Advanced OpenMP®

Presenter: Bob Robey
AMD @ Tsukuba University
Oct 21-23, 2025

AMD 1

together we advance_

[Public]

Advanced 0penMP® 1. Region Concept

2. Memory Management

Memory Management Capabilities
Optimizing Memory Movement Between Host and Device

3. Kernel Resources and Optimization

AMDZ1

together we advance_

[Public]

Introduction
With GPU programming we have two considerations that must be addressed

1. Memory and Data Management
1. Between the host and the device
2. From GPU main memory to the Compute Unit or Device

2. Code Execution
- Managing compute resources
- Which device to execute operation on
- Expression of parallelism

- We'll tackle how to address each of these considerations in the following slides and exercises

AMDZ1

3 together we advance_

[Public]

OpenMP® heavily relies on region concept

- What are regions?
- A part of the code where a pragma applies
Default is the normal “block” of code following the directive
- Can be specified by { }s in C or an end directive in Fortran

- What kinds of regions are there?
- Data regions — data is on the GPU in this code region
- Target regions — code in region is executed on the GPU
- Parallel regions — code in region is executed in parallel

- Original OpenMP specification only had structured data regions
How to handle Object-oriented code and other patterns?

=» Later version of the standard added unstructured data region concept

AMDZ1

4 together we advance_

[Public]

Structured vs Unstructured Data regions

Structured data region Unstructured data region

#pragma omp target data map(tofrom: x[@:n]) class myclass (int n) {
{ myclass(){
#pragma omp target teams distribute parallel for simd x=new double[n];

for (int i = 0; 1 < n; n++){ #pragma omp target enter data map(alloc: x[@:n])

x[i] = 90.9; }

}

} ~myclass(){

#pragma omp target exit data map(delete: x[0@:n])
delete [] x;

}

While object exists

AMDZ1

together we advance_

Memory Management Capabilities

[Public]

Different Memory Management Capabilities

OpenMP® 5.0

Explicit Memory Management Managed Memory

Requires explicit memory movement export HSA_XNACK=1

directives. * The Operating System will move memory
automatically between host and device.

X 0x000000000174b0e0® ©x00OO7617c434000 X 0x000000000174b0ed 0x0PPRO71617c434000

y 0x000000000175€970 ©x0POOO7617c448000 y 0x000000000175€970 Ox0PPRO71617c448000

z 0x0000000001772200 ©x00007617c420000 z 0x0000000001772200 0x00BO71617c420000
Oct 21-23 2025 AMD @ Tsukuba University

OpenMP® 5.0

Single Memory address

#pragma omp requires unified_shared_memory

a pointer will always refer to the same
location in memory from all devices
accessible through OpenMP

. Host/Device

X 0x000000000174b0e0d
y 0x000000000175e970

z 0x0000000001772200

AMDZ1

together we advance_

Optimizing Memory Movement Between Host and Device

[Public]

Understanding the behavior of the memory movement pragmas

- The full set of examples is at hitps://github.com/AMD/HPCTrainingExamples in the
HPCTrainingExamples/Pragma_Examples/OpenMP/CXX/memory_pragmas directory

- We’'ll experiment with different combinations of clauses in the pragmas. By setting
LIBOMPTARGET _INFO=-1, we can see what the OpenMP® runtime does behind the scenes.

AMDZ1

together we advance_

https://github.com/AMD/HPCTrainingExamples

[Public]

Summary of OpenMP® memory pragmas and what they do

OpenMP clause | Allocates/deletes device memory | Modifies reference counter Coples data

Map to/from?

Map always? Yes Yes Yes
Map alloc/deleted Yes* Yes No

Map release If reference counter 0, delete Decrements No

Update to/from No No Yes
Notes:

1. "Map to" checks if the memory is already allocated for the device.
a. If not allocated, the device memory is allocated and the reference counter is set to one, and the data is
copied to the device
b. If allocated, the size is checked, and the reference counter is incremented

Similar for "map from*

Same as to/from, but always copies the memory over even if it already exists

"Map alloc" checks if the memory is already allocated for the device.
a. if not allocated, the device memory is allocated, and the reference counter is set to one
b. if allocated, the size is checked, and the reference counter is incremented.

"Map delete" will delete the memory and set the reference counter to zero

4. More generally, to cover single memory spaces, the data must be available in the memory space.
Oct 21-23 2025 AMD @ Tsukuba University

W N

AMDZ1

together we advance_

[Public]

Basic OpenMP® daxpy code (2 slides) — mem1.cc

33 int main(int argc, char* argv[])
34 {

35 int num_iteration=NTIMERS;

36 int n = 100000;

37 double main_timer = 0.0;

38 double main_start = omp_get wtime(); i))))))

39 if (argc > 1) { Adding alignment to the memory allocation is highly recommended. This will be
40 n=atoi(argv[1]); discussed in the next section. The line of code with alignment specification is
41} double *x = new (std::align_val t(128)) double[n];

42 double a = 3.9;

43 double *x = new double[n];

44 double *y
45 double *z

new double[n];
new double[n];

46

47 for (int 1 = 0; i < n; i++) {

48 x[i] = 2.0;

49 y[i] = 1.0;

50 }

51

52 double * timers = (double *)calloc(num_iteration,sizeof(double));
53 for (int iter=0;iter<num_iteration; iter++)
54

55 double start = omp_get wtime();

56

57 daxpy(n, a, x, y, 2);

58

59 timers[iter] = omp_get wtime()-start;
60 }

61

AMDZ1

11 together we advance_

[Public]

BaS|c OpenMP® daxpy code (continued)

double sum time =

63 double max_time = -1.0e10,
64 double min_time = 1.0e10;
65 for (int iter=0; iter<num_iteration; iter++) {
66 sum_time += timers[iter];
67 max_time = max(max_time,timers[iter]);
68 min_time = min(min_time,timers[iter]);
69 }
70
71 double avg_time = sum_time / (double)num_iteration;
72
73 cout << "-Timing in Seconds: min=" << fixed << setprecision(6) << min_time << ", max=" <<max_time << ", avg=" << avg_time << endl;
74
75 main_timer = omp_get_wtime()-main_start;
76 cout << "-Overall time is " << main_timer << endl;
77
78 cout << "Last Value: z[" << n-1 << "]=" << z[n-1] << endl;
79
80 delete [] x;
81 delete [] y;
82 delete [] z;
83
84 return 0;
85 }
86
87 void daxpy(int n, double a, double * restrict_ _ x, double * restrict _y, double *_ restrict z)
88 {
89 #pragma omp target teams distribute parallel for simd map(to: x[@:n], y[@:n]) map(from: z[@:n])
90 for (int 1 = 0; i < n; i++)
91 z[1i] = a*x[i] + y[i];
92 }
Oct 21-23 2025 AMD @ Tsukuba University AMDZ1

12 together we advance_

[Public]

Mem1.cc version

Map clause on pragma line just before computational loop

meml.cc:89 #pragma omp target teams distribute parallel for simd map(to: x[0:n], y[©:n]) map(from: z[©:n])

Running this with LIBOMPTARGET _INFO=-1, we can see the memory operations. All occur from the pragma

at line 89.
LIBOMPTARGET_INFO Report
Libomptarget info: Entering OpenMP kernel at meml.cc:89:1 with 5 arguments:
Libomptarget info: firstprivate(n)[4] (implicit) < Note implicit firstprivate for scalar arguments
Libomptarget info: from(z[@:n])[80000] Device memory allocated and
Libomptarget info: firstprivate(a)[8] (implicit) ‘////WQeferenceacountincrenwented
Libomptarget info: to(x[©:n])[80000]
Libomptarget info: to(y[©:n])[80000]
Libomptarget info: Creating new map entry with <...> TgtPtrBegin=0x00007f90b6a20000, Size=80000, DynRefCount=1, HoldRefCount=0, Name=z[@:n]
Libomptarget info: Creating new map entry with <...> TgtPtrBegin=0x00007f90b6a34000, Size=80000, DynRefCount=1, HoldRefCount=0, Name=x[0:n]
Libomptarget info: Copying data from host to device, HstPtr=0x0000000000c2f0ed, TgtPtr=0x00007f90b6a34000, Size=80000, Name=x[0:n] ¢ Data copied
Libomptarget info: Creating new map entry with <...> TgtPtrBegin=0x00007f90b6a48000, Size=80000, DynRefCount=1, HoldRefCount=0, Name=y[@:n]
Libomptarget info: Copying data from host to device, HstPtr=0x0000000000c42970, TgtPtr=0x00007f90b6248000, Size=80000, Name=y[0@:n]
Libomptarget info: Mapping exists with HstPtrBegin=0x0000000000c56200, TgtPtrBegin=0x00007f90b6a20000, Size=80000, DynRefCount=1 (update suppressed), HoldRefCount=0
Libomptarget info: Mapping exists with HstPtrBegin=0x0000000000c2f0e0, TgtPtrBegin=0x00007f90b6a34000, Size=80000, DynRefCount=1 (update suppressed), HoldRefCount=0
Libomptarget info: Mapping exists with HstPtrBegin=0x0000000000c42970, TgtPtrBegin=0x00007f90b6a48000, Size=80000, DynRefCount=1 (update suppressed), HoldRefCount=0
Libomptarget info: Mapping exists with HstPtrBegin=0x0000000000c42970, TgtPtrBegin=0x00007f90b6a48000, Size=80000, DynRefCount=0 (decremented, delayed deletion) <...>
Libomptarget info: Mapping exists with HstPtrBegin=0x0000000000c2f0e@, TgtPtrBegin=0x00007f90b6a34000, Size=80000, DynRefCount=0 (decremented, delayed deletion) <...>
Libomptarget info: Mapping exists with HstPtrBegin=0x0000000000c56200, TgtPtrBegin=0x00007f90b6320000, Size=80000, DynRefCount=0 (decremented, delayed deletion) <...>
Libomptarget info: Copying data from device to host, TgtPtr=0x00007f90b6a20000, HstPtr=0x0000000000c56200, Size=80000, Name=z[0@:n]
Libomptarget info: Removing map entry with HstPtrBegin=0x0000000000c42970, TgtPtrBegin=0x00007f90b6248000, Size=80000, Name=y[@:n] +——_ Device array deleted
Libomptarget info: Removing map entry with HstPtrBegin=0x0000000000c2f0e0, TgtPtrBegin=0x00007f90b6a34000, Size=80000, Name=x[0:n]
Libomptarget info: Removing map entry with HstPtrBegin=0x0000000000c56200, TgtPtrBegin=0x00007f90b6a20000, Size=80000, Name=z[0@:n]

Oct 21-23 2025

AMD @ Tsukuba University

AMDZ1

together we advance_

[Public]

Mema2.cc version -- Add enter/exit data alloc/delete when memory is created/freed

After new
mem2.cc:#pragma omp target enter data map(alloc: x[@:n], y[@:n], z[0@:n])

Keep map on computational loop. The map to/from should check if the data exists. If not, it will allocate/delete it. Then it will do the copies to
and from. This will increment the Reference Counter and decrement it at end of loop.

mem2.cc:#pragma omp target teams distribute parallel for simd map(to: x[@:n], y[@:n]) map(from: z[O:n])

Before delete
mem2.cc:#pragma omp target exit data map(delete: x[@0:n], y[@:n], z[©@:n])

LIBOMPTARGET_INFO Report

After new:
Libomptarget info: Creating new map entry with <..>TgtPtrBegin=0x00007ff58f020000, Size=80000, DynRefCount=1, HoldRefCount=0, Name=x[0:n]

Computational Loop:

Libomptarget info: Mapping exists with HstPtrBegin=0x000000000161d200, TgtPtrBegin=0x00007ff58f048000, Size=80000, DynRefCount=2
(incremented), HoldRefCount=0, Name=z[0@:n]

Libomptarget info: Mapping exists with HstPtrBegin=0x000000000161d200, TgtPtrBegin=0x00007ff58f048000, Size=80000, DynRefCount=1
(decremented), HoldRefCount=0

After delete:
Libomptarget device @ info: Mapping exists with HstPtrBegin=0x000000000161d200, TgtPtrBegin=0x00007ff58f048000, Size=80000,

DynRefCount=0 (reset, delayed deletion), HoldRefCount=0
Libomptarget device @ info: Removing map entry with HstPtrBegin=0x000000000161d200, TgtPtrBegin=0x00007ff58f048000, Size=80000,

Name=z[0@:n]

Oct 21-23 2025 AMD @ Tsukuba University AMDAQ
14 together we advance_

[Public]

Mem3.cc version — replace map on computation loop with updates

LIBOMPTARGET_INFO Report

At update — check device array exists and copies data. Reference counter not incremented
Libomptarget info: to(x[©:n])[80000]
Libomptarget info: Mapping exists with HstPtrBegin=0x0000000000fel0e0, TgtPtrBegin=0x00007ff998a20000, Size=80000,

DynRefCount=1 (update suppressed), HoldRefCount=0
Libomptarget info: Copying data from host to device, HstPtr=0x0000000000fel10e0, TgtPtr=0x00007ff998a20000, Size=80000,

Name=x[0:n]

At computational loop (no map directive) — note implicit checks, increments and decrements of
reference counter

Libomptarget device © info: use_address(x)[0] (implicit)

Libomptarget device @ info: Mapping exists (implicit) with HstPtrBegin=0x0000000000fel0e0, TgtPtrBegin=0x00007ff998a20000,
Size=0, DynRefCount=2 (incremented), HoldRefCount=0, Name=x

Libomptarget device @ info: Mapping exists with HstPtrBegin=0x0000000000fe10e0, TgtPtrBegin=0x00007ff998a20000, Size=0, Dy

Libomptarget device 0@ info: Mapping exists with HstPtrBegin=0x0000000000fel10e0, TgtPtrBegin=0x00007ff998a20000, Size=0,
DynRefCount=1 (decremented), HoldRefCount=@nRefCount=2 (update suppressed), HoldRefCount=0

Oct 21-23 2025 AMD @ Tsukuba University AMDAQ
15 together we advance_

[Public]

Set LIBOMPTARGET_INFO flag at runtime

extern “C” void _ tgt set info flag(uint32 t);

__tgt set _info _flag(-1);
#pragma omp target teams distribute parallel for simd map(to: x[@:n], y[@:n]) map(from: z[©:n])
for (int i = 0; 1 < n; i++)
z[i] = a*x[1] + y[i];
__tgt set _info _flag(@);

By setting this LIBOMPTARGET _INFO flag at runtime, you can see the detailed
information at a particular point in your code

Oct 21-23 2025 AMD @ Tsukuba University AMDAQ
16 together we advance_

Optimizing Memory Bandwidth Utilization to GPU Main
Memory

[Public]

Memory layout and alignment

Memory allocations with longer memory alignment can #pragma omp requires unified shared memory
get some improvement in performance. The suggested ~ int main(){
length is the cache line length (64 bytes on MI200

. double * X, * VY, *Z;
series and 128 bytes on MI300).

size t N = (size_t) 1024*1024*1024/sizeof(double);

X = new (std::align val t(128)) double[N];
if (N<19) Y new (std::align _val t(16)) double[N];

else Y new (std::align_val t(128)) double[N];

The default memory alignment obtained with system
allocators such as "malloc" or “new” is 16 bytes.

How to change the memory alignment

#pragma omp target teams distribute parallel for if(target:N>2000)

« Compiler flag

(-faligned-allocation -fnew-alignment=64)
» Specifying alignment property in source code.
« Using system allocators such as posix_memalign
* More effort needed to get vector and valarray

for (size t i = @0; i < N; ++1i)
X[i] = ©.000001*i;

for (size t i = 0; i < N; ++1i)

classes to allocate desired memory alignment Y[i] = X[i]
The impact of alignment seems to be less with delete[] X; delete[] V;
more recent GPU models and may vary with your return 0;
application. }

#pragma omp target teams distribute parallel for if(target:N>2000)

AMDZ1

together we advance_

[Public]

Measure alignment and workgroup size impact on bandwidth

== Examine the source code

Get test code from training examples repo
git clone https://github.com/amd/HPCTrainingExamples

Go to test directory
cd HPCTrainingExamples/Pragma_Examples/OpenMP/CXX/optimization/alignment

Examine one of the source files — align_two_kernels.cc

X =new (std::align_val_t(alignment_length)) double[N];
Alignment_length is set by an input argument and set to various sizes: 16 32 64 128 256

#pragma omp target teams distribute parallel for thread _limit(BLOCKSIZE)
BLOCKSIZE is set to the following sizes 64 128 256 512 1024

Oct 21-23 2025 AMD @ Tsukuba University AMDAQ
19 together we advance_

https://github.com/amd/HPCTrainingExamples

[Public]

20

Measure alignment and workgroup size impact on bandwidth

== Run the example

- Now let’s run the example with alignment and workgroup size settings to see the effect

Set up environment
module load amdclang
export HSA XNACK=1

- Build codes

make

« Run codes

./run_align two_kernels.sh

- There is another single copy kernel that can be run with . /run_align simple_copy.sh and to

run both, ./run_align.sh

- Try different array sizes and how the alignment impact varies

AMDZ1

together we advance_

[Public]

Alignment study results by AMD Instinct™ GPU

- MI100 with ROCm 5.x (Original Study) Theoretical Bandwidth 1.23 TB/s or 1230 GB/s' (about 1145 GiB/s)

Alignment e

OpenMP: thread_limit(128) 540 GB/s ? 750 GB/s ? 750 GB/s ? 680 GB/s ? 870 GB/s ?
OpenMP: thread_limit(1024) 990 GB/s ? 1000 GB/s 2 1010 GB/s 2 960 GB/s ? 1040 GB/s 2

- MI210 with ROCm 6.3.3 Theoretical Bandwidth 1.6 TB/s or 1600 GB/s" (about 1490 GiB/s)

OpenMP: thread_limit(128) 623 GiB/s 1216 GiB/s 1214 GiB/s 1158 GiB/s 1275 GiB/s
OpenMP: thread_limit(1024) 598 GiB/s 1258 GiB/s 1256 GiB/s 1240 GiB/s 1320 GiB/s

« MI300A with ROCm 6.3.3 Theoretical Bandwidth 5.3 TB/s or 5300 GB/s' (about 4936 GiB/s)

Alignment e

OpenMP: thread_limit(128) 3390 GiB/s 3650 GiB/s 3662 GiB/s 3748 GiB/s 3772 GiB/s
OpenMP: thread_limit(1024) 3650 GiB/s 3729 GiB/s 3726 GiB/s 3756 GiB/s 3778 GiB/s

Notes: MI210 and MI300A system had other users and jobs running. Try the exercise and see if you get similar results.
"These are decimal units (GB,TB, not GiB,TiB)
2 Not clear whether these are GiB or GB

Oct 21-23 2025 AMD @ Tsukuba University AMDA

21 together we advance_

[Public]

22

A note on bandwidth measurement

- The stream measure of bandwidth is "application bandwidth"
- Each read is counted as 1 load, and each write is counted as 1 store

- Typical hardware implements writes as a load of a cache line and then a store. In this case each write is a
load and a store. For a copy, there is only a store for the write.

- To get hardware bandwidth, the numbers from the application bandwidth must be multiplied by a correction
factor.

- We have shown the hardware bandwidth for the MI210 and the MI300A. We have also shown them in
powers of two (binary) units — GiB and TiB.

- Original measurement units for the MI100 is not certain
- Theoretical bandwidths are given in GBs

- Bandwidth tests at rocm Docs — these are general bandwidth measurements and not stream bandwidth
https://rocm.docs.amd.com/projects/rocm bandwidth test/en/latest/index.html#rocm-bandwidth-test-
documentation

AMDZ1

together we advance_

https://rocm.docs.amd.com/projects/rocm_bandwidth_test/en/latest/index.html#rocm-bandwidth-test-documentation
https://rocm.docs.amd.com/projects/rocm_bandwidth_test/en/latest/index.html#rocm-bandwidth-test-documentation
https://rocm.docs.amd.com/projects/rocm_bandwidth_test/en/latest/index.html#rocm-bandwidth-test-documentation
https://rocm.docs.amd.com/projects/rocm_bandwidth_test/en/latest/index.html#rocm-bandwidth-test-documentation
https://rocm.docs.amd.com/projects/rocm_bandwidth_test/en/latest/index.html#rocm-bandwidth-test-documentation
https://rocm.docs.amd.com/projects/rocm_bandwidth_test/en/latest/index.html#rocm-bandwidth-test-documentation
https://rocm.docs.amd.com/projects/rocm_bandwidth_test/en/latest/index.html#rocm-bandwidth-test-documentation

[Public]

Background material: hardware bandwidth vs application bandwidth

- George Hager on stream bandwidth https://blogs.fau.de/hager/archives/8263
- Write requires a write allocate (read and then write), nonstreaming stores
- Correction factors — 1.33 for add/triad, 1.5 for scale, 1.5 for compiler implemented copy and 1.0 for memcpy

- McCalpin on counting bytes https://www.cs.virginia.edu/stream/ref.html#counting

- Stack Exchange -- https://superuser.com/questions/1815148/expected-results-of-a-stream-memory-
bandwidth-benchmark

Oct 21-23 2025 AMD @ Tsukuba University AMDAQ
23 together we advance_

https://blogs.fau.de/hager/archives/8263
https://www.cs.virginia.edu/stream/ref.html#counting
https://superuser.com/questions/1815148/expected-results-of-a-stream-memory-bandwidth-benchmark
https://superuser.com/questions/1815148/expected-results-of-a-stream-memory-bandwidth-benchmark
https://superuser.com/questions/1815148/expected-results-of-a-stream-memory-bandwidth-benchmark
https://superuser.com/questions/1815148/expected-results-of-a-stream-memory-bandwidth-benchmark
https://superuser.com/questions/1815148/expected-results-of-a-stream-memory-bandwidth-benchmark
https://superuser.com/questions/1815148/expected-results-of-a-stream-memory-bandwidth-benchmark
https://superuser.com/questions/1815148/expected-results-of-a-stream-memory-bandwidth-benchmark
https://superuser.com/questions/1815148/expected-results-of-a-stream-memory-bandwidth-benchmark
https://superuser.com/questions/1815148/expected-results-of-a-stream-memory-bandwidth-benchmark
https://superuser.com/questions/1815148/expected-results-of-a-stream-memory-bandwidth-benchmark
https://superuser.com/questions/1815148/expected-results-of-a-stream-memory-bandwidth-benchmark
https://superuser.com/questions/1815148/expected-results-of-a-stream-memory-bandwidth-benchmark
https://superuser.com/questions/1815148/expected-results-of-a-stream-memory-bandwidth-benchmark
https://superuser.com/questions/1815148/expected-results-of-a-stream-memory-bandwidth-benchmark
https://superuser.com/questions/1815148/expected-results-of-a-stream-memory-bandwidth-benchmark

[Public]

24

Partitioning and NUMA regions

Compute partitions and memory partitions are possible with MI300A
« ROCm B ogs post: Deep dive into the MI300 compute and memory partition modes — ROCm Blogs

Default compute partition is the Single Partition X-celerator (SPX) partitioning mode
- All XCDs on the device are seen as a single logical compute element

« Workgroups launched are round-robined across the GPU devices. Memory accesses from another GPU memory has
an overhead of about 15%

In a recent ROCm release, information on the compute partition Core Partitioned X-celerator (CPX) mode
and different NUMA regions (memory partition) was announced
- With CPX, each GPU is seen as a single device

Changing the partition is done with the amd-smi command
On the MI300X, the stream benchmark improved by 5%
Other experiences have shown bandwidth improvements in real applications

As a new configuration, there have also been some bug reports
Even the HPL benchmark is limited by bandwidth. Also GCDs may be able to run at higher frequencies.

AMDZ1

together we advance_

https://rocm.blogs.amd.com/software-tools-optimization/compute-memory-modes/README.html
https://rocm.blogs.amd.com/software-tools-optimization/compute-memory-modes/README.html
https://rocm.blogs.amd.com/software-tools-optimization/compute-memory-modes/README.html
https://rocm.blogs.amd.com/software-tools-optimization/compute-memory-modes/README.html

Kernel traces and optimizations

[Public]

Kernel Optimizations

- These examples are at https://github.com/AMD/HPCTrainingExamples in the

HPCTrainingExamples/Pragma_Examples/OpenMP/CXX/kernel pragmas directory

- We'll experiment with different optimizations with pragmas. By setting LIBOMPTARGET _KERNEL_TRACE=1 or

2, we can see what the OpenMP® runtime does behind the scenes.
- Setting to 1 shows the name of every kernel, number of teams, threads, and register usage.
- Setting to 2 prints timing and data transfer information

- LIBOMPTARGET_DEBUG=1 will show more information about data transfer operations and kernel launch
- HPE/Cray

26

- CRAY_ACC_DEBUG=[1,2,3]
« -hlist=aimd at compile time

Oct 21-23 2025 AMD @ Tsukuba University Qg:?hgv‘:'eladvance

https://github.com/AMD/HPCTrainingExamples

[Public]

Kernell.cc

« export HSA XNACK=1

« export LIBOMPTARGET_KERNEL_ TRACE=1
« mkdir build && cd build

« CXX=amdclang++ cmake ..

- make

./kernell

LIBOMPTARGET KERNEL TRACE Report

DEVID: 0 SGN:2 ConstWGSize:256 args: 3 teamsXthrds:(391X 256) reqd:(0X 0) Ids_usage:9784B sgpr_count:106 vgpr_count:58 sgpr_spill_count:39 vgpr_spill_count:0
tripcount: 100000 rpc:1 n:__omp_offloading_3d_1a2def2_main_|52

DEVID: 0 SGN:2 ConstWGSize:256 args: 5 teamsXthrds:(391X 256) reqd:(0X 0) Ids_usage:9784B sgpr_count:106 vgpr_count:56 sgpr_spill_count:47 vgpr_spill_count:0
tripcount: 100000 rpc:1 n:__ omp_offloading_3d_1a2def2_ Z5daxpyidPdS S 197

Oct 21-23 2025 AMD @ Tsukuba University AMDAQ
27 together we advance_

[Public]

kernel2.cc
- Change number of threads — add num_threads(64)

+ New report

LIBOMPTARGET KERNEL_TRACE Report
DEVID: 0 SGN:2 ConstWGSize:64 args: 3 teamsXthrds: (416X 64)reqd:(0X 64)Ids _usage:9784B sgpr_count:106 vgpr_count:59 sgpr_spill_count:42 vgpr_spill_count:0

tripcount: 100000 rpc:1 n:__omp_offloading_3d_1a2def6_main_|52
DEVID: 0 SGN:2 ConstWGSize:64 args: 5 teamsXthrds:(416X 64)reqd:(0X 64)Ilds _usage:9784B sgpr_count:106 vgpr_count:57 sgpr_spill_count:48 vgpr_spill_count:0

tripcount: 100000 rpc:1 n:__omp_offloading_3d_1a2def6 Z5daxpyidPdS S 97

AMDZ1

Oct 21-23 2025 AMD @ Tsukuba University together we advance

28

[Public]

kernel3.cc
- Add thread limit for kernel — num_threads(64) thread_limit(64)

+ New report

LIBOMPTARGET KERNEL_ TRACE Report
DEVID: 0 SGN:2 ConstWGSize:64 args: 3 teamsXthrds:(416X 64) reqd:(0X 64)Ilds_usage:9784B sgpr_count:106 vgpr_count:55 sgpr_spill_count:37 vgpr_spill_count:0

tripcount: 100000 rpc:1 n:__omp_offloading_3d_1a2def8_main_|52
DEVID: 0 SGN:2 ConstWGSize:64 args: 5 teamsXthrds:(416X 64) reqd:(0X 64)Ilds_usage:9784B sgpr_count:106 vgpr_count:53 sgpr_spill_count:45 vgpr_spill_count:0

tripcount: 100000 rpc:1 n:__omp_offloading_3d_1a2def8__Z5daxpyidPdS_S 197

AMDZ1

Oct 21-23 2025 AMD @ Tsukuba University together we advance

29

[Public]

30

Summary

OpenMP compute loop clauses Workgroup LDS VGPR VGPR
size Usage SplII

Simple parallel loop
num_threads(64)

num_threads(64) thread_limit(64)

256
256

64
64

64
64

9784 B
9784 B

9784 B
9784 B

9784 B
9784 B

Note that reducing the threads does not reduce the VGPRs

Adding the thread_limit clause does reduce the VGPRs

106
106

106
106

106
106

56

59
o7

99
53

47

42
48

37
45

OO OO OO

This is a very simple kernel. We are below the VGPR limit for occupancy restrictions. So the impact in this

case is small. Try these changes on your larger kernels and see what it does there.

Oct 21-23 2025

AMD @ Tsukuba University

AMDZ1

together we advance_

[Public]

Register pressure and occupancy for MI250X/MI300

Note: When greater than 256, additional vector registers are stored in scratch, a slower

memory. In most cases this should be avoided. We are below that number, but we are
still concerned with the limit on the number of waves that can be scheduled.

Num VGPRs Occupancy per EU Occupancy per CU

<= 64

<=72

<=80

<= 96

<= 128

<=168

<= 256

> 256 (+ spilling to scratch)

There are 4 arithmetic Execution Units per Compute Unit. The compiler generates the
VGPRs for each wavefront to be run on each Execution Unit. The scheduler can place 4 of
the same wavefronts to execute on the CU or wavefronts from other tasks.

Oct 21-23 2025

31

8 waves
/ waves
6 waves
5 waves
4 waves
3 waves
2 waves

1 waves

\

/

AMD @ Tsukuba University

This is the column that corresponds to the

/compiler and profiler report.

32 waves
28 waves
24 waves
20 waves
16 waves
12 waves
8 waves

4 waves

AMDZ1

together we advance_

[Public]

Atomics

- Atomics are generally faster and safer than older approaches such as mutexes. The capability to perform
the operation in one instruction avoids the possibility of interruption as well as being faster. Writing correct
code with software locks without any possibility of a race condition is difficult.

- Note that some atomic implementations may be done with a software implementation and may not be
strictly done with a single instruction

- atomic built-in functions
- omp atomic

- Heavy use of atomics can cause performance issues. Consider rewriting code with a lot of atomics to use
a more efficient approach.

- Atomics have to consider memory coherency. This often means that they must done at the last level cache
or take other approaches to guarantee correctness. Caches may have to be invalidated and refreshed and
can cause cache update storms.

AMDZ1

32 together we advance_

[Public]

GPU model differences for Atomics

- MI300A generally does the atomic operation in the last level cache to ensure that the memory is coherent
between the GPUs and CPUs.

- MI250 has the capability to do the atomics at different cache levels. This leads to the concept of coarse
and fine memory allocations. While more complicated, it does make it possible to have faster atomics if

you take some care in the coding.

AMDZ1

33 together we advance_

[Public]

Coarse/Fine Grain Memory Allocations

= Coarse grain: coherence and memory ordering with the whole system are legal at
synchronization points (e.g. kernel boundaries). For optimization purposes it avoids coherence
until needed.

* Fine grain: coherence and memory ordering with the whole system possible within GPU
kernels. Allows CPU and GPU (and multiple GPUs) to synchronize while the GPU kernel is
running. Reduced cacheability.

AMDZ1

34 together we advance_

[Public]

35

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical
errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and
roadmap changes, component and motherboard version changes, new model and/or product releases, product differences between differing
manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of security vinerabilities that cannot be
completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the
right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such
revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS
HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.
AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY
PARTICULAR PURPOSE. IN NO EVENT WILLAMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER
CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY
CONTENT IS PROVIDED “AS IS WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR

SOLE DISCRETION AND UNDER NO CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL
RISK AND ARE SOLELY RESPONSIBLE FOR ANY DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, ROCm, Radeon, Radeon Instinct and combinations thereof are
trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be
trademarks of their respective owners.

Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git Project, in the
United States and/or other countries
The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board.

AMDZ1

together we advance_

	Default Section
	Slide 1: Advanced OpenMP®
	Slide 2: Advanced OpenMP®
	Slide 3: Introduction

	Region Concept
	Slide 4: OpenMP® heavily relies on region concept
	Slide 5: Structured vs Unstructured Data regions

	Memory Management Capabilities
	Slide 6: Memory Management Capabilities
	Slide 7: Different Memory Management Capabilities

	Optimizing Memory Movement Between Host and Device
	Slide 8: Optimizing Memory Movement Between Host and Device
	Slide 9: Understanding the behavior of the memory movement pragmas
	Slide 10: Summary of OpenMP® memory pragmas and what they do
	Slide 11: Basic OpenMP® daxpy code (2 slides) – mem1.cc
	Slide 12: Basic OpenMP® daxpy code (continued)
	Slide 13: Mem1.cc version
	Slide 14: Mem2.cc version -- Add enter/exit data alloc/delete when memory is created/freed
	Slide 15: Mem3.cc version – replace map on computation loop with updates
	Slide 16: Set LIBOMPTARGET_INFO flag at runtime

	Optimizing Memory Bandwidth to GPU Main Memory
	Slide 17: Optimizing Memory Bandwidth Utilization to GPU Main Memory
	Slide 18: Memory layout and alignment
	Slide 19: Measure alignment and workgroup size impact on bandwidth -- Examine the source code
	Slide 20: Measure alignment and workgroup size impact on bandwidth -- Run the example
	Slide 21: Alignment study results by AMD Instinct™ GPU
	Slide 22: A note on bandwidth measurement
	Slide 23: Background material: hardware bandwidth vs application bandwidth
	Slide 24: Partitioning and NUMA regions
	Slide 25: Kernel traces and optimizations
	Slide 26: Kernel Optimizations
	Slide 27: Kernel1.cc
	Slide 28: kernel2.cc
	Slide 29: kernel3.cc
	Slide 30: Summary
	Slide 31: Register pressure and occupancy for MI250X/MI300
	Slide 32: Atomics
	Slide 33: GPU model differences for Atomics
	Slide 34: Coarse/Fine Grain Memory Allocations
	Slide 35: Disclaimer
	Slide 36

