
Performance Portable

Languages (Kokkos, Raja,

C++ Standard Parallelism)

Bob Robey

AMD @ Tsukuba University

Oct 21-23, 2025

2

[Public]

Feb 23rd, 2023

Performance Portability Languages

• Performance, Portability and Productivity (PPP) is critical for today’s HPC application developer

• Custom implementations for each new computer hardware vendor/type is not sustainable

• Single-source application code is a necessity

• Department of Energy (DOE) has sponsored PPP conferences and workshops on this topic

• Two popular PPP languages have emerged in the DOE

• Kokkos – SNL C++ performance portable programming model
• Comprehensive approach to performance portability

• Parts being integrated into C++ standard

• RAJA – LLNL C++ performance portability layer
• Modular in structure with separation of compute and data management

• Adaptable for how each application team implements in their code

Both RAJA and Kokkos are great choices for C++ HPC applications. They share more similarities

than differences. Both are well-supported for AMD GPUs. AMD staff support both RAJA and

Kokkos. There are other similar portability frameworks that are also good.

AMD @ Tsukuba University

3

[Public]

Feb 23rd, 2023

Why Kokkos?

• For C++ applications, Kokkos is an attractive PPP development language

• Kokkos provides a single source capability for C++ codes to run on a variety of

parallel CPU and GPU architectures

• Kokkos is well-supported and relatively mature
• Been around for 10 years

• Used in many critical applications at Sandia National Laboratories

• Gaining use in lots of other applications worldwide

• Selected for Exascale Computing Project funding

• Kokkos generated code performs nearly as well or better than lower-level

languages

AMD @ Tsukuba University

4

[Public]

Feb 23rd, 2023

HIP backend

• Kokkos has long had a HIP backend for selected AMD Processors
• Both CPUs and GPUs

• The Kokkos team has aggressively developed their implementation for new

AMD systems coming online

• In the Fall of 2022, the HIP backend was promoted to production status

• Kokkos handles many of the unique attributes of the AMD GPUs for you

AMD @ Tsukuba University

5

[Public]

Feb 23rd, 2023

What is Kokkos and How does it work?

• Kokkos (κόκκος) is greek for “grains”, “seed” or “kernels” as in grains of sand or

kernels in an ear of corn

• Library based on C++ templates
• Libraries are quicker to implement and distribute

• Eventually these techniques can migrate to compilers

• but this is one-by-one for each compiler

• additions to language standards takes even longer

• The concept of multi-dimensional arrays from Kokkos will be implemented as “mdspan” in the C++ 23

standard

• Developed by a team of computer scientists at Sandia National Laboratory

• Original purpose was to provide an abstraction layer for mathematical solvers

• Supports many backends including OpenMP® threading, CUDA, HIP, and others

AMD @ Tsukuba University

6

[Public]

Feb 23rd, 2023

Kokkos abstractions for GPUs (and parallelism on CPUs)

• Two basic requirements for a GPU programming language
• Actually, for any fine-grained parallel language that runs on either GPUs or CPUs

• Execution capability – this handles how to generate the execution code within

a program to run on the target architecture. Generally, this is for loops, but may

also include single lines of computation.

• Memory handling – the control of the allocation and movement of memory

between the CPU and GPU or other memory locations.

• Kokkos, as a portability layer for various fine-grained programming languages,

must have an abstract representation of these two requirements.

AMD @ Tsukuba University

7

[Public]

7

Execution and Memory abstractions in Kokkos

Execution Spaces -- compute hardware where computations are done

• Execution Patterns

– Simple loops -- parallel_for

– Reductions -- parallel_reduce

– Scans -- parallel_scan

• Execution Policies

– Range policies -- basically index sets that need to be operated on

– Team policies – grouping threads into teams as a subset of the execution space for
hierarchical parallelism.

Memory Spaces – memory hardware where the data is stored

• Memory Layout

– LayoutRight vs LayoutLeft or automatic conversion between the two for different execution
spaces

• Memory Traits

– atomic access, random access (shader memory), streaming stores

Oct 21-23, 2025 AMD @ Tsukuba University

8

[Public]

8

Kokkos has two main build options for cmake

External build

• Modify CMakeLists.txt

– find_package(Kokkos)

– target_link_libraries(<my_application> Kokkos::kokkos)

• export Kokkos_DIR=<kokkos_path>/lib/cmake/Kokkos

In-line build

• Retrieve a copy of Kokkos

– git clone https://github.com/kokkos/kokkos Kokkos, or

– download a zip or tar file of kokkos from https://github.com/kokkos/kokkos

• or create a submodule

– git submodule add https://github.com/kokkos/kokkos Kokkos

• Modify CMakeLists.txt

– add_subdirectory(Kokkos)

– target_link_libraries(<my_application> Kokkos::kokkos)

Oct 21-23, 2025 AMD @ Tsukuba University

https://github.com/kokkos/kokkos
https://github.com/kokkos/kokkos
https://github.com/kokkos/kokkos

9

[Public]

Feb 23rd, 2023

Kokkos Examples with HIP backend

We’ll demonstrate how Kokkos works with some examples

• Stream Triad

• Shallow Water

It is recommended that you try these out on your own to learn the most

effectively.

AMD @ Tsukuba University

Stream Triad Example

11

[Public]

Feb 23rd, 2023

Stream Triad application - the steps

We’ll work through these one at a time

1. First do an external Kokkos build with OpenMP® backend and a HIP backend

2. Modify CMakeList.txt to add Kokkos headers and library

3. Add Kokkos views for memory allocation of arrays

4. Add Kokkos execution pattern – parallel_fors

5. Add Kokkos timers

6. Run and measure performance for OpenMP

7. Rebuild for AMD Instinct GPUs

8. Run and measure performance for AMD Instinct GPU

There is a kokkos module on the system that can be used instead of building an external Kokkos package

AMD @ Tsukuba University

12

[Public]

Feb 23rd, 2023

Step 1: Build a separate Kokkos package

module load amdclang rocm
git clone https://github.com/kokkos/kokkos Kokkos_build

cd Kokkos_build

• Build Kokkos with OpenMP® backend
mkdir build_kokkos && cd build_kokkos

cmake -DCMAKE_INSTALL_PREFIX=${HOME}/Kokkos_HIP \

 -DKokkos_ENABLE_SERIAL=ON -DKokkos_ENABLE_OPENMP=On -DKokkos_ENABLE_HIP=ON \

 -DKokkos_ARCH_ZEN=ON -DKokkos_ARCH_VEGA90A=ON -DCMAKE_CXX_COMPILER=hipcc \

 ..

make –j 8; make install

cd ..

• Set Kokkos_DIR to point to external Kokkos package to use

export Kokkos_DIR=${HOME}/Kokkos_HIP

AMD @ Tsukuba University

13

[Public]

Feb 23rd, 2023

Step 2: Modify build

git clone –recursive https://github.com/EssentialsOfParallelComputing/Chapter13
Chapter13

cd Chapter13/Kokkos/StreamTriad

cd Orig

• Test serial version with
 mkdir build && cd build; cmake ..; make; ./StreamTriad

• If run fails, try reducing the size of the arrays

• Add to CMakeLists.txt
find_package(Kokkos REQUIRED)

target_link_libraries(StreamTriad Kokkos::kokkos)

• Retest with

cmake ..; make; ./StreamTriad

• Check Ver1 for solution. These modifications have already been made in this version.

AMD @ Tsukuba University

https://github.com/EssentialsOfParallelComputing/Chapter7

14

[Public]

Feb 23rd, 2023

Step 3: Add Kokkos views for memory allocation of arrays

Add include file

#include <Kokkos_Core.hpp>

Add initialize and finalize

Kokkos::initialize(argc, argv); {

} Kokkos::finalize();

Replace static array declarations with Kokkos views

int nsize=80000000;

Kokkos::View<double *> a("a", nsize);

Kokkos::View<double *> b("b", nsize);

Kokkos::View<double *> c("c", nsize);

Rebuild and run

AMD @ Tsukuba University

15

[Public]

15

Kokkos Syntax: Initialization of Kokkos

• The first requirement for using Kokkos is to include a header file

#include <Kokkos_Core.hpp>

• The next requirement is to initialize and finalize the Kokkos environment

Kokkos::initialize(argc, argv);

Kokkos::finalize();

• The initialize call should follow the MPI_Init call, if present, and should be near the start of the

program

• You should add scope guards to these calls so that the memory that Kokkos allocates gets

deallocated before the finalize call

Kokkos::initialize(argc, argv);

{

…

}

Kokkos::finalize();

Oct 21-23, 2025 AMD @ Tsukuba University

16

[Public]

16

Kokkos Syntax: Kokkos memory (views)

Kokkos::View<double *> x("data label", N0);

Data can be accessed with either x[i] or x(i)

Kokkos handles deallocation automatically

By default, Kokkos views are initialized. This can be overridden by adding an

optional parameter.

Kokkos::View<double *> x (Kokkos::ViewAllocateWithoutInitializing (label), N0);

You can also create an unmanaged view of a raw pointer, x_raw

Kokkos::View<double*, Kokkos::HostSpace,

Kokkos::MemoryTraits<Kokkos::Unmanaged> > x_view (x_raw, N0);

Oct 21-23, 2025 AMD @ Tsukuba University

17

[Public]

Feb 23rd, 2023

Step 4: Add Kokkos execution pattern – parallel_for

Change for loops to Kokkos parallel fors.

• At start of loop

Kokkos::parallel_for(nsize, KOKKOS_LAMBDA (int i) {

• At end of loop, replace closing brace with

});

Rebuild and run. How much speedup do you observe?

AMD @ Tsukuba University

18

[Public]

Feb 23rd, 2023

Step 5: Add Kokkos timers

Add Kokkos calls

Kokkos::Timer timer;

timer.reset(); // for timer start

time_sum += timer.seconds();

Remove

#include <timer.h>

struct timespec tstart;

cpu_timer_start(&tstart);

time_sum += cpu_timer_stop(tstart);

AMD @ Tsukuba University

19

[Public]

Feb 23rd, 2023

Completed version of Kokkos StreamTriad
#include <Kokkos_Core.hpp>

int main(int argc, char *argv[]){
 Kokkos::Timer timer;
 int nsize=80000000; int ntimes=16;
 double scalar = 3.0, time_sum = 0.0;

 Kokkos::initialize(argc, argv); {

 // initializing arrays
 Kokkos::View<double *> a("a", nsize);
 Kokkos::View<double *> b("b", nsize);
 Kokkos::View<double *> c("c", nsize);

 Kokkos::parallel_for(nsize, KOKKOS_LAMBDA (int i) {
 a[i] = 1.0;
 b[i] = 2.0;
 });

 for (int k=0; k<ntimes; k++){
 timer.reset();
 // stream triad loop
 Kokkos::parallel_for(nsize, KOKKOS_LAMBDA (int i) {
 c[i] = a[i] + scalar*b[i];

 });
 time_sum += timer.seconds();
 }

 printf("Average runtime is %lf msecs\n", time_sum/ntimes*1000.0);

 } Kokkos::finalize();
}

AMD @ Tsukuba University

20

[Public]

20

Kokkos: performance profiling

Build kokkos tools
git clone https://github.com/kokkos/kokkos-tools kokkos-tools

cd kokkos-tools/src/tools/simple-kernel-timer

make

Run application with tool
./StreamTriad --kokkos-tools-library=<path to kokkos tools>/

src/tools/simple-kernel-timer/kp_kernel_timer.so

 or
KOKKOS_PROFILE_LIBRARY=<path to kokkos tools>/

– src/tools/simple-kernel-timer/kp_kernel_timer.so ./StreamTriad

Print out results of tool
<path_to_tool_directory>/kp_reader

Oct 21-23, 2025 AMD @ Tsukuba University

https://github.com/kokkos/kokkos-tools
https://github.com/kokkos/kokkos-tools
https://github.com/kokkos/kokkos-tools

21

[Public]

Feb 23rd, 2023 21

Review

We covered:

• How to use an external Kokkos build (pre-built)

• How to add the Kokkos dependency to a cmake build

• How to initialize and finalize Kokkos in your application

• How to convert arrays to Kokkos views

• How to express simple loops in Kokkos parallel_for syntax

AMD @ Tsukuba University

22

[Public]

Agenda 1. Introduction to stdpar in C++17/20, how to compile

HIPSTDPAR code, and restrictions

2. How to reason, example of porting application from serial,

to CPU parallel, to GPU parallel

3. Performance results

4. Mix and Match

5. Surprise!

Parallelism Made Easy: HIPSTDPAR

23 |

[Public]

Feb 23rd, 2023

vector<double> x(1024, 1);

transform(x.begin(), x.end(), x.begin(), [](double elem_x) {
return 5.0*elem_x;

}
);

C++ Standard Algorithms

• C++ STD Library contains a massive amount of utility subroutines (algorithms)

• The Algorithms header contains various methods, such as: sort, copy_backwards, for_each, transform…

• Lambda expressions are used to define a method that can be applied to each element of the container

Oct 21-23, 2025 AMD @ Tsukuba University

24 |

[Public]

Feb 23rd, 2023

What is C++ Standard Parallelism?

• The C++ 17 standard introduced support for parallelism with parallel policies. The application developer

specifies parallelism as the first parameter to a C++ algorithm

• std::execution::seq – Sequential execution
• All operations on the thread that invoked the algorithm

• std::execution::unseq – Vectorized execution (C++20)
• Indicate that a parallel algorithm's execution may be vectorized, e.g., executed on a single thread using instructions that operate on

multiple data items

• std::execution::par – Parallel multithreaded execution
• Parallel execution allowed. Operations are indeterminately sequenced within a thread

• std::execution::par_unseq – Parallel multithreaded and vectorized execution
• The various operations can be interleaved with each other on the same thread. Any given operation may start on a thread and end

on a different thread

For the par_unseq policy, this means that user code does not do any memory allocation / deallocation. It only

relies on lock-free specializations of std::atomic, and does not rely on synchronization primitives such as

std::mutex

Oct 21-23, 2025 AMD @ Tsukuba University

25 |

[Public]

Feb 23rd, 2023

Bringing C++ Standard Parallelism to AMD GPUs

• With the release of ROCm 6.1, C++ standard parallelism is available for AMD GPUs

• Blog post on this topic: https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-hipstdpar-readme/

• To enable, use the --hipstdpar compile flag, and --hipstdpar-path=/rocm/include/thrust/system/hip/hipstdpar

• This release only supports the par_unseq execution policy

• Offloading C++ Standard Parallel algorithm execution to GPU relies on the interaction between the

LLVM compiler, HIPSTDPAR, and rocThrust

• By default, HIPSTDPAR assumes that the underlying system is HMM-enabled (HMM* Mode, export

HSA_XNACK=1 required)

• On systems without HMM, HIPSTDPAR requires an extra compilation flag: --hipstdpar-interpose-alloc

• This flag instruct the compiler to replace all dynamic memory allocations with compatible hipManagedMemory

allocations (Interposition mode)

* HMM is Heterogeneous Memory Management also called Memory Management

AMD @ Tsukuba University

https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-hipstdpar-readme/
https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-hipstdpar-readme/
https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-hipstdpar-readme/
https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-hipstdpar-readme/
https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-hipstdpar-readme/
https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-hipstdpar-readme/
https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-hipstdpar-readme/
https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-hipstdpar-readme/
https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-hipstdpar-readme/
https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-hipstdpar-readme/
https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-hipstdpar-readme/
https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-hipstdpar-readme/
https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-hipstdpar-readme/

26 |

[Public]

Feb 23rd, 2023

C++ Standard Algorithms to Parallel GPU Execution
The following serial code:

Runs in parallel on CPU (requires TBB library – Threading Building Blocks):

Runs in parallel on GPU when --hipstdpar is passed at compile time and converted to:

transform(x.begin(), x.end(), x.begin(), [](double elem_x) {
 return 5.0*elem_x;
});

transform(std::execution::par,
 x.begin(), x.end(), x.begin(), [](double elem_x) {
 return 5.0*elem_x;
});

transform(std::execution::par_unseq,
 x.begin(), x.end(), x.begin(), [](double elem_x) {
 return 5.0*elem_x;
});

AMD @ Tsukuba University

27 |

[Public]

Feb 23rd, 2023

How to reason

• Parallelism can provide substantial speedup to serial apps. Important to choose the right kind of parallelism, policy, and

device

• Prioritize Data Parallelism over Task Parallelism

• Use Standard Algorithms whenever possible: the beauty of stdpar is that it works with existing C++ Standard Library

algorithms, making parallelization effortless

• Instead of writing explicit loops, use std::for_each, std::transform, std::reduce, etc. This allows the compiler to optimize

execution automatically

• When using par or par_unseq, operations must not have dependencies between elements:

• Avoid modifying shared variables inside parallelized loops

• Use reductions instead of accumulating results manually

The following is a bad idea:

double sum = 0;
std::for_each(std::execution::par,
 data.begin(), data.end(), [&](double x) {
 sum += x; // Race condition! Multiple threads modifying 'sum' at the same time
});

AMD @ Tsukuba University

28 |

[Public]

Feb 23rd, 2023

C++ Standard Algorithms to Parallel GPU Execution

The following serial code:

Runs in parallel on CPU when the parallel policy is added as the first argument:

This code will be offloaded to AMD GPUs when --hipstdpar is passed at compile time

Oct 21-23, 2025 AMD @ Tsukuba University

transform(x.begin(), x.end(), x.begin(), [](double elem_x)

{

 return 5.0*elem_x;

 }

);

transform(std::execution::par_unseq,

 x.begin(), x.end(), x.begin(), [](double elem_x) {
 return 5.0*elem_x;

 }

);

29 |

[Public]

Feb 23rd, 2023

Restrictions

1. Pointers to functions, and all associated features, e.g. dynamic polymorphism, cannot be used (directly or

transitively) by the user provided callable

2. Global / namespace scope / static / thread storage duration variables cannot be used (directly or

transitively) by the user provided callable

3. Only algorithms that are invoked with iterator arguments that model random_access_iterator are

candidates for offload

4. Exceptions cannot be used by the user provided callable

5. Dynamic memory allocation (e.g. operator new) cannot be used by the user provided callable

6. Selective offload is not possible i.e. it is not possible to indicate that only some algorithms invoked with

the parallel_unsequenced_policy are to be executed on the accelerator

Oct 21-23, 2025 AMD @ Tsukuba University

30 |

[Public]

Feb 23rd, 2023

bool never(const vector<int>& v, int n) {

 return any_of(execution::par_unseq, cbegin(v), cend(v),

 [p = &n](auto&& x) { return x == *p; });

}

Restrictions for Interposition Mode

All previous restrictions apply to Interposition Mode. In addition, the following also apply:

1. All code that is expected to interoperate has to be recompiled with the --hipstdpar-interpose-alloc flag i.e.

it is not safe to compose libraries that have been independently compiled

2. Automatic storage duration (i.e. stack allocated) variables cannot be used (directly or transitively) by the

user provided callable

Oct 21-23, 2025 AMD @ Tsukuba University

31 |

[Public]

Feb 23rd, 2023

Full list of supported C++ algorithms
adjacent_difference find min_element replace_if uninitialized_copy

adjacent_find find_if minmax_element reverse uninitialized_copy_n

all_of find_if_not mismatch reverse_copy uninitialized_default_construct

any_of for_each move set_difference uninitialized_default_construct_n

copy for_each_n none_of set_intersection uninitialized_fill

copy_if generate partition set_symmetric_difference uninitialized_fill_n

copy_n generate_n partition_copy set_union uninitialized_move

count includes reduce sort uninitialized_move_n

count_if inclusive_scan remove stable_partition uninitialized_value_construct

destroy is_partitioned remove_copy stable_sort uninitialized_value_construct_n

destroy_n is_sorted remove_copy_if swap_ranges unique

equal is_sorted_until remove_if transform unique_copy

exclusive_scan lexicographical_compare replace transform_exclusive_scan

fill max_element replace_copy transform_inclusive_scan

fill_n merge replace_copy_if transform_reduce

Oct 21-23, 2025 AMD @ Tsukuba University

32 |

[Public]

Feb 23rd, 2023

Examples

• The first examples are from https://github.com/AMD/HPCTrainingExamples in the HIPStdPar/CXX

directory

• Checkout examples

• Run each of the examples

Oct 21-23, 2025 AMD @ Tsukuba University

git clone https://github.com/AMD/HPCTrainingExamples

cd HPCTrainingExamples/HIPStdPar/CXX

cd saxpy_foreach

make

./saxpy

cd ../saxpy_transform

make

./saxpy

cd ../saxpy_transform_reduce

make

./saxpy

https://github.com/AMD/HPCTrainingExamples
https://github.com/AMD/HPCTrainingExamples

33 |

[Public]

#include <vector>

#include <algorithm>

#include <execution>

using namespace std;

int main(int argc, char *argv[])

{

 vector<double> x(1024, 1);

 for_each(

 execution::par_unseq, x.begin(), x.end(), [](double& x) {

 x *= 5.0;

 }

);

 printf(“Finished Run\n”);

}

Example with for_each algorithm

Oct 21-23, 2025 AMD @ Tsukuba University

34 |

[Public]

Feb 23rd, 2023

EXEC = saxpy

default: ${EXEC}

all: ${EXEC}

ROCM_GPU ?= $(strip $(shell rocminfo |grep -m 1 -E gfx[^0]{1} | sed -e 's/ *Name: *//'))

CXX1=$(notdir $(CXX))

hipstdpar-path is not needed for ROCm 6.1 and later

ifeq ($(findstring amdclang++,$(CXX1)), amdclang++)

 STDPAR_FLAGS = --hipstdpar --offload-arch=$(ROCM_GPU) --hipstdpar-path=${STDPAR_PATH}

else ifeq ($(findstring clang++,$(CXX1)), clang++)

 STDPAR_FLAGS = --hipstdpar --offload-arch=$(ROCM_GPU) --hipstdpar-path=${STDPAR_PATH}

endif

Add --hipstdpar-interpose-alloc if HSA_XNACK is not set

ifeq ($(findstring gfx1030,$(ROCM_GPU)),gfx1030)

 STDPAR_FLAGS += --hipstdpar-interpose-alloc

endif

CXXFLAGS = -g -O3 -fstrict-aliasing ${STDPAR_FLAGS}

LDFLAGS = -fno-lto -lm

${EXEC}: ${EXEC}.o

 ${CXX} ${STDPAR_FLAGS} $(LDFLAGS) $^ -o $@

Cleanup

clean:

 rm -f *.o ${EXEC}

--hipstdpar-path won’t be

needed with ROCm 6.1

--hipstdpar-interpose-alloc replaces

allocations with hipMallocManaged

for systems without Managed Memory.

The AMD clang++ compiler does this

behind the scenes for you.

Oct 21-23, 2025 AMD @ Tsukuba University

Makefile

35 |

[Public]

#include <vector>

#include <algorithm>

#include <execution>

using namespace std;

int main(int argc, char *argv[])

{

 vector<double> x(1024, 1);

 transform(

 execution::par_unseq, x.begin(), x.end(), x.begin(), [](double x_elem) {

 return 5.0*x_elem;

 }

);

 printf(“Finished Run\n”);

}

Example with transform algorithm

Oct 21-23, 2025 AMD @ Tsukuba University

36 |

[Public]

#include <vector>

#include <algorithm>

#include <execution>

using namespace std;

int main(int argc, char *argv[])

{

 vector<double> x(1024, 1);

 double result = transform_reduce(

 execution::par_unseq, x.begin(), x.end(), 0.0, plus<>(), [](double x_elem) {

 return 5.0*x_elem;

 }

);

 printf("Finished Run: Result %lf\n",result);

}

Example with transform_reduce algorithm

Initial value and operator are

added to the transform call

Oct 21-23, 2025 AMD @ Tsukuba University

37 |

[Public]

Feb 23rd, 2023

Traveling Salesman Problem

Oct 21-23, 2025 AMD @ Tsukuba University

• Travelling salesman problem (TSP): “Given a list of cities and the distances between each pair of cities,

what is the shortest possible route that visits each city exactly once and returns to the origin city?”

• NP-Hard problem with exponential complexity. Extra cities cause exponential increase in the search

space.

• Solved via brute-force by testing all possible permutations of cities in parallel

• Only change needed in the code is the policy: from execution_par to execution_par_unseq

std::transform_reduce(std::execution::par,

 counting_iterator(0),

 counting_iterator(factorial(N)),

 route_cost(),

 [](route_cost x, route_cost y)

 { return x.cost < y.cost ? x : y; },

 [=](int64_t i)

std::transform_reduce(std::execution::par_unseq,

 counting_iterator(0),

 counting_iterator(factorial(N)),

 route_cost(),

 [](route_cost x, route_cost y)

 { return x.cost < y.cost ? x : y; },

 [=](int64_t i)

38 |

[Public]

Feb 23rd, 2023

Performance results for TSP

• Travelling salesman problem (TSP): “Given a list of cities and the distances between each pair of cities,

what is the shortest possible route that visits each city exactly once and returns to the origin city?”

• Solved via brute-force by testing all possible permutations of cities.

• NP-Hard problem with exponential complexity. Extra city corresponds to exponential increase in the

search space.

• CPU version using all cores available: 48 logical on MI300A

AMD @ Tsukuba University

39 |

[Public]

Feb 23rd, 2023

Minimax problem

Space-filling point selection in a 2D space (e.g., sensor placement): minimize the maximum distance

from any point in the space to the nearest placed point. Greedy algorithm good option

S: subset of points (chosen samples, like 10)

X: entire set of points ([1-40000])

Goal: minimize
𝑆

𝑑_max(𝑋, 𝑆) where d_max is the maximum distance between a point in X and the

closest point in S.

Random Space-filling

AMD @ Tsukuba University

40 |

[Public]

Feb 23rd, 2023

Performance results for Minimax

Node equipped with 4 APUs (192 threads). Single APU execution. ROCm-6.1.3.

Numactl to select number of threads (24 in this case). E.g., numactl -C 0-23 ./cpu_minimax

Code version Time 4000 elements Time 10000 elements Time 40000 elements

Original 1 minute Too long Too long

Seq 42 seconds 4 m 22 s Too long

Unseq 42 seconds 4 m 22 s Too long

Par (192

threads)

2 m 5 s Too long Too long

Par (24

threads)

56 seconds 57 seconds 6 m 51 s

Par_unseq 22 seconds 1 minute 4 m 48 s

Par_unseq +

affinity

20 seconds 55 seconds 4 m 4 s

AMD @ Tsukuba University

41 |

[Public]

Feb 23rd, 2023

Conclusions

• HIPSTDPAR represents a great alternative to OpenMP® or HIP for porting CPU applications to GPUs

• Perfect fit for data parallelism, not great for task or other parallel paradigms

• Works better for walking through a list of particles or cells than 2D grid indexing

• HIPSTDPAR assumes unified memory support. Perfect fit for MI300A!

• Calling functions inside stdpar section implemented in a separate compilation unit is allowed but a bug

does not currently allow that

• Implementing the function in the header file is a valid alternative

• Host/Device data movement could be problematic, possible to manually transfer data via HIP routine

AMD @ Tsukuba University

42

[Public]

Feb 23rd, 2023

Disclaimer
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical

errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product

and roadmap changes, component and motherboard version changes, new model and/or product releases, product differences between differing

manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot

be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves

the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such

revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS

HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS

INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR

ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR

OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY

ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY

CONTENT IS PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR

SOLE DISCRETION AND UNDER NO CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL

RISK AND ARE SOLELY RESPONSIBLE FOR ANY DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, ROCm, Radeon, and combinations thereof are trademarks of

Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks

of their respective owners.

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board.

Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git Project, in the

United States and/or other countries

LLVM is a trademark of LLVM Foundation

AMD @ Tsukuba University

	Slide 1: Performance Portable Languages (Kokkos, Raja, C++ Standard Parallelism)
	Slide 2: Performance Portability Languages
	Slide 3: Why Kokkos?
	Slide 4: HIP backend
	Slide 5: What is Kokkos and How does it work?
	Slide 6: Kokkos abstractions for GPUs (and parallelism on CPUs)
	Slide 7: Execution and Memory abstractions in Kokkos
	Slide 8: Kokkos has two main build options for cmake
	Slide 9: Kokkos Examples with HIP backend
	Slide 10: Stream Triad Example
	Slide 11: Stream Triad application - the steps
	Slide 12: Step 1: Build a separate Kokkos package
	Slide 13: Step 2: Modify build
	Slide 14: Step 3: Add Kokkos views for memory allocation of arrays
	Slide 15: Kokkos Syntax: Initialization of Kokkos
	Slide 16: Kokkos Syntax: Kokkos memory (views)
	Slide 17: Step 4: Add Kokkos execution pattern – parallel_for
	Slide 18: Step 5: Add Kokkos timers
	Slide 19: Completed version of Kokkos StreamTriad
	Slide 20: Kokkos: performance profiling
	Slide 21: Review
	Slide 22: Agenda
	Slide 23: C++ Standard Algorithms
	Slide 24: What is C++ Standard Parallelism?
	Slide 25: Bringing C++ Standard Parallelism to AMD GPUs
	Slide 26: C++ Standard Algorithms to Parallel GPU Execution
	Slide 27: How to reason
	Slide 28: C++ Standard Algorithms to Parallel GPU Execution
	Slide 29: Restrictions
	Slide 30: Restrictions for Interposition Mode
	Slide 31: Full list of supported C++ algorithms
	Slide 32: Examples
	Slide 33: Example with for_each algorithm
	Slide 34: Makefile
	Slide 35: Example with transform algorithm
	Slide 36: Example with transform_reduce algorithm
	Slide 37: Traveling Salesman Problem
	Slide 38: Performance results for TSP
	Slide 39: Minimax problem
	Slide 40: Performance results for Minimax
	Slide 41: Conclusions
	Slide 42: Disclaimer
	Slide 43

