Porting code to HIP

Presenter: Bob Robey
AMD @ Tsukuba University
Oct 21-23, 2025

AMD ¢

together we advance_



No one size fits all approach

Self contained GPU code

4 Automatic conversion tools (hipify)

4 Header file interception layer (hipiFLY)
> Fast way to get running code
> May break on creative use of previous device code

More complex accelerator layers

4 Need combination of automatic conversion and manual rewrite
> Abstraction layer needs to be adapted to use HIP API
> Can later use HIP to target both ROCm and CUDA

> Longer time to running code

Oct 21-23, 2025 AMD @ Tsukuba University

AMDZU

together we advance_



Code Conversion
Tools

EXTEND YOUR APPLICATION
PLATFORM SUPPORT BY
CONVERTING CUDA® CODE

I

Single source
Maintain portability

Maintain performance

Oct 21-23, 2025

Hipify-perl
4 Easiest to use; point at a directory and it will hipify CUDA
code

4 Very simple string replacement technique; may require
manual post-processing

4 It replaces cuda with hip, sed -e ‘s/cuda/hip/g’, (e.g.,
cudaMemcpy becomes hipMemcpy)

4 Recommended for quick scans of projects

It will not translate if it does not recognize a CUDA call and
it will report it

Hipify-clang
4 More robust translation of the code
4 Generates warnings and assistance for additional analysis

4 High quality translation, particularly for cases where the user
is familiar with the make system

AMD @ Tsukuba University



Hipify-perl

It is located in /opt/rocm/bin
Command line tool: hipify-perl foo.cu > new_foo.cpp

Compile: hipcc new_foo.cpp

How does this this work in practice?
Hipify source code
Check it in to your favorite version control
Try to build
Manually work on the rest

Oct 21-23, 2025 AMD @ Tsukuba University ng'hgvil advance



Hipify-clang

It is located in /opt/rocm/bin
Build from source (needs clang compiler)
hipify-clang has unit tests using LLVM™ lit/FileCheck (44 tests)

Hipification requires same headers that would be needed to compile it with clang:
./hipify-clang foo.cu -I /usr/local/cuda-8.0/samples/common/inc

More info at: https://github.com/ROCm/HIPIFY/blob/master/README.md

Can be used to perform build-time conversion if project can be automatically converted

Oct 21-23, 2025 AMD @ Tsukuba University

AMDZU

together we advance_



[Public]

Ported in a Single Day Ported in 21 Days Ported in a Couple of Days

SPECFEM3D QUDA CHOLLA
Seismology Quantum Physics Astrophysics

Ported in an Afternoon
HACC

NAMD... . ...  LAMMPS Ekokkos  Nekbone gw&ic* MILC Chroma P TensorFlow

PYTORCH  GridTools IVALTAIR SIRIUS  AMBER PICONnGPU  CP2K LSMS

AMD @ Tsukuba University AMDAQ

6 together we advance_



Other Hipify tools

Individual file tools (already discussed)
hipify-perl
hipify-clang
Recursive directory tools (also in /opt/rocm/bin)

hipconvertinplace.sh
hipconvertinplace-perl.sh
hipexamine.sh
hipexamine-perl.sh

The Perl® scripts are a set and the shell/clang tools are a set. The directory-based tools basically call the
base tools, hipify-perl and hipify-clang, respectively.

For example:
hipifyexamine-perl.sh recursively runs hipify-perl with the -no-output -print-stats options (-examine option is a
shorthand for -no-output -print-stats options).

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_



Gotchas

Hipify tools are not running your application, or checking correctness

Code relying on specific Nvidia hardware aspects (e.g., warp size == 32) may need attention after
conversion (grep for "32" just in case). Use #define WARPSIZE size.

Certain functions may not have a correspondent hip version (e.g., __shfl down_sync — hint: use
shfl_down instead)

Hipifying can’t handle inline PTX assembly or CUDA intrinsics

Can either use inline GCN ISA, or convert it to HIP

None of the tools convert your build system script such as CMAKE or whatever else you use. The user is
responsible to find the appropriate flags and paths to build the new converted HIP code.

Notes

Hipify-perl and hipify-clang can both convert library calls (i.e. cuBLAS becomes hipBLAS)
CMake starting with version 3.21 can be used to automatically set up basic compilation
flags by using enable language(HIP), supports CMAKE_HIP_ARCHITECTURES for

setting devices to build for

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_



: Intercept APl method
to choose GPU backend

Enable running existing code on
different backends with single
header

Can change between targeting
CUDA and ROCm in one place

Only works if no difference ‘

between API calls

Existing code cannot use any
CUDA specific hard coded values

Performance needs to be
evaluated on a case-by-case basis

Link to the header file:

https://github.com/amd/HPCTrainingExamples/blob/main/hipifly/vector add/src/cuda to hip.h

AMDZU

together we advance_

Oct 21-23, 2025 AMD @ Tsukuba University===s


https://github.com/amd/HPCTrainingExamples/blob/main/hipifly/vector_add/src/cuda_to_hip.h

Exploiting the power of HIP: portable build systems
One of the attractive features of HIP is that it can run on both AMD and Nvidia GPUs

The HIP language has been developed with this in mind
Select ROCm and it will run on AMD GPUs
Select CUDA and it will run on Nvidia GPUs

But it can be difficult to support this with a portable build system that switches between these two

We’ll demonstrate two of the most common build systems that can support portable builds
make
cmake

Oct 21-23, 2025 AMD @ Tsukuba University

AMDZU

together we advance_



Portable build systems — Makefile

EXECUTABLE = ./vectoradd / Pattern rule for HIP source
all: $(EXECUTABLE) test %$.0: %.hip
.PHONY: test hipcc $(HIPCC FLAGS) -c $” -o $@
OBJECTS = vectoradd.o S (EXECUTABLE) : $ (OBJECTS)

hipcc $< $(LDFLAGS) -o $@
CXXFLAGS = -g -02 —-DNDEBUG -fPIC
HIPCC FLAGS = -02 -g —DNDEBUG test: $(EXECUTABLE)

e piamroRu o .. «— Setting default device compiler e

clean:
ifeq ($(HIP_PLATFORM), nvidia) rm -f $(EXECUTABLE) $ (OBJECTS) build
HIP PATH ?= $(shell hipconfig --path)
HIPCC FLAGS += -x cu -I${HIP PATH}/include/
endif \\\
ifeq (3 (HIP_PLATFORM), ) - Setting compile flags for different GPUs
HIPCC FLAGS += -x hip -munsafe-fp-atomics
endif
Oct 21-23, 2025 AMD @ Tsukuba University AMDZ

11 together we advance_



Using a portable Makefile

For ROCm

module load rocm
export CXX=${ROCM PATH}/llvm/bin/clang++

To build and run:
make vectoradd
./vectoradd

For CUDA

module load rocm We still need HIP for the portability layer
module load cuda

To build and run: Overriding default to compile with nvidia

HIP PLATFORM=nvidia make vectoradd
./vectoradd

Oct 21-23, 2025 AMD @ Tsukuba University

AMDZU

together we advance_



Portable Build Systems — CMakeLists.txt (1 of 3)

cmake minimum required(VERSION 3.21 FATAL ERROR)
project (Vectoradd LANGUAGES CXX)

set (CMAKE CXX STANDARD 14)

if (NOT CMAKE BUILD TYPE)
set (CMAKE BUILD TYPE RelWithDebInfo)
endif (NOT CMAKE BUILD TYPE)

string (REPLACE -02 -03 CMAKE CXX FLAGS RELWITHDEBINFO ${CMAKE CXX FLAGS RELWITHDEBINFO})

if (NOT CMAKE_GPU_RUNTIME)
set (GPU RUNTIME "ROCM" CACHE STRING "Switches between ROCM and CUDA")
else (CMAKE GPU RUNTIME) Setting
Set(GPU_RUNTIME "${CMAKE_GPU_RUNTIME}" CACHE STRING "Switches between ROCM and CUDA") -CBPleQLHQTWAAE
endif (NOT CMAKE GPU RUNTIME) '_

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

13 together we advance_



Portable Build Systems — CMakelLists.txt (2 of 3)

m

set (GPU_RUNTIMES "ROCM" "CUDA" "HIP")
if (NOT "${GPU_RUNTIME}" IN LIST GPU_RUNTIMES)
set (ERROR MESSAGE
"GPU RUNTIME is set to \"${GPU RUNTIME}\".\nGPU RUNTIME must be either HIP, ROCM, or CUDA.")
message (FATAL ERROR ${ERROR MESSAGE})
endif ()

if (${GPU RUNTIME} MATCHES "ROCM")
set (GPU_RUNTIME "HIP")
endif (${GPU RUNTIME} MATCHES "ROCM")
set property (CACHE GPU RUNTIME PROPERTY STRINGS ${GPU RUNTIMES})

enable language (${GPU RUNTIME}) Enabling either CUDA or HIP (ROCM)
Set(CMAKE_${GPU_RUNTIME}_EXTENSIONS OFF)
Set(CMAKE_${GPU_RUNTIME}_STANDARD_REQUIRED ON)

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_



Portable Build Systems — CMakeLists.txt (3 of 3)

set (VECTORADD CXX SRCS "")
set (VECTORADD HIP SRCS vectoradd.hip)

set (ROCMCC_FLAGS "S${ROCMCC FLAGS} -munsafe-fp-atomics")
set (CUDACC FLAGS "S${CUDACC FLAGS} ")

if (${GPU RUNTIME} MATCHES "HIP")
set (HIPCC FLAGS "${ROCMCC FLAGS}")
else (S{GPU RUNTIME} MATCHES "CUDA")
set (HIPCC FLAGS "S${CUDACC FLAGS}")

endif (${GPU RUNTIME} MATCHES "HIP")

install (TARGETS wvectoradd)

add executable (vectoradd ${VECTORADD CXX SRCS} S${VECTORADD HIP SRCS} )

//_\/’//_\//_\

- Setting different flags for each GPU type

Setting language type for HIP source files

set source files properties (${VECTORADD HIP SRCS} PROPERTIES LANGUAGE ${GPU RUNTIME})
set source files properties(vectoradd.hip PROPERTIES COMPILE FLAGS ${HIP?C_FLAGS})

l

Setting device compile flags

Oct 21-23, 2025

AMD @ Tsukuba University

AMDZU

together we advance_



Using a portable CMakeLists.txt

For ROCm

module load rocm
module load cmake
export CXX=${ROCM_PATH}/1llvm/bin/clang++

To build and run:
mkdir build && cd build
cmake ..
make VERBOSE=1
./vectoradd

For CUDA

module load rocm
module load cuda
module load cmake

To build and run: _— Overrides default GPU runtime to specify CUDA
mkdir build && cd build

cmake -DCMAKE_GPU_RUNTIME=CUDA ..
make VERBOSE=1
./vectoradd

Oct 21-23, 2025 AMD @ Tsukuba University

AMDZU

together we advance_



Important CMake variables

CMAKE_HIP_ARCHITECTURES
CMAKE_HIP_ARCHITECTURES=“gfx90a;gfx908”
GPU_TARGETS=“gfx90a; gfx908”
List of gfx models: https://llvm.org/docs/AMDGPUUsage.html
Find the gfx model with rocminfo: rocminfo | grep gfx | sed -e 's/Name://' | head -1 |sed 's/ //g'

CMAKE_CXX_COMPILER:PATH=/opt/rocm/bin/amdclang++
CMAKE_HIP COMPILER _ROCM_ROOT:PATH=/opt/rocm — to help cmake find the cmake config files
CMAKE_PREFIX_PATH=/opt/rocm

Finding HIP packages and use results
find_package(rocprim)
target link libraries(MyLib PUBLIC roc::rocprim)
Using host and device from find_package(hip)
target link libraries(MyLib PRIVATE hip::device)
target _link libraries(MyApp PRIVATE hip::host)

Oct 21-23, 2025 AMD @ Tsukuba University

AMDZU

together we advance_


https://llvm.org/docs/AMDGPUUsage.html

CUDA Fortran mmmp Fortran + HIP C/C++

There is no HIP equivalent to CUDA Fortran
HIP functions are callable from C, using extern C, so they can be called directly from Fortran

The strategy here is:
1) Manually port CUDA Fortran code to HIP kernels in C-like syntax
2) Wrap the kernel launch in a C function

3) Call the C function from Fortran through Fortran’s ISO_C_binding. It requires Fortran 2008 because of
using pointers to share data.

This strategy should be usable by Fortran users since it is standard conforming Fortran

ROCm has an interface layer, hipFort, which provides the wrapped bindings for use in Fortran
» https://github.com/ROCm/hipfort

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_


https://github.com/ROCm/hipfort
https://github.com/ROCm/hipfort

Hands-on exercises

Located in our HPC Training Examples repo:
https://github.com/amd/HPCTrainingExamples

A table of contents for the READMEs if available at the top-level README in the repo

Relevant exercises for this presentation located in:
HIPIFY directory

hipifly directory
HIPFort directory

Link to instructions on how to run the HIPIFY tests: HIPIFY/README.md
Log into the AAC node and clone the repo:

ssh <username>@aac6.amd.com -p 7000 -i <path_to_ssh key>

git clone https://github.com/amd/HPCTrainingExamples.git
Oct 21-23, 2025 AMD @ Tsukuba University

AMDZU

together we advance_


https://github.com/amd/HPCTrainingExamples
https://github.com/amd/HPCTrainingExamples/blob/main/README.md
https://github.com/amd/HPCTrainingExamples/tree/main/HIPIFY
https://github.com/amd/HPCTrainingExamples/tree/main/HIPIFY
https://github.com/amd/HPCTrainingExamples/tree/main/hipifly
https://github.com/amd/HPCTrainingExamples/tree/main/hipifly
https://github.com/amd/HPCTrainingExamples/tree/main/HIPFort
https://github.com/amd/HPCTrainingExamples/tree/main/HIPFort
https://github.com/amd/HPCTrainingExamples/blob/main/HIPIFY/README.md

20

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions,

and typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons,
including but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product
releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any
computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to
update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from
time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY
APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR
ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY
INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, ROCm, Radeon™, CDNA, Instinct, and combinations
thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for identification purposes only and
may be trademarks of their respective companies.

Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git
Project, in the United States and/or other countries

LLVM is a trademark of LLVM Foundation
Perl is a trademark of Perl Foundation.

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_






	Default Section
	Slide 1: Porting code to HIP

	Code Conversion Tools
	Slide 2: No one size fits all approach
	Slide 3: Code Conversion Tools  extend your Application Platform support by Converting CUDA® code   Single source  Maintain portability  Maintain performance
	Slide 4: Hipify-perl
	Slide 5: Hipify-clang
	Slide 6
	Slide 7: Other Hipify tools
	Slide 8: Gotchas
	Slide 9: HIPIFLY: Intercept API method  to choose GPU backend
	Slide 10: Exploiting the power of HIP: portable build systems
	Slide 11: Portable build systems – Makefile
	Slide 12: Using a portable Makefile
	Slide 13: Portable Build Systems – CMakeLists.txt (1 of 3)
	Slide 14: Portable Build Systems – CMakeLists.txt (2 of 3)
	Slide 15: Portable Build Systems – CMakeLists.txt (3 of 3)
	Slide 16: Using a portable CMakeLists.txt
	Slide 17: Important CMake variables
	Slide 18: CUDA Fortran             Fortran + HIP C/C++ 
	Slide 19: Hands-on exercises 
	Slide 20: Disclaimer
	Slide 21


