
AI Applications Inter-Process

Communications

(MPI4Py and RCCL)

Presenter: Jose Noudohouenou

Oct 14, 2025

AMD Datacenter Solutions Group

AMD @ CASTIEL

2 |

[Public]

Example of Running AI Applications on AMD GPUs

Oct 13-16, 2025 AMD @ CASTIEL

Phases Steps HW Resources Communication Libraries

(Reducing data preprocessing

and processing times*)

1 Data preprocessing phase

Data loaded in memory and

transformed on CPU

Dataset discovering
CPU MPI

(inter-CPU commications)
Sampler distribution

Data loading

2 Data transfers between

(mostly from) CPU and (to)

GPU

CPU GPU

3 Data processing on GPU Distributed DataParallel

(Training)

GPU RCCL

(AMD inter-GPU communications)

* Full optimization requires additional tunings that are not listed on this slide

* Processes communicate with each other by sending messages via the interconnect network

* Communications are managed by libraries such as MPI (CPU), MPI4Py (CPU/GPU), RCCL (AMD GPUs)

MPI4Py

Oct 13-16, 2025 AMD @ CASTIEL

4 |

[Public]

What is MPI4Py

Oct 13-16, 2025 AMD @ CASTIEL

• The Message Passing Interface (MPI) is a standardized and portable message-passing system

designed to function on a wide variety of parallel computers

• The MPI standard defines the syntax and semantics of library routines and allows users to write

portable programs in the main scientific programming languages (Fortran, C, or C++).

• MPI for Python provides (MPI4Py) MPI bindings for the Python programming language, allowing

any Python program to exploit multiple processors across multiple nodes.

• MPI4Py can send data directly from one GPU to another GPU by using GPU-aware MPI.

• MPI4Py can be configured to use any MPI implementation

source: mpi4py documentation

https://mpi4py.readthedocs.io/en/stable/mpi4py.html

5 |

[Public]

Where to get MPI4Py

Oct 13-16, 2025 AMD @ CASTIEL

main project repo

There are simple ways to install mpi4py using pre-built wheels for instance, but we want to leverage a

GPU-aware installation of MPI done with this script

Hence, we will be installing mpi4py from source using the above GitHub repo

https://github.com/amd/HPCTrainingDock/blob/main/comm/scripts/openmpi_setup.sh

6 |

[Public]

MPI4Py Installation

• Script to install mpi4py from source:

https://github.com/amd/HPCTrainingDock/blob/main/comm/scripts/mpi4py_setup.sh

• Installation script needs an existing MPI installation, specified in the environment variable MPI_PATH

• We are using the OpenMPI GPU-Aware MPI present in the system: module show openmpi

• Notice that MPI_PATH is defined in the OpenMPI module

 module load ${MPI_MODULE} rocm/${ROCM_VERSION}

 git clone --branch 4.1.0 https://github.com/mpi4py/mpi4py.git

 cd mpi4py

 echo "[model] = ${MPI_PATH}" >> mpi.cfg

 echo "mpi_dir = ${MPI_PATH}" >> mpi.cfg

 echo "mpicc = ${MPI_PATH}"/bin/mpicc >> mpi.cfg

 echo "mpic++ = ${MPI_PATH}"/bin/mpic++ >> mpi.cfg

 echo "library_dirs = %(mpi_dir)s/lib" >> mpi.cfg

 echo "include_dirs = %(mpi_dir)s/include" >> mpi.cfg

 CC=${ROCM_PATH}/bin/amdclang CXX=${ROCM_PATH}/bin/amdclang++ python3 setup.py build --mpi=model

 CC=${ROCM_PATH}/bin/amdclang CXX=${ROCM_PATH}/bin/amdclang++ python3 setup.py bdist_wheel

 pip3 install -v --target=${MPI4PY_PATH} dist/mpi4py-*.whl

Oct 13-16, 2025 AMD @ CASTIEL

https://github.com/amd/HPCTrainingDock/blob/main/comm/scripts/mpi4py_setup.sh

7 |

[Public]

MPI4Py vs OpenMPI API Comparison

Oct 13-16, 2025 AMD @ CASTIEL

MPI4Py OpenMPI

Notes on MPI4Py API
• Use methods with all-lowercase name for

generic Python objects (example:

Comm.send)

• Use methods with an upper-case letter for

buffer-like objects (example: Comm.Send)

• Source: mpi4py tutorial

https://mpi4py.readthedocs.io/en/stable/tutorial.html#gpu-aware-mpi-python-gpu-arrays

8 |

[Public]

Note about GPU Aware MPI and MPI4Py

Oct 13-16, 2025 AMD @ CASTIEL

• If mpi4py is built against a GPU-aware MPI implementation, GPU arrays can be passed to upper-

case methods as long as they have either the __dlpack__ and __dlpack_device__ methods or

the __cuda_array_interface__ attribute that are compliant with the respective standard

specifications.

• Only C-contiguous or Fortran-contiguous GPU arrays are supported.

• GPU buffers must be fully ready before any MPI routines operate on them to avoid race conditions.

This can be ensured by using the synchronization API of your array library (as we’ll see in the next

example). mpi4py does not have access to any GPU-specific functionality and thus cannot perform

this operation automatically for users.

source: mpi4py tutorial

https://mpi4py.readthedocs.io/en/stable/tutorial.html#gpu-aware-mpi-python-gpu-arrays

9 |

[Public]

MPI4Py and CuPy example: Allreduce and Bcast

Oct 13-16, 2025 AMD @ CASTIEL

Find the example in our exercises repo:

https://github.com/amd/HPCTrainingExamples/blob/main/Python/mpi4py/mpi4py_cupy.py

Returns an array with evenly spaced values within a given interval:

in this case it will be 10,11,…,19
Returns a new array with same shape and dtype of sendbuf.

Similar to the

corresponding

numpy calls but

happening on the

GPU

Note that the call cupy.cuda.get_current_stream() returns

an object of type cupy.cuda.Stream, see the documentation for

the full list of methods, including synchronize()

Returns True if the two arrays are element-wise equal within a tolerance,

Using this formula:

 𝑎 − 𝑏 ≤ 𝑎 ∗ 𝑡𝑜𝑙 + 𝑏 ∗ 𝑟𝑡𝑜𝑙
where a is recvbuf, b is sendbuf*size, and by default tol=1.e-08
 and rtol=1.e-05

alias for

numpy.complex64

which is a float
complex in C

https://github.com/amd/HPCTrainingExamples/blob/main/MLExamples/mpi4py_cupy.py
https://docs.cupy.dev/en/stable/reference/generated/cupy.cuda.Stream.html

10 |

[Public]

MPI4Py and CuPy example: Send-Recv

Oct 13-16, 2025 AMD @ CASTIEL

Find the example in our exercises repository:

https://github.com/amd/HPCTrainingExamples/blob/main/Python/mpi4py/mpi4py_cupy.py

Add:
print(“Rank is:”, rank)
to show that multiple processes are executing

Then run with:
module load mpi4py cupy
mpirun –n 4 python3 mpi4py_cupy.py
and see this output:

Rank is: 2
Rank is: 1
Rank is: 3
Rank is: 0
Starting allreduce test...
Starting bcast test...
Starting send-recv test...
Success

https://github.com/amd/HPCTrainingExamples/blob/main/MLExamples/mpi4py_cupy.py

11 |

[Public]

Verifying that MPI4Py and CuPy example runs on the GPU

Oct 13-16, 2025 AMD @ CASTIEL

Set the AMD_LOG_LEVEL

export AMD_LOG_LEVEL=3
Then run again

mpirun –n 4 python3 mpi4py_cupy.py
and see a lot more output including:

hiprtcCreateProgram (0x7fffa382ee28, #include <cupy/complex.cuh>
#include <cupy/carray.cuh>
#include <cupy/atomics.cuh>
#include <cupy/math_constants.h>
#include <cupy/hip_workaround.cuh>

typedef bool type_in0_raw;
typedef bool type_out0_raw;
typedef int IndexT;

#define REDUCE(a, b) (a & b)
#define POST_MAP(a) (out0 = a)
#define _REDUCE(_offset) if (_tid < _offset) { _type_reduce _a = _sdata[_tid], _b = _sdata[(_tid + _offset)]; _sdata[_tid] =
REDUCE(_a, _b); }

typedef bool _type_reduce;
extern "C" __global__ void cupy_all(const CArray<bool, 1, 1, 1> _raw_in0, CArray<bool, 0, 1, 1> _raw_out0, CIndexer<1, 1> _in_ind,
CIndexer<0, 1> _out_ind, const int _block_stride) {
 __shared__ char _sdata_raw[256 * sizeof(_type_reduce)];
 _type_reduce *_sdata = reinterpret_cast<_type_reduce*>(_sdata_raw);
 unsigned int _tid = threadIdx.x;

12 |

[Public]

Additional Resources

Oct 13-16, 2025 AMD @ CASTIEL

• MPI presentation (touching C,Fortran and Python) from Rolf Rabenseifner at HLRS:

https://fs.hlrs.de/projects/par/par_prog_ws/pdf/mpi_3.1_rab.pdf

• Python for HPC Exercises by MPCDF

mpi4py exercises

https://fs.hlrs.de/projects/par/par_prog_ws/pdf/mpi_3.1_rab.pdf
https://gitlab.mpcdf.mpg.de/mpcdf/python-for-hpc-exercises
https://gitlab.mpcdf.mpg.de/mpcdf/python-for-hpc-exercises

RCCL

Oct 13-16, 2025 AMD @ CASTIEL

14 |

[Public]

Introduction to RCCL

• RCCL: ROCm Collective Communication Library

• Pronounced “rickle” (rhymes with nickel)

• Open-source host-initiated library enabling collective communications executed via GPU as well as direct

send/receive operations

• Supports collective algorithms across multiple processes / nodes via networking using Infiniband Verbs or

TCP/IP sockets

• Actively worked on to optimize performance for AMD hardware

• Forked from NCCL (NVIDIA Collective Communication Library)

• Maintains identical API (drop-in replacement)

Oct 13-16, 2025 AMD @ CASTIEL

15 |

[Public]

ROCm Collective Communication Library (RCCL)

AMD @ CASTIELOct 13-16, 2025

• Library of standard communication routines for GPUs

• Implementing collectives e.g., all-reduce, all-gather, reduce, broadcast, reduce-scatter, gather, scatter, and

all-to-all

• Initial support for direct GPU-to-GPU send and receive operations

• It is used as backend for collective communication for AI applications e.g., in PyTorch

• RCCL-test is a benchmark suite to evaluate the performance and correctness of RCCL operations

• Typical use cases:

o AI workloads

o No HPC Workloads

o Distributed Training/Inferencing

16 |

[Public]

RCCL Usage

• RCCL is provided as library and is not a standalone executable

• Unit tests executables exist, but generally are not packaged and must be built from source

• Performance benchmarking can be done via rccl-tests

• Fork of NCCL’s nccl-tests

• RCCL is currently integrated in many machine learning frameworks, such as PyTorch, JAX, etc.

• RCCL is controlled primarily via environment variables

17 |

[Public]

Example - RCCL test on MI300A

AMD @ CASTIELOct 13-16, 2025

git clone https://github.com/ROCm/rccl-tests.git

cd rccl-tests/

make MPI=1 MPI_HOME=/opt/rocmplus-6.1.0/openmpi/ HIP_HOME=/opt/rocm/

#After successful build, you should be able to see the executables in ./build directory. You can run the collectives with:

./build/all_reduce_perf -b 4M -e 128M -f 2 -g 4 Run with 4 GPUs

Run for 4M to 128M messages
multiplication factor between sizes

These tests have been executed as a demo (not performance claim) on AAC nodes with MI300A APUs , rocm 6.1.0 and OpenMPI 5.0.3/UCX 1.16.0 on April/22/2024

https://github.com/ROCm/rccl-tests.git
https://github.com/ROCm/rccl-tests.git
https://github.com/ROCm/rccl-tests.git

Visualization of RCCL Collectives

Oct 13-16, 2025 AMD @ CASTIEL

19 |

[Public]

Collectives Supported by RCCL

Many to Many

Collectives

AllGather

AllReduce

AllToAll

AllToAllV

ReduceScatter

One to Many

Collectives

Broadcast

Gather

Reduce

Scatter

Point to Point
Collectives

Send/Recv

Oct 13-16, 2025 AMD @ CASTIEL

20 |

[Public]

SEND/RECV

Before After

GPU 0

GPU 1

GPU 0

GPU 1

4

4

GPU 0 has data that it wants to send to GPU 1 GPU 1 receives data from GPU 0

AMD @ CASTIEL

21 |

[Public]

BROADCAST

Before After

GPU 0

GPU 2

GPU 0

4

GPU 0 has data that it wants to send to all

other GPUs
All GPUs receives data from GPU 0

GPU 1 GPU 3 GPU 2GPU 1 GPU 3

4 4 4

4

AMD @ CASTIEL

22 |

[Public]

GATHER

Before After

GPU 0

GPU 2

GPU 0

0

Each GPU has data that GPU 0 wants to

receive
GPU 0 receives data from all GPUs

GPU 1 GPU 3 GPU 2GPU 1 GPU 3

1 2 3

0
1
2
3

AMD @ CASTIEL

23 |

[Public]

REDUCE

Before After

GPU 0

GPU 2

GPU 0

0

Each GPU has data that GPU 0 wants to

receive an element-wise reduction (sum) of

GPU 0 receives the summation of the data

from each GPU

GPU 1 GPU 3 GPU 2GPU 1 GPU 3

1 2 3

6

AMD @ CASTIEL

24 |

[Public]

SCATTER

Before After

GPU 0

GPU 2

GPU 0

GPU 0 wants to a distribute elements across

all GPUs

Each GPU receives a portion of data from

GPU 0

GPU 1 GPU 3 GPU 2GPU 1 GPU 3

0
1
2
3

0

1 2 3

AMD @ CASTIEL

25 |

[Public]

ALLGATHER

Before After

GPU 0

GPU 2

GPU 0

Each GPU has data that it wants to send to all

others

Each GPU receives a copy of the data from all

GPUs

GPU 1 GPU 3 GPU 2GPU 1 GPU 3

0

1 2 3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

AMD @ CASTIEL

26 |

[Public]

ALLREDUCE

Before After

GPU 0

GPU 2

GPU 0

Each GPU has data to contribute to reduction All GPUs get the reduction

GPU 1 GPU 3 GPU 2GPU 1 GPU 3

0

1 2 3

6

6 6 6

AMD @ CASTIEL

27 |

[Public]

REDUCE SCATTER

Before After

GPU 0

GPU 2

GPU 0

Each GPU has data to contribute to reductions
Each GPU receives a portion of reduction

output

GPU 1 GPU 3 GPU 2GPU 1 GPU 3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0

4
8

12

AMD @ CASTIEL

28 |

[Public]

ALL TO ALL / ALL TO ALL V

Before After

GPU 0

GPU 2

GPU 0

Each GPU has a different message to send to

each other GPU.

(Pairwise-sends between all GPUs)

Each GPU receives from all other GPUs

GPU 1 GPU 3 GPU 2GPU 1 GPU 3

0
1
2
3

4
5
6
7

8
9
10
11

12
13
14
15

0
4
8
12

1
5
9
13

2
6
10
14

3
7
11
15

With AllToAll each message is the same size. With AllToAllV, each message size can be Variable AMD @ CASTIEL

29 |

[Public]

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The

information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes,

component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS

flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no

obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time

to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF

AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD

SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN

NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING

FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY CONTENT IS

PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR SOLE DISCRETION AND UNDER NO

CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR ANY

DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD CDNA, AMD ROCm, AMD Instinct, and combinations thereof are

trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of

their respective owners.

Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git Project, in the United States

and/or other countries

Oct 13-16, 2025 AMD @ CASTIEL

	Slide 1: AI Applications Inter-Process Communications (MPI4Py and RCCL)
	Slide 2: Example of Running AI Applications on AMD GPUs
	Slide 3: MPI4Py
	Slide 4: What is MPI4Py
	Slide 5: Where to get MPI4Py
	Slide 6: MPI4Py Installation
	Slide 7: MPI4Py vs OpenMPI API Comparison
	Slide 8: Note about GPU Aware MPI and MPI4Py
	Slide 9: MPI4Py and CuPy example: Allreduce and Bcast
	Slide 10: MPI4Py and CuPy example: Send-Recv
	Slide 11: Verifying that MPI4Py and CuPy example runs on the GPU
	Slide 12: Additional Resources
	Slide 13: RCCL
	Slide 14: Introduction to RCCL
	Slide 15: ROCm Collective Communication Library (RCCL)
	Slide 16: RCCL Usage
	Slide 17: Example - RCCL test on MI300A
	Slide 18: Visualization of RCCL Collectives
	Slide 19: Collectives Supported by RCCL
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Disclaimer
	Slide 30

