernel

9. Iterate!

The key is properly

guiding the LLM to

success

• Useful context

• Expertise in

knowing what to

optimize

AMD @ CASTIEL

16 |

Use case: BitNet Inference

AMD @ CASTIEL

17 |

BitNet b1.58 2B4T

AMD @ CASTIEL

18 |

BitNet b1.58 2B4T

Ternary weights {-1,0,1}
- log_2(3) ~= 1.58

Trained on 4

Trillion tokens

2 billion parameters

AMD @ CASTIEL

19 |

What is BitNet?
• TLDR; "a super efficient LLaMa-style transformer"

o Replaces LLaMa linear layer

o 2B parameters, trained on 4T tokens

• Very efficient due to "1.58 bit" weights

o {-1,0,1} encoded as INT2 instead of FP16/FP32

o log_2(3) ~= 1.58

• Optimized inference code only has CUDA support

o CUDA/PTX kernel replaces torch.nn.linear

• Open-source LLM developed by Microsoft

o 20k stars on GitHub

o No AMD support!

o Paper: https://arxiv.org/abs/2402.17764

BitNet energy

efficiency

compared to

LLaMa

BitNet kernel containing PTX

AMD @ CASTIEL

https://arxiv.org/abs/2402.17764

20 |

- Enhanced official code

- Fixed eot_id bug, CUDA compile bug, added --pytorch flag

- Set up HIP kernel bindings

- Resolved Meta Xformers library incompatibility

- No support for flash attention (flash.FwOp) backend on ROCm

- ROCm installation provides composable kernel operator at the moment

Adding AMD support

NVIDIA version, fast

ROCm version, slower

AMD @ CASTIEL

21 |

BitNet Linear Kernel
• w2a8 GEMV

• 2-bit weights × 8-bit activations

• Super optimized linear transformation
• Sixteen packed INT2 weights into a single INT32
• INT2 weights in 16×32 blocks with interleaved

swizzle pattern for coalesced memory accesses

• Replaces torch.nn.Linear

How the w2a8 GEMV works:

dp4a/sdot4

Special interleaving pattern for

packed INT2 weights __shfl

1. Decode swizzled data to int8

2. Multiple sdot4

3. Shuffle down accumulate

Note: diagram from

https://developer.nvidia.com/blog/mixe

d-precision-programming-cuda-8/

Note: diagram from Science Direct

AMD @ CASTIEL

22 |

PyTorch bindings to HIP kernel

1. Compile kernel as shared library and call with ctypes

▪ Little to no set up

▪ Quick for experimentation

2. Custom C++ PyTorch operator

▪ Fast, allows for greater fusion

• Dynamo/AOTAutograd can reason about shapes/dtypes for the custom HIP

operator without tracing into it

▪ We saw 5%-7% end-to-end speedups over method #1

▪ Takes time to set up

AMD @ CASTIEL

23 |

#1. Compile kernel as shared library and call with ctypes

1. Create a dispatch function in .hip

2. Define your kernel in .h

3. Compile as a shared library

4. Link shared library to PyTorch with ctypes

AMD @ CASTIEL

24 |

#2. Custom C++ PyTorch operator

1. Create directory to hold operator

o /bitnet_op

2. Create .hip file with PyTorch bindings

3. Create setup.py

4. uv pip install -e . --no-build-isolation

• export PYTORCH_ROCM_ARCH=gfx942

5. Move .so library from /build to /bitnet_op

6. Import custom op folder into PyTorch code

PyTorch tutorial:

https://docs.pytorch.org

/tutorials/advanced/cpp

_custom_ops.html

setup.py

Register with

PyTorch inside

kernel.hip

Custom op folder

AMD @ CASTIEL

25 |

• Run the full 2B BitNet on your local ROCm machine

• Need >= 8GB GPU ram

• Github Repository

• Currently internal

• github.com/AMD-HPC/bitnet/

• RDNA and CDNA support

BitNet runs locally!

Entire setup

Chat with model!

github.com/AMD-HPC/bitnet/blob/main/setup.sh

Flags
--interactive
--chat_format
--pytorch

AMD @ CASTIEL

http://../../00-01%20Python_AI%20Presentations/github.com/AMD-HPC/bitnet
http://../../00-01%20Python_AI%20Presentations/github.com/AMD-HPC/bitnet
http://../../00-01%20Python_AI%20Presentations/github.com/AMD-HPC/bitnet
http://../../00-01%20Python_AI%20Presentations/github.com/AMD-HPC/bitnet
http://../../00-01%20Python_AI%20Presentations/github.com/AMD-HPC/bitnet
http://../../00-01%20Python_AI%20Presentations/github.com/AMD-HPC/bitnet
../../00-01%20Python_AI%20Presentations/github.com/AMD-HPC/bitnet/blob/main/setup.sh
../../00-01%20Python_AI%20Presentations/github.com/AMD-HPC/bitnet/blob/main/setup.sh
../../00-01%20Python_AI%20Presentations/github.com/AMD-HPC/bitnet/blob/main/setup.sh

26 |

Matching CUDA/PTX performance

AMD @ CASTIEL

27 |

BitNet inference performance

Measured in peak tokens per second (tok/s)

- Human reading speed: 5-7 tok/s

- Prompt: “what is an eigenvalue”

- 128 output tokens

- Measured on MI300x

Three different types of models to test

- PyTorch

o AMD and NVIDIA hardware

- PyTorch + CUDA/PTX w2a8 kernel

o NVIDIA hardware

- PyTorch + HIP w2a8 kernel

o AMD hardware

Llama 3 tokenizer example

Note: logos from company front pages

AMD @ CASTIEL

28 |

Consistent

speedups

- End-to-end speedups

over PyTorch

o MI300x: 1.47x

o MI300a: 1.43x

o MI250x: 1.98x

o 6900XT: 2.28x

- Trend

o Larger speedups

for smaller GPUs

o MI300x faster than

H100!

AMD @ CASTIEL

29 |

Memory Differences

Memory dropped from

11.43 GB to 7.64GB

• ~33% decrease

AMD @ CASTIEL

30 |

BitNet w2a8 Kernel
The main driver of our speedups

AMD @ CASTIEL

31 |

BitNet w2a8 Kernel

- In total, we created 10 different versions of this kernel

- We will be focusing on three kernels:

o V1: Converted from CUDA to pure C++ HIP

o V2: AMD intrinsic builtin

o V10: Unified RDNA/CDNA kernel

- Code soon to make public (now in private repo)

o https://github.com/AMD-HPC/bitnet/tree/main/src/hip

AMD @ CASTIEL

https://github.com/AMD-HPC/bitnet/tree/main/src/hip
https://github.com/AMD-HPC/bitnet/tree/main/src/hip
https://github.com/AMD-HPC/bitnet/tree/main/src/hip
https://github.com/AMD-HPC/bitnet/tree/main/src/hip

32 |

RDNA support for w2a8

• As a reminder, AMD provides two different ISAs

• CDNA (Compute DNA), used in datacenter GPUs

• RDNA (Radeon DNA), used in consumer GPUs

• Adding RDNA support requires two changes

• Change #1

• Problem: Xformers CK backend for memory efficient attention is not supported on RDNA

• Solution: Rewrite the Attention mechanism from scratch in pure PyTorch
▪ Results in two files: rdna_model.py and rdna_generate.py

• Change #2

• Problem: __builtin_amdgcn_sdot4 is only available on CDNA

• Solution: A unified RDNA/CDNA kernel. Next slide...

AMD @ CASTIEL

33 |

Unified RDNA/CDNA kernel

• __builtin_amdgcn_sdot4 intrinsic isn't

portable

o LLVM target must be 'mai-insts'

• Assembly dump

o Compiles to V_DOT4C_I32_I8 instructions

▪ Not available in RDNA ISA

• However, RDNA has V_DOT4_I32_IU8

o An alias for V_DOT4_I32_I8

o Or, V_DOT4C_I32_I8 without an

accumulator

• Result: same kernels works on both

RDNA/CDNA!

Unified kernel

inline assembly

CDNA

RDNA

https://github.com/AMD-HPC/bitnet/blob/main/src/hip/v10.cppAMD @ CASTIEL

34 |

Extra Performance: PyTorch Tunable Op

- Environment flag to squeeze extra juice out of AMD GPUs

- Profiles different versions of our GEMMs and then runs the

fastest

- We see noticeable boosts in runtime speedups when enabling

- Some errors when using on RDNA

- More information

- https://docs.pytorch.org/docs/stable/cuda.tunable.html

• https://rocm.blogs.amd.com/artificial-intelligence/pytorch-

tunableop/README.html

Striped bars mean

Tunable Op Enabled

to
k
s
/s

AMD @ CASTIEL

https://docs.pytorch.org/docs/stable/cuda.tunable.html
https://docs.pytorch.org/docs/stable/cuda.tunable.html
https://docs.pytorch.org/docs/stable/cuda.tunable.html
https://docs.pytorch.org/docs/stable/cuda.tunable.html
https://docs.pytorch.org/docs/stable/cuda.tunable.html
https://docs.pytorch.org/docs/stable/cuda.tunable.html
https://docs.pytorch.org/docs/stable/cuda.tunable.html
https://docs.pytorch.org/docs/stable/cuda.tunable.html

35 |

v1
PTX -> pure C++

V2
__builtin_amdgcn_sdot4

v3
Removed
launch bounds

V9
4x4x4 MFMA

v0
PyTorch

V8
Final sdot

V10
Unified Kernel

When controlling for just the

kernel used, V10 Unified

kernel performs worse than

V8/V9?

- However, it empirically

has the best

performance with fusion

and Tunable Op

- Works on both

RDNA/CDNA

AMD @ CASTIEL

36 |

v1 - Porting CUDA to HIP C++

• LLMs are great at translating and optimizing pre-existing kernels

• LLM was able to easily translate CUDA kernel with PTX instructions to a naïve C++ HIP kernel

o Worked better than HIPIFY-perl and HIPIFY-clang, which gave a myriad of errors

o ~2x slower than CUDA version, similar performance to PyTorch

"translate to HIP C++"

AMD @ CASTIEL

37 |

v2 - __builtin_amdgcn_sdot4

- Intrinsics and AMD ISA assembly are great places to find speedups

- This code block can be replaced by one intrinsic or assembly call

- Where to find intrinsics
o https://github.com/llvm/llvm-project/blob/main/clang/include/clang/Basic/BuiltinsAMDGPU.def

Intrinsic replaces

entire function

AMD @ CASTIEL

https://github.com/llvm/llvm-project/blob/main/clang/include/clang/Basic/BuiltinsAMDGPU.def
https://github.com/llvm/llvm-project/blob/main/clang/include/clang/Basic/BuiltinsAMDGPU.def
https://github.com/llvm/llvm-project/blob/main/clang/include/clang/Basic/BuiltinsAMDGPU.def
https://github.com/llvm/llvm-project/blob/main/clang/include/clang/Basic/BuiltinsAMDGPU.def

38 |

v2 - __builtin_amdgcn_sdot4

- We saw that we can replace a big chunk of code with one intrinsic, __builtin_amdgcn_sdot4

- What does this even do?

- Four INT8 dot products into a single INT32

dp4a/sdot4

2. Multiple sdot4

Step 2 of our

w2a8 GEMV

kernel

AMD @ CASTIEL

39 |

Kernel summary

o 10 different versions

o v1: LLM naively translated PTX/CUDA to HIP C++

o v2: sdot4 intrinsic

o v10: Unified RDNA/CDNA kernel

o LLM

o ChatGPT o3 to generate optimization ideas, Gemini 2.5 Pro to help implement them

o Changes from v1 to v10

o Aggregate runtime decreased from 30.85% to 22.44%

o Achieved Roofline utilization increased from 29.6% to 74.5%

o Wall duration of w2a8 kernels: 784.505 / 204.235 ms = 3.84x speedup

o Generated with rocprof --hip-trace python3 generate.py checkpoints on an MI250x

o Final kernel
o https://github.com/AMD-HPC/bitnet/blob/main/src/hip/v10.cpp

AMD @ CASTIEL

https://github.com/AMD-HPC/bitnet/blob/main/src/hip/v10.cpp
https://github.com/AMD-HPC/bitnet/blob/main/src/hip/v10.cpp
https://github.com/AMD-HPC/bitnet/blob/main/src/hip/v10.cpp
https://github.com/AMD-HPC/bitnet/blob/main/src/hip/v10.cpp

40 |

Summary: Matching CUDA performance

• LLM and I were able to get neck-and-neck CUDA performance with HIP and AMD ISA with ~2 weeks of

pure work

o Decode special swizzle pattern

o Unpack INT2 weights into INT8 at runtime

o Unrolling loops

o Removing launch bounds

o AMDGPU LLVM intrinsics
• __builtin_amdgcn_sdot4 isn't officially documented but LLM found it?

• __frcp_rn, __shfl_xor

o AMD ISA instructions

• Use PYTORCH_TUNABLEOP_ENABLED=1 for max performance

• Compiler flags seem to have a small impact

o compiled with

• Register your kernel with PyTorch to allow more kernel fusion

o 5-10% speedup

• Intrinsics/AMD ISA provide the majority of the speedup

o Try to take advantage of them

AMD @ CASTIEL

41 |

- Operations that are not natively support by PyTorch are prime for converting to HIP kernels

o For example, w2a8 is not natively supported

- First convert your code to pure C++ (no intrinsics) HIP kernels, then repeatedly optimize

- AMDGPU LLVM intrinsics and ISA give 80% of the speedup comes for 20% of the effort

- Create a custom PyTorch operator for your kernel

o Faster runtime as it allows greater kernel fusion for torch.compile()

- Use PYTORCH_TUNABLEOP_ENABLED=1 environment flag for maximum performance

- Kernel optimization process could likely be automated

o Start LLM on a certain task and repeatedly feed in errors until working solution

- Custom HIP kernels use significantly less memory than PyTorch

Key Takeaways: PyTorch + HIP

+

AMD @ CASTIEL

42 |

[Public]

Disclaimer
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The

information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes,

component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS

flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no

obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time

to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF

AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD

SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN

NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING

FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY CONTENT IS

PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR SOLE DISCRETION AND UNDER NO

CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR ANY

DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD CDNA, AMD ROCm, AMD Instinct, and combinations thereof are

trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of

their respective owners.

LLVM is a trademark of LLVM Foundation

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board

OCt 13-16, 2025 AMD @ CASTIEL

	Slide 1: Accelerating PyTorch models with LLM augmented HIP kernels
	Slide 2: Agenda
	Slide 3: Intro
	Slide 4: Software Hardware
	Slide 5: Background Information
	Slide 6: Inspiration
	Slide 7: How we used LLMs
	Slide 8: Which LLMs have been used
	Slide 9: Differences between LLMs
	Slide 10: Switching between models
	Slide 11: How to use and find different models
	Slide 12: Prompting
	Slide 13: LLMs + GPU kernels
	Slide 14: Why LLM inference (and not training)
	Slide 15: Recipe for accelerating GPU kernels
	Slide 16: Use case: BitNet Inference
	Slide 17: BitNet b1.58 2B4T
	Slide 18: BitNet b1.58 2B4T
	Slide 19: What is BitNet?
	Slide 20: Adding AMD support
	Slide 21: BitNet Linear Kernel
	Slide 22: PyTorch bindings to HIP kernel
	Slide 23: #1. Compile kernel as shared library and call with ctypes
	Slide 24: #2. Custom C++ PyTorch operator
	Slide 25: BitNet runs locally!
	Slide 26: Matching CUDA/PTX performance
	Slide 27: BitNet inference performance
	Slide 28: Consistent speedups
	Slide 29: Memory Differences
	Slide 30: BitNet w2a8 Kernel The main driver of our speedups
	Slide 31: BitNet w2a8 Kernel
	Slide 32: RDNA support for w2a8
	Slide 33: Unified RDNA/CDNA kernel
	Slide 34: Extra Performance: PyTorch Tunable Op
	Slide 35
	Slide 36: v1 - Porting CUDA to HIP C++
	Slide 37: v2 - __builtin_amdgcn_sdot4
	Slide 38: v2 - __builtin_amdgcn_sdot4
	Slide 39: Kernel summary
	Slide 40: Summary: Matching CUDA performance
	Slide 41: Key Takeaways: PyTorch + HIP
	Slide 42: Disclaimer
	Slide 43

