R |

Al Applications Inter-Process

Communications
(MPI4Py and RCCL)

Presenter: Jose Noudohouenou
Oct 14, 2025

AMD Datacenter Solutions Group
AMD @ CASTIEL

AMD 1

together we advance_

Example of Running Al Applications on AMD GPUs

Phases

Data preprocessing phase
Data loaded in memory and
transformed on CPU

Data transfers between
(mostly from) CPU and (to)

GPU
Data processing on GPU

Communication Libraries
(Reducing data preprocessing
and processing times)

Steps HW Resources

Dataset discovering
Sampler distribution

Data loading

||

Distributed DataParallel
(Training)

MPI
(inter-CPU commications)

CPU = GPU

RCCL
(AMD inter-GPU communications)

GPU

Full optimization requires additional tunings that are not listed on this slide
Processes communicate with each other by sending messages via the interconnect network
Communications are managed by libraries such as MPI (CPU), MPI4Py (CPU/GPU), RCCL (AMD GPUs)

Oct 13-16, 2025

AMDZU

together we advance_

AMD @ CASTIEL

MPI4Py

Oct 13-16, 2025 AMD @ CASTIEL

What is MPI4Py

The Message Passing Interface (MPI) is a standardized and portable message-passing system
designed to function on a wide variety of parallel computers

The MPI standard defines the syntax and semantics of library routines and allows users to write
portable programs in the main scientific programming languages (Fortran, C, or C++).

MPI for Python™ provides (MPI4Py) MPI bindings for the Python™ programming language, allowing
any Python program to exploit multiple processors across multiple nodes.

MPI4Py can send data directly from one GPU to another GPU by using GPU-aware MPI.

MPI4Py can be configured to use any MPI implementation

source: mpidpy documentation
Oct 13-16, 2025 AMD @ CASTIEL AMDZ\

together we advance_

https://mpi4py.readthedocs.io/en/stable/mpi4py.html

Where to get MPI4Py

main project repo

R | & https://github.com/mpidpy/mpidpy

— O mpidpy / mpidpy

<> Code () Issues 7 17 Pull requests 1 0 Discussions () Actions @ Security &4 Insights

T mp|'4py Public @ Watch 13 ~ Y Fork 130

¥ master ~ P 18 Branches $ 24 Tags t Add file ~ About

Python bindings for MPI

¥ dalcinl CD: Remove PyPy days ago \“) 3,416 Commits

There are simple ways to install mpi4dpy using pre-built wheels for instance, but we want to leverage a
GPU-aware installation of MPI done with this script

Hence, we will be installing mpi4py from source using the above GitHub repo

Oct 13-16, 2025 AMD @ CASTIEL AMDZ\

5 together we advance_

https://github.com/amd/HPCTrainingDock/blob/main/comm/scripts/openmpi_setup.sh

MPI4Py Installation

Script to install mpi4py from source:
https://github.com/amd/HPCTrainingDock/blob/main/comm/scripts/mpi4dpy setup.sh

Installation script needs an existing MPI installation, specified in the environment variable MPI_PATH

We are using the OpenMP| GPU-Aware MPI present in the system: module show openmpi
Notice that MPI_PATH is defined in the OpenMPI| module

module load ${MPI_MODULE} rocm/${ROCM_VERSION}
git clone --branch 4.1.0 https://github.com/mpidpy/mpidpy.git

cd mpidpy

echo "[model] = ${MPI_PATH}" >> mpi.cfg

echo "mpi_dir = ${MPI_PATH}" >> mpi.cfg

echo "mpicc = ${MPI_PATH}"/bin/mpicc >> mpi.cfg
echo "mpic++ = ${MPI_PATH}"/bin/mpic++ >> mpi.cfg
echo "library dirs = %(mpi_dir)s/1ib" >> mpi.cfg

echo "include dirs = %(mpi_dir)s/include" >> mpi.cfg

CC=${ROCM_PATH}/bin/amdclang CXX=${ROCM PATH}/bin/amdclang++ python3 setup.py build --mpi=model
CC=${ROCM_PATH}/bin/amdclang CXX=${ROCM PATH}/bin/amdclang++ python3 setup.py bdist wheel
pip3 install -v --target=${MPI4PY_PATH} dist/mpidpy-*.whl

Oct 13-16, 2025 AMD @ CASTIEL AMDZ\

together we advance_

https://github.com/amd/HPCTrainingDock/blob/main/comm/scripts/mpi4py_setup.sh

MPI4Py vs OpenMPI APl Comparison

MPI4Py OpenMPI

int MPI_Allreduce(const void *sendbuf, void *recvbuf, int count,
MPI Datatype datatype, MPI Op op, MPI_Comm comm)

Allreduce(sendbuf, recvbuf, op=SUM)
Reduce to All.

Parameters: « sendbuf (Buf

» recvbuf (B int MPI Bcast(void *buffer, int count, MPI Datatype datatype,

» op (Op) int root, MPI_Comm comm)
Return type: None
Bcast(buf, root=0 g r ’ . = - q
cast{buf, root=0) int MPI_Send(const void *buf, int count, MPI Datatype datatype, int dest,

Broadcast data from one process to all other processes. int tag, MPI_Comm comm :]

Parameters:

—— Notes on MPI4Py API

end(buf, dest, tag=0) .
° v Use methods with all-lowercase name for
Blocking send. . ™ .
generic Python™ objects (example:
Comm. send)
e A Use methods with an upper-case leter or
buffer-like objects (example: Comm. Send)
Parameters: zuf{t[?f_ Source: mDI4DV tutorial
« dest (int)
« tag (int)
Return type: None
AMDZ

Oct 13-16, 2025 AMD @ CASTIEL
together we advance_

https://mpi4py.readthedocs.io/en/stable/tutorial.html#gpu-aware-mpi-python-gpu-arrays

Note about GPU Aware MPI and MPI4Py

If mpidpy is built against a GPU-aware MPI| implementation, GPU arrays can be passed to upper-
case methods as long as they have either the _ dlpack and dlpack device _ methods or
the cuda_array_interface _ attribute that are compliant with the respective standard

specifications.
Only C-contiguous or Fortran-contiguous GPU arrays are supported.

GPU buffers must be fully ready before any MPI routines operate on them to avoid race conditions.
This can be ensured by using the synchronization API of your array library (as we’ll see in the next
example). mpidpy does not have access to any GPU-specific functionality and thus cannot perform
this operation automatically for users.

source: mpi4py tutorial
Oct 13-16, 2025 AMD @ CASTIEL AMDZ\

together we advance_

https://mpi4py.readthedocs.io/en/stable/tutorial.html#gpu-aware-mpi-python-gpu-arrays

MPI4Py and CuPy example: Allreduce and Bcast

Find the example in our exercises repo:
https://github.com/amd/HPCTrainingExamples/blob/main/Python/mpi4py/mpi4dpy cupy.py

def mpidpy cupy test():

comm
size
rank

MPI.COMM WORLD
comm.Get _size()
comm.Get_rank()

Allreduce
if rank == @:

print("starting allreduce test...")
sendbuf = cupy.arange(10, dtype='1") <
recvbuf = cupy.empty like(sendbuf) <«
always make sure the GPU buffer is ready before any MPI operation
cupy.cuda.get current_stream().synchronize() e
comm.Allreduce(sendbuf, recvbuf)

assert cupy.allclose(recvbuf, sendbuf*size)

—_——

Bcast
if rank == @:
print("Starting bcast test...")
if rank == @: .
buf = cupy.arange(10e, dtypefcupy.complexed alias for
else: numpy . complex64
buf = cupy.empty(106, dtype=cupy.complex64) which is a float
cupy.cuda.get current_stream().synchronize() complex in C
comm.Bcast(buf)
assert cupy.allclose(buf, cupy.arange(1ee, dtype=cupy.complex64))

Oct 13-16, 2025

Returns an array with evenly spaced values within a given interval:

in this case it will be 10,11,...,19 -
Returns a new array with same shape and dtype of sendbuf.

AMD @ CASTIEL

Similar to the
corresponding
numpy calls but
happening on the
GPU

Note that the call cupy.cuda.get_current_stream() returns
an object of type cupy.cuda.Stream, see the documentation for
the full list of methods, including synchronize()

Returns True if the two arrays are element-wise equal within a tolerance,
Using this formula:

|a —b| <a *tol + |b| *rtol
where a is recvbuf, b is sendbuf*size, and by default tol=1.e-08
and rtol=1.e-05

AMDZU

together we advance_

https://github.com/amd/HPCTrainingExamples/blob/main/MLExamples/mpi4py_cupy.py
https://docs.cupy.dev/en/stable/reference/generated/cupy.cuda.Stream.html

MPI4Py and CuPy example: Send-Recv

Find the example in our exercises repository:
https://github.com/amd/HPCTrainingExamples/blob/main/Python/mpi4py/mpi4dpy cupy.py

f Send-Recv Add
if rank == @: . cc . s
print("starting send-recv test...") pr‘lnt(Rank is: 3 r‘ank)
S to show that multiple processes are executing

buf = cupy.arange(20, dtype=cupy.floate4d)
cupy.cuda.get current_stream().synchronize()

for j in range(1,size): Then run with:
comm.Send(buf, dest=j, tag=88+j) module load mpi4py cupy

else:
buf = cupy.empty(20, dtype=cupy.floaté4) mpirun -n 4 python3 mpidpy cupy.py
cupy.cuda.get current_stream().synchronize() . . I
comm.Recv(buf, source=2, tag=88+rank) and see thls OUtlet-
assert cupy.allclose(buf, cupy.arange(20, dtype=cupy.floated))
if rank == o: Rank is: 2
print("Success") Rank is: 1
Rank is: 3
Rank is: ©

Starting allreduce test...
Starting bcast test...
Starting send-recv test...
Success

Oct 13-16, 2025 AMD @ CASTIEL AMDZ\

10 together we advance_

https://github.com/amd/HPCTrainingExamples/blob/main/MLExamples/mpi4py_cupy.py

Verifying that MPI4Py and CuPy example runs on the GPU

Set the AMD _LOG_LEVEL

export AMD_LOG_LEVEL=3
Then run again

mpirun -n 4 python3 mpidpy cupy.py
and see a lot more output including:

hiprtcCreateProgram (Ox7fffa382ee28, #include <cupy/complex.cuh>

#include <cupy/carray.cuh>
#include <cupy/atomics.cuh>
#include <cupy/math_constants.h>
#include <cupy/hip_workaround.cuh>

typedef bool type_in@ raw;
typedef bool type out® raw;
typedef int IndexT;

#define REDUCE(a, b) (a & b)
#define POST_MAP(a) (out® = a)

#define _REDUCE(_offset) if (_tid < _offset) { _type reduce _a = _sdata[_tid], _b = _sdata[(_tid + _offset)];

REDUCE(_a, _b); }

typedef bool _type reduce;

_sdata[_tid] =

extern "C" _ global void cupy_all(const CArray<bool, 1, 1, 1> raw_in@, CArray<bool, 0, 1, 1> raw_out®, CIndexer<l, 1> in_ind,

CIndexer<@, 1> out_ind, const int _block_stride) {
__shared__ char _sdata_raw[256 * sizeof(_type_reduce)];

_type_reduce * sdata = reinterpret_cast<_type_ reduce*>(_sdata_raw);

unsigned int _tid = threadIdx.x;

Oct 13-16, 2025

AMD @ CASTIEL

AMDZU

together we advance_

Additional Resources

MPI presentation (touching C,Fortran and Python™) from Rolf Rabenseifner at HLRS:
https://fs.hirs.de/projects/par/par prog ws/pdf/mpi 3.1 rab.pdf

Python for HPC Exercises by MPCDF

Python for HPC Exercises) .
monte_carlo_pl.py

= mpi_collective_allreduce_numpy.py

P Python for HPC Exercises @

= mpi_collective_bcast_basic.py

¥ master v~ python-for-hpc-exercises Find file :

e3daed5b Merge branch 'correct-diffusion’

? mpi_collective_bcast_numpy.py

3580h97¢ h ist , . .
580097a | (3 History mpi_monte_carlo_pi.py

Repo Updater authored 10 months ago

2 mpi_point_to_point_basic.py

= mpi_point_to_point_numpy.py

mpi4py exercises

2 mpi_simple.py

A\ 4

parallel_processing.py

run_example.sh

Oct 13-16, 2025 AMD @ CASTIEL

AMDZU

together we advance_

https://fs.hlrs.de/projects/par/par_prog_ws/pdf/mpi_3.1_rab.pdf
https://gitlab.mpcdf.mpg.de/mpcdf/python-for-hpc-exercises
https://gitlab.mpcdf.mpg.de/mpcdf/python-for-hpc-exercises

RCCL

Oct 13-16, 2025 AMD @ CASTIEL

Introduction to RCCL

RCCL: ROCm Collective Communication Library
Pronounced “rickle” (rhymes with nickel)

Open-source host-initiated library enabling collective communications executed via GPU as well as direct
send/receive operations

Supports collective algorithms across multiple processes / nodes via networking using Infiniband Verbs or
TCP/IP sockets

Actively worked on to optimize performance for AMD hardware

Forked from NCCL (NVIDIA Collective Communication Library)
Maintains identical API (drop-in replacement)

AMDZU

together we advance_

Oct 13-16, 2025 AMD @ CASTIEL

ROCm Collective Communication Library (RCCL)

Library of standard communication routines for GPUs

Implementing collectives e.g., all-reduce, all-gather, reduce, broadcast, reduce-scatter, gather, scatter, and
all-to-all

Initial support for direct GPU-to-GPU send and receive operations
It is used as backend for collective communication for Al applications e.g., in PyTorch

RCCL-test is a benchmark suite to evaluate the performance and correctness of RCCL operations

Typical use cases:
Al workloads
No HPC Workloads

Distributed Training/Inferencing

Oct 13-16, 2025 AMD @ CASTIEL AMDZ\

together we advance_

RCCL Usage

RCCL is provided as library and is not a standalone executable
Unit tests executables exist, but generally are not packaged and must be built from source

Performance benchmarking can be done via rccl-tests
Fork of NCCL's nccl-tests

RCCL is currently integrated in many machine learning frameworks, such as PyTorch, JAX, etc.
RCCL is controlled primarily via environment variables

AMDZU

together we advance_

Example - RCCL test on MI300A

git clone https://github.com/ROCm/rccl-tests.qit
cd rccl-tests/
make MPI=1 MP|_HOME=/opt/rocmplus-6.1.0/openmpi/ HIP_HOME=/opt/rocm/

#After successful build, you should be able to see the executables in ./build directory. You can run the collectives with:

J/build/all_reduce_perf-b 4M -e 128N f2 -g 4 Run with 4 GPUs

multiplication factor between sizes
Run for 4M to 128M messages

sghazimi@d9dbb2d52d84:~/rccl/rccl-tests$./build/all_reduce_perf —-b 4M —e 128M -f 2 —g 4

nThread 1 nGpus 4 minBytes 4194304 maxBytes 134217728 step: 2(factor) warmup iters: 5 iters: 20 agg iters: 1 validation: 1 graph: ©
#

rccl-tests: Version develop:998f88c

Using devices

Rank @ Pid 1004519 on d9dbb2d52d84 device .8] AMD Instinct MI300A
Rank 1 Pid 1004519 on d9dbb2d52d84 device .01 AMD Instinct MI300A
Rank 2 Pid 1004519 on d9dbb2d52d84 device .80] AMD Instinct MI300A
Rank 3 Pid 1004519 on d9dbb2d52d84 device .81 AMD Instinct MI300A
#
out—of—-place in—-place
size count type redop algbw busbw #wrong algbw busbw #wrong
(B) (elements) (GB/s) (GB/s) (GB/s) (GB/s)
4194304 1048576 float sum 45,88 68.81 48.96 73.44
8388608 2097152 float sum 65.53 98.30 . 61.97 92.95
16777216 4194304 float sum 74.16 111.25 . 68.19 102.29
33554432 8388608 float sum 81.91 122.86 . 76.01 114.01
67108864 16777216 float sum 85.04 127.56 . 81.88 122.83
134217728 33554432 float sum 85.65 128.48 . 83.24 124.85
Oct 13-16, 2025 AMD @ CASTIEL AMDZ
together we advance_

These tests have been executed as a demo (not performance claim) on AAC nodes with MI300A APUs , rocm 6.1.0 and OpenMPI 5.0.3/UCX 1.16.0 on April/22/2024

https://github.com/ROCm/rccl-tests.git
https://github.com/ROCm/rccl-tests.git
https://github.com/ROCm/rccl-tests.git

Visualization of RCCL Collectives

Oct 13-16, 2025 AMD @ CASTIEL

Collectives Supported by RCCL

Send/Recv

Oct 13-16, 2025

One to Many
Collectives

Broadcast
Gather
Reduce
Scatter

AMD @ CASTIEL

$
Many to Many
Collectives

AllGather
AllReduce
AllIToAll
AlIToAllV
ReduceScatter

AMDZU

together we advance_

[Public]

SEND/RECV

GPU 0 has data that it wants to send to GPU 1 GPU 1 receives data from GPU 0

AMD @ CASTIEL AMDZ1

20 together we advance_

[Public]

BROADCAST

21

GPU 0 has data that it wants to send to all
other GPUs

All GPUs receives data from GPU 0O

AMD @ CASTIEL

AMDZN

together we advance_

[Public]

GATHER

22

Each GPU has data that GPU 0 wants to
receive

GPU 0 receives data from all GPUs

AMD @ CASTIEL

AMDZN

together we advance_

[Public]

REDUCE

23

Each GPU has data that GPU 0 wants to
receive an element-wise reduction (sum) of

GPU 0 receives the summation of the data
from each GPU

AMD @ CASTIEL

AMDZN

together we advance_

[Public]

SCATTER

24

GPU 0 wants to a distribute elements across
all GPUs

Each GPU receives a portion of data from
GPUO

AMD @ CASTIEL

AMDZN

together we advance_

[Public]

ALLGATHER

Each GPU has data that it wants to send to all Each GPU receives a copy of the data from all
others GPUs

AMD @ CASTIEL AMDZ1

25 together we advance_

[Public]

ALLREDUCE

Each GPU has data to contribute to reduction All GPUs get the reduction

AMD @ CASTIEL AMDZ

26 together we advance_

[Public]

REDUCE SCATTER

Each GPU has data to contribute to reductions

Each GPU receives a portion of reduction
output

AMD @ CASTIEL AMD1

27 together we advance_

[Public]

ALL TOALL/ALL TOALLYV

Each GPU has a different message to send to
each other GPU. Each GPU receives from all other GPUs
(Pairwise-sends between all GPUs)

2 With AllToAll each message is the same size. AMD @ CASTIEL With AllToAllV, each message size can be Variable Qg[‘ﬂ,'e?ﬂadvm_

29

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The
information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes,
component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS
flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no
obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time
to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF

AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD
SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN
NO EVENT WILLAMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING
FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY CONTENT IS
PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR SOLE DISCRETION AND UNDER NO
CIRCUMSTANCES WILLAMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR ANY
DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD CDNA, AMD ROCm, AMD Instinct, and combinations thereof are
trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of
their respective owners.

Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git Project, in the United States
and/or other countries

Oct 13-16, 2025 AMD @ CASTIEL AMDZ\

together we advance_

	Slide 1: AI Applications Inter-Process Communications (MPI4Py and RCCL)
	Slide 2: Example of Running AI Applications on AMD GPUs
	Slide 3: MPI4Py
	Slide 4: What is MPI4Py
	Slide 5: Where to get MPI4Py
	Slide 6: MPI4Py Installation
	Slide 7: MPI4Py vs OpenMPI API Comparison
	Slide 8: Note about GPU Aware MPI and MPI4Py
	Slide 9: MPI4Py and CuPy example: Allreduce and Bcast
	Slide 10: MPI4Py and CuPy example: Send-Recv
	Slide 11: Verifying that MPI4Py and CuPy example runs on the GPU
	Slide 12: Additional Resources
	Slide 13: RCCL
	Slide 14: Introduction to RCCL
	Slide 15: ROCm Collective Communication Library (RCCL)
	Slide 16: RCCL Usage
	Slide 17: Example - RCCL test on MI300A
	Slide 18: Visualization of RCCL Collectives
	Slide 19: Collectives Supported by RCCL
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Disclaimer
	Slide 30

