Performance Portable
Languages (Kokkos, Raja,
C++ Standard Parallelism)

Bob Robey
AMD @ Tsukuba University
Oct 21-23, 2025

AMD 1

together we advance_

[Public]

Performance Portability Languages

- Performance, Portability and Productivity (PPP) is critical for today’s HPC application developer
- Custom implementations for each new computer hardware vendor/type is not sustainable
- Single-source application code is a necessity

- Department of Energy (DOE) has sponsored PPP conferences and workshops on this topic

- Two popular PPP languages have emerged in the DOE

- Kokkos — SNL C++ performance portable programming model
- Comprehensive approach to performance portability
- Parts being integrated into C++ standard

- RAJA — LLNL C++ performance portability layer
- Modular in structure with separation of compute and data management
- Adaptable for how each application team implements in their code

Both RAJA and Kokkos are great choices for C++ HPC applications. They share more similarities
than differences. Both are well-supported for AMD GPUs. AMD staff support both RAJA and
Kokkos. There are other similar portability frameworks that are also good.

AMDA1
2 Feb 23rd, 2023 AMD @ Tsukuba University together we advance_

[Public]

Why Kokkos?

For C++ applications, Kokkos is an attractive PPP development language

Kokkos provides a single source capability for C++ codes to run on a variety of
parallel CPU and GPU architectures

Kokkos is well-supported and relatively mature

- Been around for 10 years

- Used in many critical applications at Sandia National Laboratories
- Gaining use in lots of other applications worldwide

- Selected for Exascale Computing Project funding

Kokkos generated code performs nearly as well or better than lower-level
languages

AMDA1
3 Feb 23rd, 2023 AMD @ Tsukuba University together we advance_

[Public]

HIP backend

- Kokkos has long had a HIP backend for selected AMD Processors
- Both CPUs and GPUs

- The Kokkos team has aggressively developed their implementation for new
AMD systems coming online

- In the Fall of 2022, the HIP backend was promoted to production status

- Kokkos handles many of the unique attributes of the AMD GPUs for you

AMDA1
Feb 23rd, 2023 AMD @ Tsukuba University together we advance_

[Public]

What is Kokkos and How does it work?

- Kokkos (kOKkoOG) is greek for “grains”, “seed” or “kernels™ as in grains of sand or

kernels in an ear of corn
- Library based on C++ templates
- Libraries are quicker to implement and distribute

- Eventually these techniques can migrate to compilers

- but this is one-by-one for each compiler

- additions to language standards takes even longer
- The concept of multi-dimensional arrays from Kokkos will be implemented as “mdspan” in the C++ 23

standard
- Developed by a team of computer scientists at Sandia National Laboratory

- Original purpose was to provide an abstraction layer for mathematical solvers

- Supports many backends including OpenMP® threading, CUDA, HIP, and others

AMDZ1

together we advance_

Feb 23rd, 2023 AMD @ Tsukuba University

[Public]

Kokkos abstractions for GPUs (and parallelism on CPUs)

- Two basic requirements for a GPU programming language
- Actually, for any fine-grained parallel language that runs on either GPUs or CPUs

- Execution capability — this handles how to generate the execution code within
a program to run on the target architecture. Generally, this is for loops, but may
also include single lines of computation.

- Memory handling — the control of the allocation and movement of memory
between the CPU and GPU or other memory locations.

- Kokkos, as a portability layer for various fine-grained programming languages,
must have an abstract representation of these two requirements.

AMDA1
Feb 23rd, 2023 AMD @ Tsukuba University together we advance_

Execution Spaces -- compute hardware where computations are done
« Execution Patterns

— Simple loops -- parallel_for

— Reductions -- parallel_reduce

— Scans -- parallel_scan
« Execution Policies

— Range policies -- basically index sets that need to be operated on

— Team policies — grouping threads into teams as a subset of the execution space for
hierarchical parallelism.

Memory Spaces — memory hardware where the data is stored

 Memory Layout

— LayoutRight vs LayoutLeft or automatic conversion between the two for different execution
spaces

 Memory Traits
— atomic access, random access (shader memory), streaming stores

External build

* Modify CMakelLists.txt
—find_package(Kokkos)
—target_link_libraries(<my_application> Kokkos::kokkos)
» export Kokkos DIR=<kokkos path>/lib/cmake/Kokkos

In-line build
» Retrieve a copy of Kokkos
— git clone https://github.com/kokkos/kokkos Kokkos, or
—download a zip or tar file of kokkos from https://github.com/kokkos/kokkos
* or create a submodule
— git submodule add hitps://github.com/kokkos/kokkos Kokkos
* Modify CMakelLists.txt
—add_subdirectory(Kokkos)
—target_link_libraries(<my_application> Kokkos::kokkos)

https://github.com/kokkos/kokkos
https://github.com/kokkos/kokkos
https://github.com/kokkos/kokkos

[Public]

Kokkos Examples with HIP backend

We’ll demonstrate how Kokkos works with some examples

- Stream Triad

- Shallow Water

It is recommended that you try these out on your own to learn the most
effectively.

AMDA1
9 Feb 23rd, 2023 AMD @ Tsukuba University together we advance_

Stream Triad Example

[Public]

Stream Triad application - the steps

We'll work through these one at a time

First do an external Kokkos build with OpenMP® backend and a HIP backend
Modify CMakeList.txt to add Kokkos headers and library

Add Kokkos views for memory allocation of arrays

Add Kokkos execution pattern — parallel_fors

Add Kokkos timers

Run and measure performance for OpenMP

Rebuild for AMD Instinct GPUs

Run and measure performance for AMD Instinct™ GPU

© N O O bk wbdh =~

There is a kokkos module on the system that can be used instead of building an external Kokkos package

AMD 1
11 Feb 23rd, 2023 AMD @ Tsukuba University together we advance_

[Public]

Step 1: Build a separate Kokkos package

(%odule load amdclang rocm A

git clone https://github.com/kokkos/kokkos Kokkos build
\Ed Kokkos build

* Build Kokkos with OpenMP® backend
/ﬁkdir build kokkos && cd build kokkos *\\
cmake -DCMAKE_INSTALL_PREFIX=${HOME}/Kokkos HIP \
-DKokkos ENABLE_SERIAL=ON -DKokkos ENABLE_ OPENMP=0On -DKokkos ENABLE HIP=ON \
-DKokkos ARCH_ZEN=ON -DKokkos ARCH VEGA90A=ON -DCMAKE_ CXX_ COMPILER=hipcc \

make -j 8; make install

e - Y

- Set Kokkos DIR to point to external Kokkos package to use

export Kokkos DIR=${HOME}/Kokkos HIP

AMD 1
12 Feb 23rd, 2023 AMD @ Tsukuba University together we advance_

[Public]

Step 2: Modify build

(éit clone -recursive https://github.com/EssentialsOfPaPa11e1Computing/Chapter13‘\
Chapteril3

cd Chapterl3/Kokkos/StreamTriad

\cd Orig)

» Test serial version with
mkdir build && cd build; cmake ..; make; ./StreamTriad

« If run fails, try reducing the size of the arrays

 Add to CMakelLists.txt
" find_package (Kokkos REQUIRED)
ktarget_link_libraries(StreamTriad Kokkos: : kokkos)

* Retest with
cmake ..; make; ./StreamTriad
« Check Ver1 for solution. These modifications have already been made in this version.

AMD 1
13 Feb 23rd, 2023 AMD @ Tsukuba University together we advance_

https://github.com/EssentialsOfParallelComputing/Chapter7

[Public]

Step 3: Add Kokkos views for memory allocation of arrays

Add include file
#include <Kokkos Core.hpp>

Add initialize and finalize
Kokkos::initialize(argc, argv); {

[} Kokkos::finalize(); }
Replace static array declarations with Kokkos views
(int nsize=80000000;)
Kokkos: :View<double *> a("a", nsize);
Kokkos: :View<double *> b("b", nsize);
Kokkos: :View<double *> c("c", nsize);

U

Rebuild and run

)

AMDA1
14 Feb 23rd, 2023 AMD @ Tsukuba University together we advance_

* The first requirement for using Kokkos is to include a header file

#include <Kokkos Core.hpp>

* The next requirement is to initialize and finalize the Kokkos environment
rKokkos::initialize(argc, argv);
 Kokkos::finalize();]
* The initialize call should follow the MPI_Init call, if present, and should be near the start of the
program
 You should add scope guards to these calls so that the memory that Kokkos allocates gets
deallocated before the finalize call

/kokkos::initialize(argc, argv);‘\
{

}
\Eokkos::flnallze(); Y.

[Kokkos::View<double *> x("data label™, N@);]

Data can be accessed with either x[i] or x(i)

Kokkos handles deallocation automatically
By default, Kokkos views are initialized. This can be overridden by adding an

optional parameter.

[Kokkos: :View<double *> x (Kokkos::ViewAllocateWithoutInitializing (label), Ne);}

You can also create an unmanaged view of a raw pointer, X_raw
[Kokkos::View<double*, Kokkos: :HostSpace,]

Kokkos: :MemoryTraits<Kokkos: :Unmanaged> > x_view (x_raw, NO©);

[Public]

Step 4: Add Kokkos execution pattern — parallel_for

Change for loops to Kokkos parallel fors.

* At start of loop
Kokkos: :parallel for(nsize, KOKKOS LAMBDA (int i) {

« At end of loop, replace closing brace with
1)

Rebuild and run. How much speedup do you observe?

AMD 1
17 Feb 23rd, 2023 AMD @ Tsukuba University together we advance_

[Public]

Step 5: Add Kokkos timers

Add Kokkos calls
Kokkos: :Timer timer;
timer.reset(); // for timer start
time_sum += timer.seconds();

Remove

(#include <timer.h>)
struct timespec tstart;

cpu_timer_ start(&tstart);

time sum += cpu_timer stop(tstart);
\" _ pu_ _ p() >)

AMD 1
18 Feb 23rd, 2023 AMD @ Tsukuba University together we advance_

[Public]

Completed version of Kokkos StreamTriad

#include <Kokkos Core.hpp>

int main(int argc, char *argv[]){
Kokkos::Timer timer;
int nsize=80000000; int ntimes=16;
double scalar = 3.0, time_sum = 0.0;

Kokkos::initialize(argc, argv); {

// initializing arrays

Kokkos: :View<double *> a("a", nsize);
Kokkos: :View<double *> b("b", nsize);
Kokkos: :View<double *> c("c", nsize);

Kokkos: :parallel for(nsize, KOKKOS_LAMBDA (int i) {
a[i] = 1.0;
b[i] = 2.90;

J

for (int k=0; k<ntimes; k++){
timer.reset();
// stream triad loop
Kokkos::parallel for(nsize, KOKKOS LAMBDA (int i) {
c[i] = a[i] + scalar*b[i];
time sum += timer.seconds();

}

printf("Average runtime is %1f msecs\n", time_sum/ntimes*1000.0);

} Kokkos::finalize();
}

Feb 23rd, 2023 AMD @ Tsukuba University

AMDZ1

together we advance_

Build kokkos tools

git clone https://github.com/kokkos/kokkos-tools kokkos-tools
cd kokkos-tools/src/tools/simple-kernel-timer
make

Run application with tool
[./StreamTriad - -kokkos-tools-1library=<path to kokkos tools>/]

src/tools/simple-kernel-timer/kp kernel timer.so

or
rKOKKOS_PROFILE_LIBRARY=<path to kokkos tools>/
— src/tools/simple-kernel-timer/kp _kernel timer.so ./StreamTriad

\
Print out results of tool
<path_to tool directory>/kp_reader

https://github.com/kokkos/kokkos-tools
https://github.com/kokkos/kokkos-tools
https://github.com/kokkos/kokkos-tools

Review

We covered:

How to use an external Kokkos build (pre-built)

How to add the Kokkos dependency to a cmake build
How to initialize and finalize Kokkos in your application
How to convert arrays to Kokkos views

How to express simple loops in Kokkos parallel for syntax

Feb 23rd, 2023 AMD @ Tsukuba University

[Public]

Parallelism Made Easy: HIPSTDPAR

Agenda 1. Introduction to stdpar in C++17/20, how to compile
HIPSTDPAR code, and restrictions

2. How to reason, example of porting application from serial,
to CPU parallel, to GPU parallel

3. Performance results
4. Mix and Match

5. Surprise!

AMDZ1

22 together we advance_

[Public]

C++ Standard Algorithms

- C++ STD Library contains a massive amount of utility subroutines (algorithms)
- The Algorithms header contains various methods, such as: sort, copy backwards, for_each, transform...

- Lambda expressions are used to define a method that can be applied to each element of the container

vector<double> x(1024, 1);

transform(x.begin(), x.end(), x.begin(), [](double elem x) {

return 5.0%*elem_x;

}
)é

AMDZ1

together we advance_

OFebl 237d20023 AMD @ Tsukuba University

23

[Public]

What is C++ Standard Parallelism?

- The C++ 17 standard introduced support for parallelism with parallel policies. The application developer
specifies parallelism as the first parameter to a C++ algorithm

std::execution::seq — Sequential execution
« All operations on the thread that invoked the algorithm
std::execution::unseq — Vectorized execution (C++20)

Indicate that a parallel algorithm's execution may be vectorized, e.g., executed on a single thread using instructions that operate on
multiple data items

std::execution::par — Parallel multithreaded execution
- Parallel execution allowed. Operations are indeterminately sequenced within a thread

std::execution::par_unseq — Parallel multithreaded and vectorized execution

« The various operations can be interleaved with each other on the same thread. Any given operation may start on a thread and end
on a different thread

For the par_unseq policy, this means that user code does not do any memory allocation / deallocation. It only
relies on lock-free specializations of std::atomic, and does not rely on synchronization primitives such as
std::mutex

AMDZ1

Feb 93142562
Feb! 23rd #2623 together we advance_

24

[Public]

Bringing C++ Standard Parallelism to AMD GPUs

* With the release of ROCm 6.1, C++ standard parallelism is available for AMD GPUs

* Blog post on this topic: htips://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-hipstdpar-readme/

* To enable, use the --hipstdpar compile flag, and --hipstdpar-path=/rocm/include/thrust/system/hip/hipstdpar
* This release only supports the par_unseq execution policy

« Offloading C++ Standard Parallel algorithm execution to GPU relies on the interaction between the
LLVM™ compiler, HIPSTDPAR, and rocThrust

* By default, HIPSTDPAR assumes that the underlying system is HMM-enabled (HMM* Mode, export
HSA_ XNACK=1 required)

* On systems without HMM, HIPSTDPAR requires an extra compilation flag: --hipstdpar-interpose-alloc

» This flag instruct the compiler to replace all dynamic memory allocations with compatible hipManagedMemory

allocations (Interposition mode)

* HMM is Heterogeneous Memory Management also called Memory Management

AMDA1
25 Feb 23rd, 2023 AMD @ Tsukuba University together we advance_

https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-hipstdpar-readme/
https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-hipstdpar-readme/
https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-hipstdpar-readme/
https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-hipstdpar-readme/
https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-hipstdpar-readme/
https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-hipstdpar-readme/
https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-hipstdpar-readme/
https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-hipstdpar-readme/
https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-hipstdpar-readme/
https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-hipstdpar-readme/
https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-hipstdpar-readme/
https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-hipstdpar-readme/
https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-hipstdpar-readme/

[Public]

C++ Standard Algorithms to Parallel GPU Execution

The following serial code:

transform(x.begin(), x.end(), x.begin(), [](double elem x) {

return 5.0*elem x;

})s

Runs in parallel on CPU (requires TBB library — Threading Building Blocks):

transform(,
x.begin(), x.end(), x.begin(), [](double elem x) {
return 5.0*elem_x;

F)

Runs in parallel on GPU when --hipstdpar is passed at compile time and converted to:

transform(5
x.begin(), x.end(), x.begin(), [](double elem x) {

return 5.0*elem x;

T)

AMDA1
26 Feb 23rd, 2023 AMD @ Tsukuba University together we advance_

[Public]

27

How to reason

« Parallelism can provide substantial speedup to serial apps. Important to choose the right kind of parallelism, policy, and
device
* Prioritize Data Parallelism over Task Parallelism

« Use Standard Algorithms whenever possible: the beauty of stdpar is that it works with existing C++ Standard Library
algorithms, making parallelization effortless

» Instead of writing explicit loops, use std::for_each, std::transform, std::reduce, etc. This allows the compiler to optimize
execution automatically

* When using par or par_unseq, operations must not have dependencies between elements:
Avoid modifying shared variables inside parallelized loops
Use reductions instead of accumulating results manually

The following is a bad idea:

double sum = 0;
std::for_each(std::execution: :par,

data.begin(), data.end(), [&](double x) {

})s

AMDC\
Feb 23rd, 2023 AMD @ Tsukuba University together we advance_

[Public]

C++ Standard Algorithms to Parallel GPU Execution

The following serial code:

transform(x.begin(), x.end(), x.begin(), [](double elem x)
{

return 5.0*elem x;

Runs in parallel on CPU when the parallel policy is added as the first argument:

transform(5

x.begin(), x.end(), x.begin(), [](double elem x) {
return 5.0*elem x;

This code will be offloaded to AMD GPUs when --hipstdpar is passed at compile time

OFebl 237d20023 AMD @ Tsukuba University

28

AMDZ1

together we advance_

[Public]

Restrictions

1. Pointers to functions, and all associated features, e.g. dynamic polymorphism, cannot be used (directly or

transitively) by the user provided callable

2. Global / namespace scope / static / thread storage duration variables cannot be used (directly or

transitively) by the user provided callable

3. Only algorithms that are invoked with iterator arguments that model random_access _iterator are

candidates for offload
4. Exceptions cannot be used by the user provided callable
5. Dynamic memory allocation (e.g. operator new) cannot be used by the user provided callable

6. Selective offload is not possible i.e. it is not possible to indicate that only some algorithms invoked with

the parallel_unsequenced_ policy are to be executed on the accelerator

AMDZ1

Feb 93142562
Feb! 23rd #2623 together we advance_

29

[Public]

Restrictions for Interposition Mode

All previous restrictions apply to Interposition Mode. In addition, the following also apply:

1. All code that is expected to interoperate has to be recompiled with the --hipstdpar-interpose-alloc flag i.e.

it is not safe to compose libraries that have been independently compiled

2. Automatic storage duration (i.e. stack allocated) variables cannot be used (directly or transitively) by the

user provided callable

bool never(const vector<int>& v, int n) {
return any_of(, cbegin(v), cend(v),

[p = &] (auto&& x) { return x == *p; });

OFebl 28rd 20023 AMD @ Tsukuba University AMD 1

30 together we advance_

[Public]

Full list of supported C++ algorithms

adjacent_difference find min_element replace_if uninitialized_copy
adjacent_find find_if minmax_element reverse uninitialized_copy_n

all_of find_if_not mismatch reverse_copy uninitialized_default_construct
any_of for_each move set_difference uninitialized_default_construct_n
copy for each n none_of set_intersection uninitialized_fill

copy_if generate partition set_symmetric_difference uninitialized_fill_n

copy_n generate_n partition_copy set_union uninitialized_move

count includes reduce sort uninitialized_move _n

count_if inclusive_scan remove stable_partition uninitialized_value_construct
destroy is_partitioned remove_copy stable_sort uninitialized_value_construct_n
destroy_n is_sorted remove_copy_if swap_ranges unique

equal is_sorted_until remove_if transform unique_copy

exclusive_scan lexicographical_compare replace transform_exclusive_scan

fill

fill_n

Feb! 23rd<2023

max_element

merge

replace_copy

replace_copy_if

transform_inclusive_scan

transform_reduce

AMDZ1

together we advance_

[Public]

Examples

- The first examples are from hitps://github.com/AMD/HPCTrainingExamples in the HIPStdPar/CXX
directory

- Checkout examples

git clone

cd HPCTrainingExamples/HIPStdPar/CXX

- Run each of the examples

cd saxpy_ foreach
make

./ saxpy

cd ../saxpy_transform
make

./ saxpy

cd ../saxpy_transform_reduce
make
./ saxpy

AMDZ1

OFebl 931d 20623 AMD @ Tsukuba University together we advance

32

https://github.com/AMD/HPCTrainingExamples
https://github.com/AMD/HPCTrainingExamples

[Public]

Example with for_each algorithm

#include <vector>

#include <algorithm>

#include <execution>

using namespace std;

int main(int argc, char *argv[])

{
vector<double> x(1024, 1);

, X.begin(), x.end(), [](double& x) {

printf(“Finished Run\n”’);

Oct 21-23, 2025 AMD @ Tsukuba University ﬁgﬁgvﬁladvance

[Public]

default: ${EXEC}
all: ${EXEC}

ROCM_GPU ?= $(strip $(shell rocminfo |grep -m 1 -E gfx[70]{1} | sed -e 's/ *Name: *//'))
CXX1=$(notdir $(CXX))

hipstdpar-path is not needed for ROCm 6.1 and later
ifeq ($(findstring amdclang++,$(CXX1)), amdclang++)
STDPAR_FLAGS = --hipstdpar --offload-arch=$(ROCM_GPU)
else ifeq ($(findstring clang++,$(CXX1)), clang++)
STDPAR_FLAGS = --hipstdpar --offload-arch=$(ROCM_GPU) --hipstdpar-path=${STDPAR_PATH}
endif
Add --hipstdpar-interpose-alloc if HSA XNACK is not set
ifeq ($(findstring gfx1030,%(ROCM _GPU)),gfx1030)
STDPAR_FLAGS +=
endif

CXXFLAGS = -g -03 -fstrict-aliasing ${STDPAR_FLAGS}
LDFLAGS = -fno-1to -1m

${EXEC}: ${EXEC}.o
${CXX} ${STDPAR_FLAGS} $(LDFLAGS) $* -0 $@

Cleanup
clean:
rm -f *.o0 ${EXEC}

AMDZ1

together we advance_

OFebl 237d20023 AMD @ Tsukuba University

[Public]

Example with transform algorithm

#include <vector>
#include <algorithm>
#include <execution>

using namespace std;

int main(int argc, char *argv[])
{
vector<double> x(1024, 1);

(

, X.begin(), x.end(), x.begin(), [](double x elem) {
return 5.0*x_elem;

}
)5

printf(“Finished Run\n”);

Oct 21-23, 2025 AMD @ Tsukuba University ﬁgﬁgvﬁladvance

[Public]

Example with transform_reduce algorithm

#include <vector>
#include <algorithm>
#include <execution>

using namespace std;

int main(int argc, char *argv[])
{
vector<double> x(1024, 1);

double result = (

, X.begin(), x.end(), 0.0, plus<>(), [](double x elem) {
return 5.0*x_elem;

}
)

printf("Finished Run: Result %1f\n",result);

Oct 21-23, 2025 AMD @ Tsukuba University ﬁgﬁgvﬁladvance

[Public]

Traveling Salesman Problem

« Travelling salesman problem (TSP): “Given a list of cities and the distances between each pair of cities,
what is the shortest possible route that visits each city exactly once and returns to the origin city?”

 NP-Hard problem with exponential complexity. Extra cities cause exponential increase in the search
space.

« Solved via brute-force by testing all possible permutations of cities in parallel

« Only change needed in the code is the policy: from execution_par to execution_par_unseq

std::transform_reduce(std:: ; std::transform_reduce(std::
counting_iterator(0), counting_iterator(0),
counting_iterator(factorial(N)), counting_iterator(factorial(N)),

route cost(), route_cost(),

[I(route_cost x, route_cost y) [I(route_cost x, route_cost y)

{ return x.cost <y.cost ? x :vy; }, { return x.cost <y.cost ? x : y; },
[=](int64_t i) [=](int64_t i)

OFebl 28rd 20023 AMD @ Tsukuba University AMD 1

37 together we advance_

[Public]

Performance results for TSP

« Travelling salesman problem (TSP): “Given a list of cities and the distances between each pair of cities,

what is the shortest possible route that visits each city exactly once and returns to the origin city?”
« Solved via brute-force by testing all possible permutations of cities.

- NP-Hard problem with exponential complexity. Extra city corresponds to exponential increase in the

search space.

« CPU version using all cores available: 48 logical on MI300A

afanfari1@sh5-1e707-rd04-03:~/tsp/stdpar$./tsp_clang_stdpar_cpu
Trav Salesman Prob N=14, best route cost 1is: 2650, average time 72.700000 seconds
Solution route 1s Permutation #41165779714 11 8 7 6 0 12 106 9 1 3 2 5 4

afanfari1@sh5-1e707-rd04-03:~/tsp/stdpar$./tsp_clang_stdpar_gpu
Trav Salesman Prob N=14, best route cost 1is: 2650, average time 4.592000 seconds
Solution route i1s Permutation #41165779714 11 8 7 6 0 12 106 9 1 3 2 5 4

AMDA1
38 Feb 23rd, 2023 AMD @ Tsukuba University together we advance_

[Public]

39

Minimax problem

Space-filling point selection in a 2D space (e.g., sensor placement): minimize the maximum distance
from any point in the space to the nearest placed point. Greedy algorithm good option

S: subset of points (chosen samples, like 10)

X: entire set of points ([1-40000])
Goal: min@smize d_max(X,S) where d_max is the maximum distance between a point in X and the

closest point in S.

Random
40000 . .
] .) .
35000 Jee °* W o® .
30000 1 o L o
[] L]
J []
25000 . ® . ® 'f‘ & o
. _
20000 1 ®
. ™ . . -
15000 . °q - Ve
| e L]
10000 1 . o% % e .
-
5000 1 e % . .
' 3 o ~
0 - ® L] [[] .

o

5000 10000 15000 20000 25000 30000 35000 40000

Feb 23rd, 2023

40000 1

35000

30000 4

25000

20000

15000 1

100030 1

5000 1

AMD @ Tsukuba University

Space-filling
& ¢ [] :‘ .:. . .
. . ’ % o
. . .o '.- o
. - : .: . . A * . ®
. ® ’ te .'.. »

1]

5000 10000 15000 20000 25000 30000 35000 40000

AMDZ1

together we advance_

[Public]

Performance results for Minimax
Node equipped with 4 APUs (192 threads). Single APU execution. ROCm-6.1.3.

Numactl to select number of threads (24 in this case). E.g., numactl -C 0-23 ./cpu_minimax

Time 4000 elements | Time 10000 elements Time 40000 elements

Original
Seq
Unseq

Par (192
threads)

Par (24
threads)

Par_unseq

Par_unseq +
affinity

Feb 23rd, 2023

40

1 minute
42 seconds
42 seconds
2mb5s

56 seconds

22 seconds
20 seconds

Too long
4m22s

4m22s
Too long

57 seconds

1 minute
55 seconds

AMD @ Tsukuba University

Too long
Too long
Too long
Too long

6mb51s

4 m48 s
4m4s

AMDZ1

together we advance_

[Public]

41

Conclusions

HIPSTDPAR represents a great alternative to OpenMP® or HIP for porting CPU applications to GPUs
Perfect fit for data parallelism, not great for task or other parallel paradigms

Works better for walking through a list of particles or cells than 2D grid indexing

HIPSTDPAR assumes unified memory support. Perfect fit for MI300A!

Calling functions inside stdpar section implemented in a separate compilation unit is allowed but a bug

does not currently allow that
Implementing the function in the header file is a valid alternative

Host/Device data movement could be problematic, possible to manually transfer data via HIP routine

AMDZ1
Feb 23rd, 2023 AMD @ Tsukuba University together we advance_

[Public]

42

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical
errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product
and roadmap changes, component and motherboard version changes, new model and/or product releases, product differences between differing
manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot
be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves
the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such
revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS 1S.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS
HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS
INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR
ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR
OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY
CONTENT IS PROVIDED “AS 1S” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR

SOLE DISCRETION AND UNDER NO CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL
RISK AND ARE SOLELY RESPONSIBLE FOR ANY DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, ROCm, Radeon, and combinations thereof are trademarks of
Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks
of their respective owners.

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board.

Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git Project, in the
United States and/or other countries

LLVM is a trademark of LLVM Foundation

AMDZ1
Feb 23rd, 2023 AMD @ Tsukuba University together we advance_

	Slide 1: Performance Portable Languages (Kokkos, Raja, C++ Standard Parallelism)
	Slide 2: Performance Portability Languages
	Slide 3: Why Kokkos?
	Slide 4: HIP backend
	Slide 5: What is Kokkos and How does it work?
	Slide 6: Kokkos abstractions for GPUs (and parallelism on CPUs)
	Slide 7: Execution and Memory abstractions in Kokkos
	Slide 8: Kokkos has two main build options for cmake
	Slide 9: Kokkos Examples with HIP backend
	Slide 10: Stream Triad Example
	Slide 11: Stream Triad application - the steps
	Slide 12: Step 1: Build a separate Kokkos package
	Slide 13: Step 2: Modify build
	Slide 14: Step 3: Add Kokkos views for memory allocation of arrays
	Slide 15: Kokkos Syntax: Initialization of Kokkos
	Slide 16: Kokkos Syntax: Kokkos memory (views)
	Slide 17: Step 4: Add Kokkos execution pattern – parallel_for
	Slide 18: Step 5: Add Kokkos timers
	Slide 19: Completed version of Kokkos StreamTriad
	Slide 20: Kokkos: performance profiling
	Slide 21: Review
	Slide 22: Agenda
	Slide 23: C++ Standard Algorithms
	Slide 24: What is C++ Standard Parallelism?
	Slide 25: Bringing C++ Standard Parallelism to AMD GPUs
	Slide 26: C++ Standard Algorithms to Parallel GPU Execution
	Slide 27: How to reason
	Slide 28: C++ Standard Algorithms to Parallel GPU Execution
	Slide 29: Restrictions
	Slide 30: Restrictions for Interposition Mode
	Slide 31: Full list of supported C++ algorithms
	Slide 32: Examples
	Slide 33: Example with for_each algorithm
	Slide 34: Makefile
	Slide 35: Example with transform algorithm
	Slide 36: Example with transform_reduce algorithm
	Slide 37: Traveling Salesman Problem
	Slide 38: Performance results for TSP
	Slide 39: Minimax problem
	Slide 40: Performance results for Minimax
	Slide 41: Conclusions
	Slide 42: Disclaimer
	Slide 43

