
Porting code to HIP

Presenter: Bob Robey

AMD @ Tsukuba University

Oct 21-23, 2025

2 |

[Public]

No one size fits all approach

Self contained GPU code
◢ Automatic conversion tools (hipify)

◢ Header file interception layer (hipiFLY)

➢ Fast way to get running code

➢ May break on creative use of previous device code

More complex accelerator layers
◢ Need combination of automatic conversion and manual rewrite

➢ Abstraction layer needs to be adapted to use HIP API

➢ Can later use HIP to target both ROCm and CUDA

➢ Longer time to running code

Oct 21-23, 2025 AMD @ Tsukuba University

Code Conversion
Tools

EXTEND YOUR APPLICATION
PLATFORM SUPPORT BY

CONVERTING CUDA® CODE

Single source

Maintain portability

Maintain performance

Hipify-perl
◢ Easiest to use; point at a directory and it will hipify CUDA

code

◢ Very simple string replacement technique; may require
manual post-processing

◢ It replaces cuda with hip, sed -e ‘s/cuda/hip/g’, (e.g.,
cudaMemcpy becomes hipMemcpy)

◢ Recommended for quick scans of projects
◢ It will not translate if it does not recognize a CUDA call and

it will report it

Hipify-clang
◢ More robust translation of the code

◢ Generates warnings and assistance for additional analysis

◢ High quality translation, particularly for cases where the user
is familiar with the make system

Oct 21-23, 2025 AMD @ Tsukuba University

4 |

[Public]

Hipify-perl

It is located in /opt/rocm/bin

• Command line tool: hipify-perl foo.cu > new_foo.cpp

• Compile: hipcc new_foo.cpp

How does this this work in practice?

• Hipify source code

• Check it in to your favorite version control

• Try to build

• Manually work on the rest

Oct 21-23, 2025 AMD @ Tsukuba University

5 |

[Public]

Hipify-clang

It is located in /opt/rocm/bin

Build from source (needs clang compiler)

• hipify-clang has unit tests using LLVM lit/FileCheck (44 tests)

Hipification requires same headers that would be needed to compile it with clang:

• ./hipify-clang foo.cu -I /usr/local/cuda-8.0/samples/common/inc

More info at: https://github.com/ROCm/HIPIFY/blob/master/README.md

Can be used to perform build-time conversion if project can be automatically converted

Oct 21-23, 2025 AMD @ Tsukuba University

6 |

[Public]

AMD @ Tsukuba University

7 |

[Public]

Other Hipify tools
Individual file tools (already discussed)

• hipify-perl

• hipify-clang

Recursive directory tools (also in /opt/rocm/bin)

• hipconvertinplace.sh

• hipconvertinplace-perl.sh

• hipexamine.sh

• hipexamine-perl.sh

The Perl® scripts are a set and the shell/clang tools are a set. The directory-based tools basically call the

base tools, hipify-perl and hipify-clang, respectively.

For example:

hipifyexamine-perl.sh recursively runs hipify-perl with the -no-output -print-stats options (-examine option is a

shorthand for -no-output -print-stats options).

Oct 21-23, 2025 AMD @ Tsukuba University

8 |

[Public]

Gotchas
• Hipify tools are not running your application, or checking correctness

• Code relying on specific Nvidia hardware aspects (e.g., warp size == 32) may need attention after

conversion (grep for "32" just in case). Use #define WARPSIZE size.

• Certain functions may not have a correspondent hip version (e.g., __shfl_down_sync – hint: use

__shfl_down instead)

• Hipifying can’t handle inline PTX assembly or CUDA intrinsics

• Can either use inline GCN ISA, or convert it to HIP

• None of the tools convert your build system script such as CMAKE or whatever else you use. The user is

responsible to find the appropriate flags and paths to build the new converted HIP code.

Oct 21-23, 2025 AMD @ Tsukuba University

• Hipify-perl and hipify-clang can both convert library calls (i.e. cuBLAS becomes hipBLAS)

• CMake starting with version 3.21 can be used to automatically set up basic compilation

flags by using enable_language(HIP), supports CMAKE_HIP_ARCHITECTURES for

setting devices to build for

Notes

9 |

[Public]

HIPIFLY: Intercept API method
 to choose GPU backend

• Enable running existing code on
different backends with single
header

• Can change between targeting
CUDA and ROCm in one place

• Only works if no difference
between API calls

• Existing code cannot use any
CUDA specific hard coded values

• Performance needs to be
evaluated on a case-by-case basis

Oct 21-23, 2025 AMD @ Tsukuba University

Link to the header file:
https://github.com/amd/HPCTrainingExamples/blob/main/hipifly/vector_add/src/cuda_to_hip.h

https://github.com/amd/HPCTrainingExamples/blob/main/hipifly/vector_add/src/cuda_to_hip.h

10 |

[Public]

Exploiting the power of HIP: portable build systems

• One of the attractive features of HIP is that it can run on both AMD and Nvidia GPUs

• The HIP language has been developed with this in mind

• Select ROCm and it will run on AMD GPUs

• Select CUDA and it will run on Nvidia GPUs

• But it can be difficult to support this with a portable build system that switches between these two

• We’ll demonstrate two of the most common build systems that can support portable builds

• make

• cmake

Oct 21-23, 2025 AMD @ Tsukuba University

11 |

[Public]

Portable build systems – Makefile

EXECUTABLE = ./vectoradd

all: $(EXECUTABLE) test

.PHONY: test

OBJECTS = vectoradd.o

CXXFLAGS = -g -O2 –DNDEBUG -fPIC

HIPCC_FLAGS = -O2 -g –DNDEBUG

HIP_PLATFORM ?= amd

ifeq ($(HIP_PLATFORM), nvidia)

 HIP_PATH ?= $(shell hipconfig --path)

 HIPCC_FLAGS += -x cu -I${HIP_PATH}/include/

endif

ifeq ($(HIP_PLATFORM), amd)

 HIPCC_FLAGS += -x hip -munsafe-fp-atomics

endif

%.o: %.hip

 hipcc $(HIPCC_FLAGS) -c $^ -o $@

$(EXECUTABLE): $(OBJECTS)

 hipcc $< $(LDFLAGS) -o $@

test: $(EXECUTABLE)

 $(EXECUTABLE)

clean:

 rm -f $(EXECUTABLE) $(OBJECTS) build

Setting default device compiler

Pattern rule for HIP source

Setting compile flags for different GPUs

Oct 21-23, 2025 AMD @ Tsukuba University

12 |

[Public]

Using a portable Makefile

• For ROCm

module load rocm

export CXX=${ROCM_PATH}/llvm/bin/clang++

To build and run:

make vectoradd

./vectoradd

• For CUDA

module load rocm

module load cuda

To build and run:

HIP_PLATFORM=nvidia make vectoradd

./vectoradd

Overriding default to compile with nvidia

We still need HIP for the portability layer

Oct 21-23, 2025 AMD @ Tsukuba University

13 |

[Public]

Portable Build Systems – CMakeLists.txt (1 of 3)
cmake_minimum_required(VERSION 3.21 FATAL_ERROR)

project(Vectoradd LANGUAGES CXX)

set (CMAKE_CXX_STANDARD 14)

if (NOT CMAKE_BUILD_TYPE)

 set(CMAKE_BUILD_TYPE RelWithDebInfo)

endif(NOT CMAKE_BUILD_TYPE)

string(REPLACE -O2 -O3 CMAKE_CXX_FLAGS_RELWITHDEBINFO ${CMAKE_CXX_FLAGS_RELWITHDEBINFO})

if (NOT CMAKE_GPU_RUNTIME)

 set(GPU_RUNTIME "ROCM" CACHE STRING "Switches between ROCM and CUDA")

else (CMAKE_GPU_RUNTIME)

 set(GPU_RUNTIME "${CMAKE_GPU_RUNTIME}" CACHE STRING "Switches between ROCM and CUDA")

endif (NOT CMAKE_GPU_RUNTIME)

Setting

GPU_RUNTIME

Oct 21-23, 2025 AMD @ Tsukuba University

14 |

[Public]

Portable Build Systems – CMakeLists.txt (2 of 3)

Should only be ROCM or CUDA, but allowing HIP because it is the currently built-in option

Select with e.g., -DGPU_RUNTIME=ROCM

set(GPU_RUNTIMES "ROCM" "CUDA" "HIP")

if(NOT "${GPU_RUNTIME}" IN_LIST GPU_RUNTIMES)

 set(ERROR_MESSAGE

 "GPU_RUNTIME is set to \"${GPU_RUNTIME}\".\nGPU_RUNTIME must be either HIP, ROCM, or CUDA.")

 message(FATAL_ERROR ${ERROR_MESSAGE})

endif()

GPU_RUNTIME should really be ROCM for AMD GPUs, so manually resetting to HIP if ROCM is selected

if (${GPU_RUNTIME} MATCHES "ROCM")

 set(GPU_RUNTIME "HIP")

endif (${GPU_RUNTIME} MATCHES "ROCM")

set_property(CACHE GPU_RUNTIME PROPERTY STRINGS ${GPU_RUNTIMES})

enable_language(${GPU_RUNTIME})

set(CMAKE_${GPU_RUNTIME}_EXTENSIONS OFF)

set(CMAKE_${GPU_RUNTIME}_STANDARD_REQUIRED ON)

Oct 21-23, 2025 AMD @ Tsukuba University

Enabling either CUDA or HIP (ROCM)

15 |

[Public]

Portable Build Systems – CMakeLists.txt (3 of 3)

set(VECTORADD_CXX_SRCS "")

set(VECTORADD_HIP_SRCS vectoradd.hip)

add_executable(vectoradd ${VECTORADD_CXX_SRCS} ${VECTORADD_HIP_SRCS})

set(ROCMCC_FLAGS "${ROCMCC_FLAGS} -munsafe-fp-atomics")

set(CUDACC_FLAGS "${CUDACC_FLAGS} ")

if (${GPU_RUNTIME} MATCHES "HIP")

 set(HIPCC_FLAGS "${ROCMCC_FLAGS}")

else (${GPU_RUNTIME} MATCHES "CUDA")

 set(HIPCC_FLAGS "${CUDACC_FLAGS}")

endif (${GPU_RUNTIME} MATCHES "HIP")

set_source_files_properties(${VECTORADD_HIP_SRCS} PROPERTIES LANGUAGE ${GPU_RUNTIME})

set_source_files_properties(vectoradd.hip PROPERTIES COMPILE_FLAGS ${HIPCC_FLAGS})

install(TARGETS vectoradd)

Setting different flags for each GPU type

Setting language type for HIP source files

Setting device compile flags

Oct 21-23, 2025 AMD @ Tsukuba University

16 |

[Public]

Using a portable CMakeLists.txt

• For ROCm
module load rocm

module load cmake

export CXX=${ROCM_PATH}/llvm/bin/clang++

To build and run:

mkdir build && cd build

cmake ..

make VERBOSE=1

./vectoradd

• For CUDA
module load rocm

module load cuda

module load cmake

To build and run:

mkdir build && cd build

cmake –DCMAKE_GPU_RUNTIME=CUDA ..

make VERBOSE=1

./vectoradd

Overrides default GPU runtime to specify CUDA

Oct 21-23, 2025 AMD @ Tsukuba University

17 |

[Public]

Important CMake variables

• CMAKE_HIP_ARCHITECTURES

• CMAKE_HIP_ARCHITECTURES=“gfx90a;gfx908”

• GPU_TARGETS=“gfx90a;gfx908”

List of gfx models: https://llvm.org/docs/AMDGPUUsage.html

Find the gfx model with rocminfo: rocminfo | grep gfx | sed -e 's/Name://' | head -1 |sed 's/ //g'

• CMAKE_CXX_COMPILER:PATH=/opt/rocm/bin/amdclang++

• CMAKE_HIP_COMPILER_ROCM_ROOT:PATH=/opt/rocm – to help cmake find the cmake config files

• CMAKE_PREFIX_PATH=/opt/rocm

• Finding HIP packages and use results

• find_package(rocprim)

• target_link_libraries(MyLib PUBLIC roc::rocprim)

• Using host and device from find_package(hip)

• target_link_libraries(MyLib PRIVATE hip::device)

• target_link_libraries(MyApp PRIVATE hip::host)

Oct 21-23, 2025 AMD @ Tsukuba University

https://llvm.org/docs/AMDGPUUsage.html

18 |

[Public]

CUDA Fortran Fortran + HIP C/C++

• There is no HIP equivalent to CUDA Fortran

• HIP functions are callable from C, using extern C, so they can be called directly from Fortran

• The strategy here is:

1) Manually port CUDA Fortran code to HIP kernels in C-like syntax

2) Wrap the kernel launch in a C function

3) Call the C function from Fortran through Fortran’s ISO_C_binding. It requires Fortran 2008 because of

using pointers to share data.

• This strategy should be usable by Fortran users since it is standard conforming Fortran

• ROCm has an interface layer, hipFort, which provides the wrapped bindings for use in Fortran

➢ https://github.com/ROCm/hipfort

Oct 21-23, 2025 AMD @ Tsukuba University

https://github.com/ROCm/hipfort
https://github.com/ROCm/hipfort

19 |

[Public]

Hands-on exercises

Located in our HPC Training Examples repo:

 https://github.com/amd/HPCTrainingExamples

A table of contents for the READMEs if available at the top-level README in the repo

Relevant exercises for this presentation located in:

• HIPIFY directory

• hipifly directory

• HIPFort directory

Link to instructions on how to run the HIPIFY tests: HIPIFY/README.md

Log into the AAC node and clone the repo:

 ssh <username>@aac6.amd.com –p 7000 -i <path_to_ssh_key>

 git clone https://github.com/amd/HPCTrainingExamples.git

 Oct 21-23, 2025 AMD @ Tsukuba University

https://github.com/amd/HPCTrainingExamples
https://github.com/amd/HPCTrainingExamples/blob/main/README.md
https://github.com/amd/HPCTrainingExamples/tree/main/HIPIFY
https://github.com/amd/HPCTrainingExamples/tree/main/HIPIFY
https://github.com/amd/HPCTrainingExamples/tree/main/hipifly
https://github.com/amd/HPCTrainingExamples/tree/main/hipifly
https://github.com/amd/HPCTrainingExamples/tree/main/HIPFort
https://github.com/amd/HPCTrainingExamples/tree/main/HIPFort
https://github.com/amd/HPCTrainingExamples/blob/main/HIPIFY/README.md

20 |

[Public]

Disclaimer
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions,
and typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons,
including but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product
releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any
computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to
update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from
time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY
APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR
ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY
INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, ROCm, Radeon , CDNA, Instinct, and combinations
thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for identification purposes only and
may be trademarks of their respective companies.

Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git
Project, in the United States and/or other countries

LLVM is a trademark of LLVM Foundation

Perl is a trademark of Perl Foundation.

Oct 21-23, 2025 AMD @ Tsukuba University

	Default Section
	Slide 1: Porting code to HIP

	Code Conversion Tools
	Slide 2: No one size fits all approach
	Slide 3: Code Conversion Tools extend your Application Platform support by Converting CUDA® code Single source Maintain portability Maintain performance
	Slide 4: Hipify-perl
	Slide 5: Hipify-clang
	Slide 6
	Slide 7: Other Hipify tools
	Slide 8: Gotchas
	Slide 9: HIPIFLY: Intercept API method to choose GPU backend
	Slide 10: Exploiting the power of HIP: portable build systems
	Slide 11: Portable build systems – Makefile
	Slide 12: Using a portable Makefile
	Slide 13: Portable Build Systems – CMakeLists.txt (1 of 3)
	Slide 14: Portable Build Systems – CMakeLists.txt (2 of 3)
	Slide 15: Portable Build Systems – CMakeLists.txt (3 of 3)
	Slide 16: Using a portable CMakeLists.txt
	Slide 17: Important CMake variables
	Slide 18: CUDA Fortran Fortran + HIP C/C++
	Slide 19: Hands-on exercises
	Slide 20: Disclaimer
	Slide 21

