
Advanced OpenMP®

Presenter: Bob Robey

AMD @ Tsukuba University

Oct 21-23, 2025

2 |

[Public]

Advanced OpenMP® 1. Region Concept

2. Memory Management

Memory Management Capabilities

Optimizing Memory Movement Between Host and Device

3. Kernel Resources and Optimization

3 |

[Public]

Introduction

With GPU programming we have two considerations that must be addressed

1. Memory and Data Management

1. Between the host and the device

2. From GPU main memory to the Compute Unit or Device

2. Code Execution

• Managing compute resources

• Which device to execute operation on

• Expression of parallelism

• We'll tackle how to address each of these considerations in the following slides and exercises

Oct 21-23 2025 AMD @ Tsukuba University

4 |

[Public]

OpenMP® heavily relies on region concept

• What are regions?

• A part of the code where a pragma applies

• Default is the normal “block” of code following the directive

• Can be specified by { }s in C or an end directive in Fortran

• What kinds of regions are there?

• Data regions – data is on the GPU in this code region

• Target regions – code in region is executed on the GPU

• Parallel regions – code in region is executed in parallel

• Original OpenMP specification only had structured data regions

• How to handle Object-oriented code and other patterns?

➔ Later version of the standard added unstructured data region concept

Oct 21-23 2025 AMD @ Tsukuba University

5 |

[Public]

Structured vs Unstructured Data regions

#pragma omp target data map(tofrom: x[0:n])

{

#pragma omp target teams distribute parallel for simd

 for (int i = 0; i < n; n++){

 x[i] = 0.0;

 }

}

class myclass (int n) {

 myclass(){

 x=new double[n];

 #pragma omp target enter data map(alloc: x[0:n])

 }

 ~myclass(){

 #pragma omp target exit data map(delete: x[0:n])

 delete [] x;

 }

Oct 21-23 2025 AMD @ Tsukuba University

While object exists

Structured data region Unstructured data region

Memory Management Capabilities

Oct 21-23 2025 AMD @ Tsukuba University

7 |

[Public]

Explicit Memory Management

Host Device

x 0x000000000174b0e0 0x00007f617c434000

y 0x000000000175e970 0x00007f617c448000

z 0x0000000001772200 0x00007f617c420000

Managed Memory

export HSA_XNACK=1

• The Operating System will move memory
automatically between host and device.

Single Memory address

#pragma omp requires unified_shared_memory

• a pointer will always refer to the same
location in memory from all devices
accessible through OpenMP

Different Memory Management Capabilities

Oct 21-23 2025 AMD @ Tsukuba University

OpenMP® 5.0 OpenMP® 5.0

Host Device

x 0x000000000174b0e0 0x00007f617c434000

y 0x000000000175e970 0x00007f617c448000

z 0x0000000001772200 0x00007f617c420000

Host/Device

x 0x000000000174b0e0

y 0x000000000175e970

z 0x0000000001772200

Requires explicit memory movement
directives.

Optimizing Memory Movement Between Host and Device

Oct 21-23 2025 AMD @ Tsukuba University

9 |

[Public]

Understanding the behavior of the memory movement pragmas

• The full set of examples is at https://github.com/AMD/HPCTrainingExamples in the

HPCTrainingExamples/Pragma_Examples/OpenMP/CXX/memory_pragmas directory

• We’ll experiment with different combinations of clauses in the pragmas. By setting

LIBOMPTARGET_INFO=-1, we can see what the OpenMP® runtime does behind the scenes.

Oct 21-23 2025 AMD @ Tsukuba University

https://github.com/AMD/HPCTrainingExamples

10 |

[Public]

Summary of OpenMP® memory pragmas and what they do

OpenMP clause Allocates/deletes device memory Modifies reference counter Copies data

Map to/from1 Yes Yes Yes

Map always2 Yes Yes Yes

Map alloc/delete3 Yes4 Yes No

Map release If reference counter 0, delete Decrements No

Update to/from No No Yes

Notes:
1. "Map to" checks if the memory is already allocated for the device.

a. If not allocated, the device memory is allocated and the reference counter is set to one, and the data is

copied to the device

b. If allocated, the size is checked, and the reference counter is incremented

 Similar for "map from“

2. Same as to/from, but always copies the memory over even if it already exists

3. "Map alloc" checks if the memory is already allocated for the device.

a. if not allocated, the device memory is allocated, and the reference counter is set to one

b. if allocated, the size is checked, and the reference counter is incremented.

 "Map delete" will delete the memory and set the reference counter to zero

4. More generally, to cover single memory spaces, the data must be available in the memory space.

Oct 21-23 2025 AMD @ Tsukuba University

11 |

[Public]

Basic OpenMP® daxpy code (2 slides) – mem1.cc
33 int main(int argc, char* argv[])
 34 {
 35 int num_iteration=NTIMERS;
 36 int n = 100000;
 37 double main_timer = 0.0;
 38 double main_start = omp_get_wtime();
 39 if (argc > 1) {
 40 n=atoi(argv[1]);
 41 }
 42 double a = 3.0;
43 double *x = new double[n];
44 double *y = new double[n];
45 double *z = new double[n];
 46
 47 for (int i = 0; i < n; i++) {
 48 x[i] = 2.0;
 49 y[i] = 1.0;
 50 }
 51
52 double * timers = (double *)calloc(num_iteration,sizeof(double));
53 for (int iter=0;iter<num_iteration; iter++)
 54 {
55 double start = omp_get_wtime();
 56
57 daxpy(n, a, x, y, z);
 58
59 timers[iter] = omp_get_wtime()-start;
 60 }
 61

Oct 21-23 2025 AMD @ Tsukuba University

Adding alignment to the memory allocation is highly recommended. This will be

discussed in the next section. The line of code with alignment specification is

 double *x = new (std::align_val_t(128)) double[n];

12 |

[Public]

62 double sum_time = 0.0;
 63 double max_time = -1.0e10;
 64 double min_time = 1.0e10;
 65 for (int iter=0; iter<num_iteration; iter++) {
 66 sum_time += timers[iter];
 67 max_time = max(max_time,timers[iter]);
 68 min_time = min(min_time,timers[iter]);
 69 }
 70
 71 double avg_time = sum_time / (double)num_iteration;
 72
 73 cout << "-Timing in Seconds: min=" << fixed << setprecision(6) << min_time << ", max=" <<max_time << ", avg=" << avg_time << endl;
 74
 75 main_timer = omp_get_wtime()-main_start;
 76 cout << "-Overall time is " << main_timer << endl;
 77
 78 cout << "Last Value: z[" << n-1 << "]=" << z[n-1] << endl;
 79
 80 delete [] x;
 81 delete [] y;
 82 delete [] z;
 83
 84 return 0;
 85 }
 86
 87 void daxpy(int n, double a, double *__restrict__ x, double *__restrict__ y, double *__restrict__ z)
 88 {
 89 #pragma omp target teams distribute parallel for simd map(to: x[0:n], y[0:n]) map(from: z[0:n])
 90 for (int i = 0; i < n; i++)
 91 z[i] = a*x[i] + y[i];
 92 }

Basic OpenMP® daxpy code (continued)

Oct 21-23 2025 AMD @ Tsukuba University

13 |

[Public]

Mem1.cc version

Map clause on pragma line just before computational loop

mem1.cc:89 #pragma omp target teams distribute parallel for simd map(to: x[0:n], y[0:n]) map(from: z[0:n])

LIBOMPTARGET_INFO Report
Libomptarget info: Entering OpenMP kernel at mem1.cc:89:1 with 5 arguments:
Libomptarget info: firstprivate(n)[4] (implicit)  Note implicit firstprivate for scalar arguments
Libomptarget info: from(z[0:n])[80000]
Libomptarget info: firstprivate(a)[8] (implicit)
Libomptarget info: to(x[0:n])[80000]
Libomptarget info: to(y[0:n])[80000]
Libomptarget info: Creating new map entry with <...> TgtPtrBegin=0x00007f90b6a20000, Size=80000, DynRefCount=1, HoldRefCount=0, Name=z[0:n]
Libomptarget info: Creating new map entry with <...> TgtPtrBegin=0x00007f90b6a34000, Size=80000, DynRefCount=1, HoldRefCount=0, Name=x[0:n]
Libomptarget info: Copying data from host to device, HstPtr=0x0000000000c2f0e0, TgtPtr=0x00007f90b6a34000, Size=80000, Name=x[0:n]
Libomptarget info: Creating new map entry with <...> TgtPtrBegin=0x00007f90b6a48000, Size=80000, DynRefCount=1, HoldRefCount=0, Name=y[0:n]
Libomptarget info: Copying data from host to device, HstPtr=0x0000000000c42970, TgtPtr=0x00007f90b6a48000, Size=80000, Name=y[0:n]
Libomptarget info: Mapping exists with HstPtrBegin=0x0000000000c56200, TgtPtrBegin=0x00007f90b6a20000, Size=80000, DynRefCount=1 (update suppressed), HoldRefCount=0
Libomptarget info: Mapping exists with HstPtrBegin=0x0000000000c2f0e0, TgtPtrBegin=0x00007f90b6a34000, Size=80000, DynRefCount=1 (update suppressed), HoldRefCount=0
Libomptarget info: Mapping exists with HstPtrBegin=0x0000000000c42970, TgtPtrBegin=0x00007f90b6a48000, Size=80000, DynRefCount=1 (update suppressed), HoldRefCount=0
Libomptarget info: Mapping exists with HstPtrBegin=0x0000000000c42970, TgtPtrBegin=0x00007f90b6a48000, Size=80000, DynRefCount=0 (decremented, delayed deletion) <...>
Libomptarget info: Mapping exists with HstPtrBegin=0x0000000000c2f0e0, TgtPtrBegin=0x00007f90b6a34000, Size=80000, DynRefCount=0 (decremented, delayed deletion) <...>
Libomptarget info: Mapping exists with HstPtrBegin=0x0000000000c56200, TgtPtrBegin=0x00007f90b6a20000, Size=80000, DynRefCount=0 (decremented, delayed deletion) <...>
Libomptarget info: Copying data from device to host, TgtPtr=0x00007f90b6a20000, HstPtr=0x0000000000c56200, Size=80000, Name=z[0:n]
Libomptarget info: Removing map entry with HstPtrBegin=0x0000000000c42970, TgtPtrBegin=0x00007f90b6a48000, Size=80000, Name=y[0:n]
Libomptarget info: Removing map entry with HstPtrBegin=0x0000000000c2f0e0, TgtPtrBegin=0x00007f90b6a34000, Size=80000, Name=x[0:n]
Libomptarget info: Removing map entry with HstPtrBegin=0x0000000000c56200, TgtPtrBegin=0x00007f90b6a20000, Size=80000, Name=z[0:n]

Running this with LIBOMPTARGET_INFO=-1, we can see the memory operations. All occur from the pragma

at line 89.

Device memory allocated and

Reference count incremented

Data copied

Device array deleted

Oct 21-23 2025 AMD @ Tsukuba University

14 |

[Public]

Mem2.cc version -- Add enter/exit data alloc/delete when memory is created/freed

After new

 mem2.cc:#pragma omp target enter data map(alloc: x[0:n], y[0:n], z[0:n])

Keep map on computational loop. The map to/from should check if the data exists. If not, it will allocate/delete it. Then it will do the copies to

and from. This will increment the Reference Counter and decrement it at end of loop.

 mem2.cc:#pragma omp target teams distribute parallel for simd map(to: x[0:n], y[0:n]) map(from: z[0:n])

Before delete

 mem2.cc:#pragma omp target exit data map(delete: x[0:n], y[0:n], z[0:n])

LIBOMPTARGET_INFO Report

After new:
 Libomptarget info: Creating new map entry with <…>TgtPtrBegin=0x00007ff58f020000, Size=80000, DynRefCount=1, HoldRefCount=0, Name=x[0:n]

Computational Loop:
 Libomptarget info: Mapping exists with HstPtrBegin=0x000000000161d200, TgtPtrBegin=0x00007ff58f048000, Size=80000, DynRefCount=2
(incremented), HoldRefCount=0, Name=z[0:n]
 Libomptarget info: Mapping exists with HstPtrBegin=0x000000000161d200, TgtPtrBegin=0x00007ff58f048000, Size=80000, DynRefCount=1
(decremented), HoldRefCount=0

After delete:
 Libomptarget device 0 info: Mapping exists with HstPtrBegin=0x000000000161d200, TgtPtrBegin=0x00007ff58f048000, Size=80000,
DynRefCount=0 (reset, delayed deletion), HoldRefCount=0
 Libomptarget device 0 info: Removing map entry with HstPtrBegin=0x000000000161d200, TgtPtrBegin=0x00007ff58f048000, Size=80000,
Name=z[0:n]

Oct 21-23 2025 AMD @ Tsukuba University

15 |

[Public]

Mem3.cc version – replace map on computation loop with updates

LIBOMPTARGET_INFO Report

At update – check device array exists and copies data. Reference counter not incremented
Libomptarget info: to(x[0:n])[80000]

 Libomptarget info: Mapping exists with HstPtrBegin=0x0000000000fe10e0, TgtPtrBegin=0x00007ff998a20000, Size=80000,
DynRefCount=1 (update suppressed), HoldRefCount=0
 Libomptarget info: Copying data from host to device, HstPtr=0x0000000000fe10e0, TgtPtr=0x00007ff998a20000, Size=80000,
Name=x[0:n]

At computational loop (no map directive) – note implicit checks, increments and decrements of

reference counter
 Libomptarget device 0 info: use_address(x)[0] (implicit)
 Libomptarget device 0 info: Mapping exists (implicit) with HstPtrBegin=0x0000000000fe10e0, TgtPtrBegin=0x00007ff998a20000,
Size=0, DynRefCount=2 (incremented), HoldRefCount=0, Name=x
 Libomptarget device 0 info: Mapping exists with HstPtrBegin=0x0000000000fe10e0, TgtPtrBegin=0x00007ff998a20000, Size=0, Dy
 Libomptarget device 0 info: Mapping exists with HstPtrBegin=0x0000000000fe10e0, TgtPtrBegin=0x00007ff998a20000, Size=0,
DynRefCount=1 (decremented), HoldRefCount=0nRefCount=2 (update suppressed), HoldRefCount=0

Oct 21-23 2025 AMD @ Tsukuba University

16 |

[Public]

Set LIBOMPTARGET_INFO flag at runtime

extern “C” void __tgt_set_info_flag(uint32_t);

<...>

__tgt_set_info_flag(-1);

#pragma omp target teams distribute parallel for simd map(to: x[0:n], y[0:n]) map(from: z[0:n])

for (int i = 0; i < n; i++)

 z[i] = a*x[i] + y[i];

__tgt_set_info_flag(0);

Oct 21-23 2025 AMD @ Tsukuba University

By setting this LIBOMPTARGET_INFO flag at runtime, you can see the detailed

information at a particular point in your code

Optimizing Memory Bandwidth Utilization to GPU Main

Memory

Oct 21-23 2025 AMD @ Tsukuba University

18 |

[Public]

Memory layout and alignment
#pragma omp requires unified_shared_memory

int main(){

 double * X, * Y, *Z;

 size_t N = (size_t) 1024*1024*1024/sizeof(double);

 X = new double[N]; Y = new double[N];

 X = new (std::align_val_t(128)) double[N];

 if (N < 10) Y = new (std::align_val_t(16)) double[N];

 else Y = new (std::align_val_t(128)) double[N];

 #pragma omp target teams distribute parallel for if(target:N>2000)

 for (size_t i = 0; i < N; ++i)

 X[i] = 0.000001*i;

 #pragma omp target teams distribute parallel for if(target:N>2000)

 for (size_t i = 0; i < N; ++i)

 Y[i] = X[i]

 delete[] X; delete[] Y;

 return 0;

}

Memory allocations with longer memory alignment can

get some improvement in performance. The suggested

length is the cache line length (64 bytes on MI200

series and 128 bytes on MI300).

The default memory alignment obtained with system

allocators such as "malloc" or “new” is 16 bytes.

How to change the memory alignment

• Compiler flag

(-faligned-allocation -fnew-alignment=64)

• Specifying alignment property in source code.

• Using system allocators such as posix_memalign

• More effort needed to get vector and valarray

classes to allocate desired memory alignment

The impact of alignment seems to be less with

more recent GPU models and may vary with your

application.

Oct 21-23 2025 AMD @ Tsukuba University

19 |

[Public]

Measure alignment and workgroup size impact on bandwidth

-- Examine the source code

• Get test code from training examples repo

git clone https://github.com/amd/HPCTrainingExamples

• Go to test directory

cd HPCTrainingExamples/Pragma_Examples/OpenMP/CXX/optimization/alignment

• Examine one of the source files – align_two_kernels.cc

• X = new (std::align_val_t(alignment_length)) double[N];

• Alignment_length is set by an input argument and set to various sizes: 16 32 64 128 256

• #pragma omp target teams distribute parallel for thread_limit(BLOCKSIZE)

• BLOCKSIZE is set to the following sizes 64 128 256 512 1024

Oct 21-23 2025 AMD @ Tsukuba University

https://github.com/amd/HPCTrainingExamples

20 |

[Public]

Measure alignment and workgroup size impact on bandwidth

-- Run the example

• Now let’s run the example with alignment and workgroup size settings to see the effect

Set up environment

module load amdclang

export HSA_XNACK=1

• Build codes

make

• Run codes

./run_align_two_kernels.sh

• There is another single copy kernel that can be run with ./run_align_simple_copy.sh and to

run both, ./run_align.sh

• Try different array sizes and how the alignment impact varies

Oct 21-23 2025 AMD @ Tsukuba University

21 |

[Public]

• MI100 with ROCm 5.x (Original Study) Theoretical Bandwidth 1.23 TB/s or 1230 GB/s1 (about 1145 GiB/s)

• MI210 with ROCm 6.3.3 Theoretical Bandwidth 1.6 TB/s or 1600 GB/s1 (about 1490 GiB/s)

• MI300A with ROCm 6.3.3 Theoretical Bandwidth 5.3 TB/s or 5300 GB/s1 (about 4936 GiB/s)

Notes: MI210 and MI300A system had other users and jobs running. Try the exercise and see if you get similar results.
1 These are decimal units (GB,TB, not GiB,TiB)
2 Not clear whether these are GiB or GB

Alignment → 16 32 64 128 256

OpenMP: thread_limit(128) 540 GB/s 2 750 GB/s 2 750 GB/s 2 680 GB/s 2 870 GB/s 2

OpenMP: thread_limit(1024) 990 GB/s 2 1000 GB/s 2 1010 GB/s 2 960 GB/s 2 1040 GB/s 2

Alignment → 16 32 64 128 256

OpenMP: thread_limit(128) 623 GiB/s 1216 GiB/s 1214 GiB/s 1158 GiB/s 1275 GiB/s

OpenMP: thread_limit(1024) 598 GiB/s 1258 GiB/s 1256 GiB/s 1240 GiB/s 1320 GiB/s

Alignment → 16 32 64 128 256

OpenMP: thread_limit(128) 3390 GiB/s 3650 GiB/s 3662 GiB/s 3748 GiB/s 3772 GiB/s

OpenMP: thread_limit(1024) 3650 GiB/s 3729 GiB/s 3726 GiB/s 3756 GiB/s 3778 GiB/s

Alignment study results by AMD Instinct GPU

Oct 21-23 2025 AMD @ Tsukuba University

22 |

[Public]

A note on bandwidth measurement

• The stream measure of bandwidth is "application bandwidth"

• Each read is counted as 1 load, and each write is counted as 1 store

• Typical hardware implements writes as a load of a cache line and then a store. In this case each write is a

load and a store. For a copy, there is only a store for the write.

• To get hardware bandwidth, the numbers from the application bandwidth must be multiplied by a correction

factor.

• We have shown the hardware bandwidth for the MI210 and the MI300A. We have also shown them in

powers of two (binary) units – GiB and TiB.

• Original measurement units for the MI100 is not certain

• Theoretical bandwidths are given in GBs

• Bandwidth tests at rocm Docs – these are general bandwidth measurements and not stream bandwidth

https://rocm.docs.amd.com/projects/rocm_bandwidth_test/en/latest/index.html#rocm-bandwidth-test-

documentation

Oct 21-23 2025 AMD @ Tsukuba University

https://rocm.docs.amd.com/projects/rocm_bandwidth_test/en/latest/index.html#rocm-bandwidth-test-documentation
https://rocm.docs.amd.com/projects/rocm_bandwidth_test/en/latest/index.html#rocm-bandwidth-test-documentation
https://rocm.docs.amd.com/projects/rocm_bandwidth_test/en/latest/index.html#rocm-bandwidth-test-documentation
https://rocm.docs.amd.com/projects/rocm_bandwidth_test/en/latest/index.html#rocm-bandwidth-test-documentation
https://rocm.docs.amd.com/projects/rocm_bandwidth_test/en/latest/index.html#rocm-bandwidth-test-documentation
https://rocm.docs.amd.com/projects/rocm_bandwidth_test/en/latest/index.html#rocm-bandwidth-test-documentation
https://rocm.docs.amd.com/projects/rocm_bandwidth_test/en/latest/index.html#rocm-bandwidth-test-documentation

23 |

[Public]

Background material: hardware bandwidth vs application bandwidth

• George Hager on stream bandwidth https://blogs.fau.de/hager/archives/8263

• Write requires a write allocate (read and then write), nonstreaming stores

• Correction factors – 1.33 for add/triad, 1.5 for scale, 1.5 for compiler implemented copy and 1.0 for memcpy

• McCalpin on counting bytes https://www.cs.virginia.edu/stream/ref.html#counting

• Stack Exchange -- https://superuser.com/questions/1815148/expected-results-of-a-stream-memory-

bandwidth-benchmark

Oct 21-23 2025 AMD @ Tsukuba University

https://blogs.fau.de/hager/archives/8263
https://www.cs.virginia.edu/stream/ref.html#counting
https://superuser.com/questions/1815148/expected-results-of-a-stream-memory-bandwidth-benchmark
https://superuser.com/questions/1815148/expected-results-of-a-stream-memory-bandwidth-benchmark
https://superuser.com/questions/1815148/expected-results-of-a-stream-memory-bandwidth-benchmark
https://superuser.com/questions/1815148/expected-results-of-a-stream-memory-bandwidth-benchmark
https://superuser.com/questions/1815148/expected-results-of-a-stream-memory-bandwidth-benchmark
https://superuser.com/questions/1815148/expected-results-of-a-stream-memory-bandwidth-benchmark
https://superuser.com/questions/1815148/expected-results-of-a-stream-memory-bandwidth-benchmark
https://superuser.com/questions/1815148/expected-results-of-a-stream-memory-bandwidth-benchmark
https://superuser.com/questions/1815148/expected-results-of-a-stream-memory-bandwidth-benchmark
https://superuser.com/questions/1815148/expected-results-of-a-stream-memory-bandwidth-benchmark
https://superuser.com/questions/1815148/expected-results-of-a-stream-memory-bandwidth-benchmark
https://superuser.com/questions/1815148/expected-results-of-a-stream-memory-bandwidth-benchmark
https://superuser.com/questions/1815148/expected-results-of-a-stream-memory-bandwidth-benchmark
https://superuser.com/questions/1815148/expected-results-of-a-stream-memory-bandwidth-benchmark
https://superuser.com/questions/1815148/expected-results-of-a-stream-memory-bandwidth-benchmark

24 |

[Public]

Partitioning and NUMA regions

• Compute partitions and memory partitions are possible with MI300A

• ROCm Blogs post: Deep dive into the MI300 compute and memory partition modes — ROCm Blogs

• Default compute partition is the Single Partition X-celerator (SPX) partitioning mode

• All XCDs on the device are seen as a single logical compute element

• Workgroups launched are round-robined across the GPU devices. Memory accesses from another GPU memory has

an overhead of about 15%

• In a recent ROCm release, information on the compute partition Core Partitioned X-celerator (CPX) mode

and different NUMA regions (memory partition) was announced

• With CPX, each GPU is seen as a single device

• Changing the partition is done with the amd-smi command

• On the MI300X, the stream benchmark improved by 5%

• Other experiences have shown bandwidth improvements in real applications

• As a new configuration, there have also been some bug reports

• Even the HPL benchmark is limited by bandwidth. Also GCDs may be able to run at higher frequencies.

Oct 21-23 2025 AMD @ Tsukuba University

https://rocm.blogs.amd.com/software-tools-optimization/compute-memory-modes/README.html
https://rocm.blogs.amd.com/software-tools-optimization/compute-memory-modes/README.html
https://rocm.blogs.amd.com/software-tools-optimization/compute-memory-modes/README.html
https://rocm.blogs.amd.com/software-tools-optimization/compute-memory-modes/README.html

Kernel traces and optimizations

Oct 21-23 2025 AMD @ Tsukuba University

26 |

[Public]

Kernel Optimizations

• These examples are at https://github.com/AMD/HPCTrainingExamples in the

HPCTrainingExamples/Pragma_Examples/OpenMP/CXX/kernel_pragmas directory

• We’ll experiment with different optimizations with pragmas. By setting LIBOMPTARGET_KERNEL_TRACE=1 or

2, we can see what the OpenMP® runtime does behind the scenes.

• Setting to 1 shows the name of every kernel, number of teams, threads, and register usage.​

• Setting to 2 prints timing and data transfer information

• LIBOMPTARGET_DEBUG=1 will show more information about data transfer operations and kernel launch

• HPE/Cray

• CRAY_ACC_DEBUG=[1,2,3]

• -hlist=aimd at compile time

Oct 21-23 2025 AMD @ Tsukuba University

https://github.com/AMD/HPCTrainingExamples

27 |

[Public]

Kernel1.cc

• export HSA_XNACK=1

• export LIBOMPTARGET_KERNEL_TRACE=1

• mkdir build && cd build

• CXX=amdclang++ cmake ..

• make

• ./kernel1

Oct 21-23 2025 AMD @ Tsukuba University

LIBOMPTARGET_KERNEL_TRACE Report
DEVID: 0 SGN:2 ConstWGSize:256 args: 3 teamsXthrds:(391X 256) reqd:(0X 0) lds_usage:9784B sgpr_count:106 vgpr_count:58 sgpr_spill_count:39 vgpr_spill_count:0

tripcount:100000 rpc:1 n:__omp_offloading_3d_1a2def2_main_l52

DEVID: 0 SGN:2 ConstWGSize:256 args: 5 teamsXthrds:(391X 256) reqd:(0X 0) lds_usage:9784B sgpr_count:106 vgpr_count:56 sgpr_spill_count:47 vgpr_spill_count:0

tripcount:100000 rpc:1 n:__omp_offloading_3d_1a2def2__Z5daxpyidPdS_S__l97

28 |

[Public]

kernel2.cc

• Change number of threads – add num_threads(64)

• New report

Oct 21-23 2025 AMD @ Tsukuba University

LIBOMPTARGET_KERNEL_TRACE Report
DEVID: 0 SGN:2 ConstWGSize:64 args: 3 teamsXthrds:(416X 64) reqd:(0X 64) lds_usage:9784B sgpr_count:106 vgpr_count:59 sgpr_spill_count:42 vgpr_spill_count:0

tripcount:100000 rpc:1 n:__omp_offloading_3d_1a2def6_main_l52

DEVID: 0 SGN:2 ConstWGSize:64 args: 5 teamsXthrds:(416X 64) reqd:(0X 64) lds_usage:9784B sgpr_count:106 vgpr_count:57 sgpr_spill_count:48 vgpr_spill_count:0

tripcount:100000 rpc:1 n:__omp_offloading_3d_1a2def6__Z5daxpyidPdS_S__l97

29 |

[Public]

kernel3.cc

• Add thread limit for kernel – num_threads(64) thread_limit(64)

• New report

Oct 21-23 2025 AMD @ Tsukuba University

LIBOMPTARGET_KERNEL_TRACE Report
DEVID: 0 SGN:2 ConstWGSize:64 args: 3 teamsXthrds:(416X 64) reqd:(0X 64) lds_usage:9784B sgpr_count:106 vgpr_count:55 sgpr_spill_count:37 vgpr_spill_count:0

tripcount:100000 rpc:1 n:__omp_offloading_3d_1a2def8_main_l52

DEVID: 0 SGN:2 ConstWGSize:64 args: 5 teamsXthrds:(416X 64) reqd:(0X 64) lds_usage:9784B sgpr_count:106 vgpr_count:53 sgpr_spill_count:45 vgpr_spill_count:0

tripcount:100000 rpc:1 n:__omp_offloading_3d_1a2def8__Z5daxpyidPdS_S__l97

30 |

[Public]

Summary

OpenMP compute loop clauses Workgroup

size

LDS

Usage

SGPR VGPR SGPR

Spill

VGPR

Spill

Simple parallel loop 256

256

9784 B

9784 B

106

106

58

56

39

47

0

0

num_threads(64) 64

64

9784 B

9784 B

106

106

59

57

42

48

0

0

num_threads(64) thread_limit(64) 64

64

9784 B

9784 B

106

106

55

53

37

45

0

0

Oct 21-23 2025 AMD @ Tsukuba University

• Note that reducing the threads does not reduce the VGPRs

• Adding the thread_limit clause does reduce the VGPRs

This is a very simple kernel. We are below the VGPR limit for occupancy restrictions. So the impact in this

case is small. Try these changes on your larger kernels and see what it does there.

31 |

[Public]

Register pressure and occupancy for MI250X/MI300

Oct 21-23 2025 AMD @ Tsukuba University

Num VGPRs Occupancy per EU Occupancy per CU

<= 64 8 waves 32 waves

<= 72 7 waves 28 waves

<= 80 6 waves 24 waves

<= 96 5 waves 20 waves

<= 128 4 waves 16 waves

<= 168 3 waves 12 waves

<= 256 2 waves 8 waves

> 256 (+ spilling to scratch) 1 waves 4 waves

There are 4 arithmetic Execution Units per Compute Unit. The compiler generates the

VGPRs for each wavefront to be run on each Execution Unit. The scheduler can place 4 of

the same wavefronts to execute on the CU or wavefronts from other tasks.

This is the column that corresponds to the

compiler and profiler report.

Note: When greater than 256, additional vector registers are stored in scratch, a slower

memory. In most cases this should be avoided. We are below that number, but we are

still concerned with the limit on the number of waves that can be scheduled.

32 |

[Public]

Atomics

• Atomics are generally faster and safer than older approaches such as mutexes. The capability to perform

the operation in one instruction avoids the possibility of interruption as well as being faster. Writing correct

code with software locks without any possibility of a race condition is difficult.

• Note that some atomic implementations may be done with a software implementation and may not be

strictly done with a single instruction

• atomic built-in functions

• omp atomic

• Heavy use of atomics can cause performance issues. Consider rewriting code with a lot of atomics to use

a more efficient approach.

• Atomics have to consider memory coherency. This often means that they must done at the last level cache

or take other approaches to guarantee correctness. Caches may have to be invalidated and refreshed and

can cause cache update storms.

Oct 21-23 2025 AMD @ Tsukuba University

33 |

[Public]

GPU model differences for Atomics

• MI300A generally does the atomic operation in the last level cache to ensure that the memory is coherent

between the GPUs and CPUs.

• MI250 has the capability to do the atomics at different cache levels. This leads to the concept of coarse

and fine memory allocations. While more complicated, it does make it possible to have faster atomics if

you take some care in the coding.

Oct 21-23 2025 AMD @ Tsukuba University

34 |

[Public]

Coarse/Fine Grain Memory Allocations

▪ Coarse grain: coherence and memory ordering with the whole system are legal at

synchronization points (e.g. kernel boundaries). For optimization purposes it avoids coherence

until needed.

▪ Fine grain: coherence and memory ordering with the whole system possible within GPU

kernels. Allows CPU and GPU (and multiple GPUs) to synchronize while the GPU kernel is

running. Reduced cacheability.

Oct 21-23 2025 AMD @ Tsukuba University

35 |

[Public]

Disclaimer

Oct 21-23 2025 AMD @ Tsukuba University

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical

errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and

roadmap changes, component and motherboard version changes, new model and/or product releases, product differences between differing

manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of security vlnerabilities that cannot be

completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the

right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such

revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS

HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY

PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER

CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF

THE POSSIBILITY OF SUCH DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY

CONTENT IS PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR

SOLE DISCRETION AND UNDER NO CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL

RISK AND ARE SOLELY RESPONSIBLE FOR ANY DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, ROCm, Radeon, Radeon Instinct and combinations thereof are

trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be

trademarks of their respective owners.

Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git Project, in the

United States and/or other countries

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board.

	Default Section
	Slide 1: Advanced OpenMP®
	Slide 2: Advanced OpenMP®
	Slide 3: Introduction

	Region Concept
	Slide 4: OpenMP® heavily relies on region concept
	Slide 5: Structured vs Unstructured Data regions

	Memory Management Capabilities
	Slide 6: Memory Management Capabilities
	Slide 7: Different Memory Management Capabilities

	Optimizing Memory Movement Between Host and Device
	Slide 8: Optimizing Memory Movement Between Host and Device
	Slide 9: Understanding the behavior of the memory movement pragmas
	Slide 10: Summary of OpenMP® memory pragmas and what they do
	Slide 11: Basic OpenMP® daxpy code (2 slides) – mem1.cc
	Slide 12: Basic OpenMP® daxpy code (continued)
	Slide 13: Mem1.cc version
	Slide 14: Mem2.cc version -- Add enter/exit data alloc/delete when memory is created/freed
	Slide 15: Mem3.cc version – replace map on computation loop with updates
	Slide 16: Set LIBOMPTARGET_INFO flag at runtime

	Optimizing Memory Bandwidth to GPU Main Memory
	Slide 17: Optimizing Memory Bandwidth Utilization to GPU Main Memory
	Slide 18: Memory layout and alignment
	Slide 19: Measure alignment and workgroup size impact on bandwidth -- Examine the source code
	Slide 20: Measure alignment and workgroup size impact on bandwidth -- Run the example
	Slide 21: Alignment study results by AMD Instinct™ GPU
	Slide 22: A note on bandwidth measurement
	Slide 23: Background material: hardware bandwidth vs application bandwidth
	Slide 24: Partitioning and NUMA regions
	Slide 25: Kernel traces and optimizations
	Slide 26: Kernel Optimizations
	Slide 27: Kernel1.cc
	Slide 28: kernel2.cc
	Slide 29: kernel3.cc
	Slide 30: Summary
	Slide 31: Register pressure and occupancy for MI250X/MI300
	Slide 32: Atomics
	Slide 33: GPU model differences for Atomics
	Slide 34: Coarse/Fine Grain Memory Allocations
	Slide 35: Disclaimer
	Slide 36

