
Accelerating PyTorch

models with LLM 

augmented HIP kernels

Presenter: Giacomo Capodaglio

October 15th, 2025

AMD @ CASTIEL



2 |

1. Background Information

2. Introduction

3. Motivation

4. Recipe for accelerating kernels

- General LLM workflow approach

5. BitNet inference

6. Neck-and-neck performance with CUDA PTX BitNet kernels

7. Key takeaways

Agenda

Generated by ChatGPT

AMD @ CASTIEL



3 |

• Main goal: accelerating PyTorch models with LLM-augmented HIP kernels

• We focus on accelerating Microsoft BitNet, a novel 1.58-bit quantized LLM

o 20k GitHub stars and no current AMD GPU support

• Subjects

o adding AMD support to PyTorch models

o greatly enhancing developer productivity with state-of-the-art LLMs

o setting up a workflow for easy kernel iteration with LLMs

o leveraging PyTorch compile for optimized model execution

o calling HIP kernels in PyTorch with custom C++ operator registration

• Our LLM-augmented HIP kernel and optimizations demonstrate significant performance gains

o Over a 2x speedup over baseline PyTorch on RDNA-based GPUs

o We also highlight the same kernel on an MI300x outperforming H100's using Microsoft's official CUDA+PTX 

inference kernels in peak tokens-per-second

Intro

AMD @ CASTIEL
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Software                       Hardware

RDNA

- 6900XT, Navi3

CDNA

- MI200, MI300

CUDA

- A100, H100

Python 3.12.11

PyTorch 2.7.1

- Wheel respective to ROCm or CUDA

Pip versions

- Documented in /bitnet/pip_freeze.txt

Note: Images from AMD and NVIDIA

AMD @ CASTIEL
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Background Information

PyTorch

- The most popular deep learning framework

PyTorch 2.x

- Introduced torch compile, a JIT Compiler to optimized kernels

- https://pytorch.org/get-started/pytorch-2-x/

Self-Attention

- Allows each token to determine how much to weight other tokens

FlashAttention

-   Fast and Memory-Efficient Exact Attention with IO-Awareness

PyTorch usage 

over time

Self-Attention

Note:Images from Medium and Jay Alamar

FlashAttention: https://arxiv.org/abs/2205.14135

AMD @ CASTIEL
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Inspiration

- CambridgeIOA @ AMD Hackathon
at EPCC in Edinburgh UK
• "Parallelized affine invariant MCMC sampling"

- Converted PyTorch code to HIP using Claude 
LLM

- Resulted in a 5.8x speedup

- Speedup comes from HIP generating fewer 
kernels than PyTorch

• PyTorch: Total kernels: 29779

• HIP:        Total kernels: 8978

Cambridge's Results

NOTE: PyTorch CUDA means pure PyTorch in the plots

Does this extend to deep 
learning models?​

AMD @ CASTIEL
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How we used LLMs
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Which LLMs have been used 

- Proprietary

o ChatGPT

▪ 03, o4-mini, o4-mini-high

o Gemini

▪ 2.5 Flash, 2.5 Pro

- Open Source

o DeepSeek-R1 (671B params)

o Qwen3-Coder (405B params)

- We found best results from reasoning models Gemini 2.5 Pro and ChatGPT o3

o Qwen3-Coder is a great free alternative

- Models with more parameters are, in general, more capable

o Due to scaling laws: https://arxiv.org/abs/2001.08361

- Use whichever model is the most powerful 

o Find the best LLMs at https://www.vellum.ai/llm-leaderboard/

AMD @ CASTIEL
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Differences between LLMs

- ChatGPT 

• Great for generating ideas for optimization or areas to debug

• Doesn't like to paste entire output

• In our experience, Canvas mode is worse than just outputting in the chat

• Will completely change the style of your code

- Gemini

• Very consistent, strong coder

• Great for implementing the code you tell it to write

• Will not diverge from your coding style 

• Not lazy, will paste entire files

- Open-source models

• In our experience they are less capable at coding

• Very hard to out compete large (1T+ param) proprietary models

• Extremely cheap and fast for simple tasks

• Qwen3-Coder can compete with proprietary models

AMD @ CASTIEL
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Switching between models

- Sometimes we found that switching between ChatGPT and Gemini chats could unlock the benefits of 

both models

- Models can get stuck in a repetitive loop

• Having fresh context can help

- Example

• Generate optimization ideas with ChatGPT

• Decide which one to implement

• Prompt Gemini to start that optimization

Generated by ChatGPT

AMD @ CASTIEL
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How to use and find different models

- Where to find models

• Gemini: gemini.google.com

• ChatGPT: chatgpt.com

• Qwen: chat.qwen.ai

- Open Source

• HuggingFace

• Ollama

• LM Studio

Hugging Face Gemini Qwen ChatGPT LM Studio Ollama

Note: logos from company front pages

AMD @ CASTIEL
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Prompting

- We have used very simple prompting techniques

o "optimize this kernel for ___ "

o "please fix this error"

- However, you must be very specific in detailing the changes you want made

o Iterative, small changes work better than large refactors

- Context lengths are becoming quite large, take advantage of them

o Paste entire documentation and source code files into your chat

o rocminfo output, console error logs

o The more the better

- For fast iteration time, tell it to print the entire function or source file

o Make sure to verify changes

o Side-by-side git diffs are extremely useful for this type of work 

- One-shot solutions rarely work. Usually within 10 prompts you can resolve an error

o If taking longer than this, retry in a new tab

AMD @ CASTIEL
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LLMs + GPU kernels
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Why LLM inference (and not training)

• Low(er) hardware requirements

o Don’t need to store optimizers or the backward pass in 

RAM, resulting in a much smaller memory footprint

• Easily ensure accuracy with LLMs – does the output 

make sense?

• With proper optimization, we can run LLMs on a 

Radeon GPU, and possibly on a mini-pc or consumer 

laptop

• Kernels are usually short (1000 lines of code)

o Perfect for pasting into your LLM

• End result: chat with LLM on your local machine!

Note: image from Reddit

AMD @ CASTIEL
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Recipe for accelerating GPU kernels

Ideally this process can be largely automated

General LLM workflow

1. Set up boilerplate and minimum-viable working solution

2. Ask LLM to optimize

3. Compile and run file

4. Ensure correct output. 

o Does this match the correct, unoptimized output?

5. If error, feed back to LLM

6. Save working kernel

7. Generate rocprof stats

8. Feed LLM context the rocprof stats and working kernel

9. Iterate!

The key is properly 

guiding the LLM to 

success

• Useful context

• Expertise in 

knowing what to 

optimize

AMD @ CASTIEL
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Use case: BitNet Inference
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17 |

BitNet b1.58 2B4T

AMD @ CASTIEL
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BitNet b1.58 2B4T

Ternary weights {-1,0,1}
- log_2(3) ~= 1.58

Trained on 4 

Trillion tokens

2 billion parameters

AMD @ CASTIEL
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What is BitNet?
• TLDR; "a super efficient LLaMa-style transformer"

o Replaces LLaMa linear layer

o 2B parameters, trained on 4T tokens

• Very efficient due to "1.58 bit" weights 

o {-1,0,1} encoded as INT2 instead of FP16/FP32

o log_2(3) ~= 1.58

• Optimized inference code only has CUDA support

o CUDA/PTX kernel replaces torch.nn.linear

• Open-source LLM developed by Microsoft

o 20k stars on GitHub

o No AMD support!

o Paper: https://arxiv.org/abs/2402.17764

BitNet energy 

efficiency 

compared to 

LLaMa

BitNet kernel containing PTX

AMD @ CASTIEL
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- Enhanced official code

- Fixed eot_id bug, CUDA compile bug, added --pytorch flag

- Set up HIP kernel bindings

- Resolved Meta Xformers library incompatibility

- No support for flash attention (flash.FwOp) backend on ROCm

- ROCm installation provides composable kernel operator at the moment

Adding AMD support

NVIDIA version, fast

ROCm version, slower

AMD @ CASTIEL



21 |

BitNet Linear Kernel
• w2a8 GEMV

• 2-bit weights × 8-bit activations

• Super optimized linear transformation
• Sixteen packed INT2 weights into a single INT32
• INT2 weights in 16×32 blocks with interleaved 

swizzle pattern for coalesced memory accesses

• Replaces torch.nn.Linear

How the w2a8 GEMV works:

dp4a/sdot4

Special interleaving pattern for 

packed INT2 weights __shfl

1. Decode swizzled data to int8

2. Multiple sdot4

3. Shuffle down accumulate

Note: diagram from 

https://developer.nvidia.com/blog/mixe

d-precision-programming-cuda-8/

Note: diagram from Science Direct

AMD @ CASTIEL
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PyTorch bindings to HIP kernel

1. Compile kernel as shared library and call with ctypes

▪ Little to no set up

▪ Quick for experimentation

2. Custom C++ PyTorch operator

▪ Fast, allows for greater fusion

• Dynamo/AOTAutograd can reason about shapes/dtypes for the custom HIP 

operator without tracing into it

▪ We saw 5%-7% end-to-end speedups over method #1

▪ Takes time to set up

AMD @ CASTIEL
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#1. Compile kernel as shared library and call with ctypes 

1. Create a dispatch function in .hip

2. Define your kernel in .h

3. Compile as a shared library

4. Link shared library to PyTorch with ctypes

AMD @ CASTIEL
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#2. Custom C++ PyTorch operator 

1. Create directory to hold operator

o /bitnet_op

2. Create .hip file with PyTorch bindings

3. Create setup.py

4. uv pip install -e . --no-build-isolation

• export PYTORCH_ROCM_ARCH=gfx942

5. Move .so library from /build to /bitnet_op

6. Import custom op folder into PyTorch code

PyTorch tutorial: 

https://docs.pytorch.org

/tutorials/advanced/cpp

_custom_ops.html

setup.py

Register with 

PyTorch inside

kernel.hip

Custom op folder

AMD @ CASTIEL
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• Run the full 2B BitNet on your local ROCm machine

• Need >= 8GB GPU ram

• Github Repository 

• Currently internal

• github.com/AMD-HPC/bitnet/

• RDNA and CDNA support

BitNet runs locally!

Entire setup

Chat with model!

github.com/AMD-HPC/bitnet/blob/main/setup.sh

Flags
--interactive
--chat_format
--pytorch

AMD @ CASTIEL
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Matching CUDA/PTX performance
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BitNet inference performance

Measured in peak tokens per second (tok/s)

- Human reading speed: 5-7 tok/s 

- Prompt: “what is an eigenvalue”

- 128 output tokens

- Measured on MI300x

Three different types of models to test

- PyTorch

o AMD and NVIDIA hardware

- PyTorch + CUDA/PTX w2a8 kernel

o NVIDIA hardware

- PyTorch + HIP w2a8 kernel

o AMD hardware

Llama 3 tokenizer example

Note: logos from company front pages

AMD @ CASTIEL
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Consistent 

speedups

- End-to-end speedups 

over PyTorch

o MI300x: 1.47x

o MI300a: 1.43x

o MI250x: 1.98x

o 6900XT: 2.28x

- Trend

o Larger speedups 

for smaller GPUs

o MI300x faster than 

H100!

AMD @ CASTIEL
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Memory Differences

Memory dropped from 

11.43 GB to 7.64GB 

• ~33% decrease

AMD @ CASTIEL
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BitNet w2a8 Kernel
The main driver of our speedups

AMD @ CASTIEL
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BitNet w2a8 Kernel

- In total, we created 10 different versions of this kernel

- We will be focusing on three kernels:

o V1: Converted from CUDA to pure C++ HIP

o V2: AMD intrinsic builtin

o V10: Unified RDNA/CDNA kernel

- Code soon to make public (now in private repo)

o https://github.com/AMD-HPC/bitnet/tree/main/src/hip

AMD @ CASTIEL
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RDNA support for w2a8

• As a reminder, AMD provides two different ISAs

• CDNA (Compute DNA), used in datacenter GPUs

• RDNA (Radeon DNA), used in consumer GPUs

• Adding RDNA support requires two changes

• Change #1

• Problem: Xformers CK backend for memory efficient attention is not supported on RDNA

• Solution: Rewrite the Attention mechanism from scratch in pure PyTorch 
▪ Results in two files: rdna_model.py and rdna_generate.py

• Change #2

• Problem: __builtin_amdgcn_sdot4  is only available on CDNA 

• Solution: A unified RDNA/CDNA kernel. Next slide...

AMD @ CASTIEL
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Unified RDNA/CDNA kernel

• __builtin_amdgcn_sdot4 intrinsic isn't 

portable

o LLVM target must be 'mai-insts'

•  Assembly dump 

o Compiles to V_DOT4C_I32_I8 instructions

▪ Not available in RDNA ISA

• However, RDNA has V_DOT4_I32_IU8

o An alias for V_DOT4_I32_I8

o Or, V_DOT4C_I32_I8 without an 

accumulator

• Result: same kernels works on both 

RDNA/CDNA!

Unified kernel

inline assembly 

CDNA

RDNA

https://github.com/AMD-HPC/bitnet/blob/main/src/hip/v10.cppAMD @ CASTIEL
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Extra Performance: PyTorch Tunable Op

- Environment flag to squeeze extra juice out of AMD GPUs

- Profiles different versions of our GEMMs and then runs the 

fastest

- We see noticeable boosts in runtime speedups when enabling

- Some errors when using on RDNA

- More information

- https://docs.pytorch.org/docs/stable/cuda.tunable.html

• https://rocm.blogs.amd.com/artificial-intelligence/pytorch-

tunableop/README.html

Striped bars mean 

Tunable Op Enabled

to
k
s
/s

AMD @ CASTIEL
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v1
PTX -> pure C++

V2
__builtin_amdgcn_sdot4

v3
Removed 
launch bounds

V9
4x4x4 MFMA

v0
PyTorch

V8
Final sdot

V10
Unified Kernel

When controlling for just the 

kernel used, V10 Unified 

kernel performs worse than 

V8/V9?

- However, it empirically 

has the best 

performance with fusion 

and Tunable Op

- Works on both 

RDNA/CDNA

AMD @ CASTIEL
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v1 - Porting CUDA to HIP C++

• LLMs are great at translating and optimizing pre-existing kernels

• LLM was able to easily translate CUDA kernel with PTX instructions to a naïve C++ HIP kernel

o Worked better than HIPIFY-perl and HIPIFY-clang, which gave a myriad of errors

o ~2x slower than CUDA version, similar performance to PyTorch

"translate to HIP C++"

AMD @ CASTIEL
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v2 - __builtin_amdgcn_sdot4 

- Intrinsics and AMD ISA assembly are great places to find speedups

- This code block can be replaced by one intrinsic or assembly call

- Where to find intrinsics
o https://github.com/llvm/llvm-project/blob/main/clang/include/clang/Basic/BuiltinsAMDGPU.def

Intrinsic replaces 

entire function

AMD @ CASTIEL
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v2 - __builtin_amdgcn_sdot4 

- We saw that we can replace a big chunk of code with one intrinsic, __builtin_amdgcn_sdot4  

- What does this even do?

- Four INT8 dot products into a single INT32

dp4a/sdot4

2. Multiple sdot4

Step 2 of our 

w2a8 GEMV 

kernel

AMD @ CASTIEL
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Kernel summary

o 10 different versions

o v1: LLM naively translated PTX/CUDA to HIP C++

o v2: sdot4 intrinsic

o v10: Unified RDNA/CDNA kernel

o LLM 

o ChatGPT o3 to generate optimization ideas, Gemini 2.5 Pro to help implement them

o Changes from v1 to v10

o Aggregate runtime decreased from 30.85% to 22.44% 

o Achieved Roofline utilization increased from 29.6% to 74.5%

o Wall duration of w2a8 kernels: 784.505 / 204.235 ms = 3.84x speedup

o Generated with rocprof --hip-trace python3 generate.py checkpoints on an MI250x

o Final kernel
o https://github.com/AMD-HPC/bitnet/blob/main/src/hip/v10.cpp

AMD @ CASTIEL
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Summary: Matching CUDA performance

• LLM and I were able to get neck-and-neck CUDA performance with HIP and AMD ISA with ~2 weeks of 

pure work

o Decode special swizzle pattern

o Unpack INT2 weights into INT8 at runtime

o Unrolling loops

o Removing launch bounds

o AMDGPU LLVM intrinsics
• __builtin_amdgcn_sdot4 isn't officially documented but LLM found it?

• __frcp_rn, __shfl_xor

o AMD ISA instructions

• Use PYTORCH_TUNABLEOP_ENABLED=1 for max performance

• Compiler flags seem to have a small impact

o compiled with

• Register your kernel with PyTorch to allow more kernel fusion

o 5-10% speedup

• Intrinsics/AMD ISA provide the majority of the speedup

o Try to take advantage of them 

AMD @ CASTIEL
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- Operations that are not natively support by PyTorch are prime for converting to HIP kernels

o For example, w2a8 is not natively supported

- First convert your code to pure C++ (no intrinsics) HIP kernels, then repeatedly optimize 

- AMDGPU LLVM intrinsics and ISA give 80% of the speedup comes for 20% of the effort

- Create a custom PyTorch operator for your kernel 

o Faster runtime as it allows greater kernel fusion for torch.compile() 

- Use PYTORCH_TUNABLEOP_ENABLED=1 environment flag for maximum performance 

- Kernel optimization process could likely be automated 

o Start LLM on a certain task and repeatedly feed in errors until working solution 

- Custom HIP kernels use significantly less memory than PyTorch

Key Takeaways: PyTorch + HIP

+

AMD @ CASTIEL
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