
CuPy and CuPy-Xarray:

Presenter: Giacomo Capodaglio

Oct 14th 2025:

AMD @ CASTIEL

2 |

[Public]

What is CuPy

Oct 13-16, 2025 AMD @ CASTIEL

• NumPy is a Python interface to optimized routines written in C that provide arrays, multi-dimensional

arrays and common numerical operations on them. These are much faster than operating on Python

lists

• SciPy provides fundamental algorithms common in scientific and numerical computing. The underlying

code is a mixture of Fortran, C and C++

• CuPy is a NumPy/SciPy-compatible array library for GPU-accelerated computing with Python. It is not

an Nvidia product, despite the Nvidia sounding name.

• CuPy acts as a drop-in replacement to run existing NumPy/SciPy code on Nvidia CUDA or AMD

ROCm platforms

• CuPy provides the N-dimensional array (ndarray), sparse matrices, and the associated routines for

GPU devices, most having the same API as NumPy and SciPy

• CuPy provides interfaces to GPU optimized libraries such as rocBLAS, rocSPARSE, rocFFT, and

RCCL
source: cupy documentation

https://docs.cupy.dev/en/stable/overview.html#project-goal
https://docs.cupy.dev/en/stable/overview.html#project-goal

3 |

[Public]

CuPy and HIP

Oct 13-16, 2025 AMD @ CASTIEL

• CuPy uses HIP as backhand to run on AMD GPUs

• HIP: Heterogeneous-compute Interface for Portability

• C++ runtime API and kernel language

• Works on AMD and Nvidia GPUs

• The CPU is often referred to as the host, and the GPU as the device

• In HIP, launching a kernel is non-blocking for the host

• After sending instructions/data, the host continues to do more work while the device executes the

kernel​. This means GPU execution and CPU activity can overlap

• What it means for CuPy: appropriate synchronization calls have to be made after a kernel call:
• cupy.cuda.Device(0).synchronize()
• cupy.cuda.Stream.synchronize()

• In HIP, memory copies such as hipMemcpy is blocking for the host

• All activity on the host stops until the copy has completed.

• What it means for CuPy: no need to sync if calling a memory copy right after a kernel.

4 |

[Public]

CuPy functions

Oct 13-16, 2025 AMD @ CASTIEL

full list here: cupy API vs numpy API full list here: cupy_documentation

CuPy vs NumPy API CuPy-specific functions

click here for differences between CuPy and NumPy

https://docs.cupy.dev/en/stable/reference/comparison.html#numpy-cupy-apis
https://docs.cupy.dev/en/stable/reference/comparison.html#numpy-cupy-apis
https://docs.cupy.dev/en/stable/reference/comparison.html#numpy-cupy-apis
https://docs.cupy.dev/en/stable/reference/comparison.html#numpy-cupy-apis
https://docs.cupy.dev/en/stable/reference/ext.html
https://docs.cupy.dev/en/stable/user_guide/difference.html

5 |

[Public]

CuPy Installation – GitHub Repos

• There are two GitHub repos to take the CuPy source code from to run on AMD GPUs

• We are using the upstream CuPy repository: https://github.com/cupy/cupy

• There is also a fork of the CuPy upstream repository in the ROCm github: https://github.com/rocm/cupy

Oct 13-16, 2025 AMD @ CASTIEL

https://github.com/cupy/cupy
https://github.com/rocm/cupy

6 |

[Public]

CuPy Installation – Versions

Oct 13-16, 2025 AMD @ CASTIEL

Upstream versions are more recent

The one above is the one we have installed

ROCm repo versions tend to be behind

There is work from AMD to get changes pushed

directly to the upstream repo

The ROCm/cupy will soon be updated tooAs of September 23rd 2025

7 |

[Public]

Current AMD work to be integrated into upstream repo

Oct 13-16, 2025 AMD @ CASTIEL

As of September 23rd 2025

8 |

[Public]

CuPy – Installation with pip3 (pre-built wheel for Linux x86_64)

Oct 13-16, 2025 AMD @ CASTIEL

Only old versions of ROCm

currently available as

pre-built wheels

Wheels for ROCm 6.4 and 7

will soon be available

pip3 install cupy-rocm-5-0

pip3 install cupy-rocm-4-3

As of September 23rd 2025

9 |

[Public]

CuPy – Simple Installation from Source (latest version)

Oct 13-16, 2025 AMD @ CASTIEL

export CUPY_INSTALL_USE_HIP=1
export ROCM_HOME=${ROCM_PATH}
export HIPCC=${ROCM_HOME}/bin/hipcc
export HCC_AMDGPU_ARCH=${AMDGPU_GFXMODEL}

pip3 install cupy --target=$CUPY_PATH

NOTE: it will not work on Ubuntu 24.04

need to use a virtual environment

source: cupy docs

https://docs.cupy.dev/en/stable/install.html
https://docs.cupy.dev/en/stable/install.html

10 |

[Public]

CuPy – Robust Installation from Source
Installation from source script available in our model installation repository:

https://github.com/amd/HPCTrainingDock/blob/main/extras/scripts/cupy_setup.sh also installs numpy-allocator

 to leverage unified shared memory

… most relevant part reported below… and cupy-xarray

export CUPY_INSTALL_USE_HIP=1

export ROCM_HOME=${ROCM_PATH}

export HIPCC=${ROCM_HOME}/bin/hipcc

export HCC_AMDGPU_ARCH=${AMDGPU_GFXMODEL}

python3 -m venv cupy_build

source cupy_build/bin/activate

pip3 install -v --target=$CUPY_PATH pytest mock xarray[complete] dask build numpy-allocator --no-cache

export PYTHONPATH=$PYTHONPATH:$CUPY_PATH

Get source from the upstream repository of CuPy.

git clone -q --depth 1 -b v$CUPY_VERSION --recursive https://github.com/cupy/cupy.git

cd cupy

python3 -m build --wheel

pip3 install -v --upgrade --target=$CUPY_PATH dist/*.whl

pip3 install -v --target=$CUPY_PATH cupy-xarray --no-deps

deactivate

Oct 13-16, 2025 AMD @ CASTIEL

https://github.com/amd/HPCTrainingDock/blob/main/extras/scripts/cupy_setup.sh

11 |

[Public]

Basics of CuPy
• Must import the CuPy Python module in your Python code: import cupy as cp

• To create an array on the device use cp.array: gpu_array = cp.array(cpu_array)

• To copy data from GPU to CPU, use cp.asnumpy: cpu_array = cp.asnumpy(gpu_array)

• To copy back from CPU to GPU use cp.asarray: gpu_array2 = cp.asarray(cpu_array)

• Operations between GPU arrays will be done on the GPU: result_gpu = gpu_array + gpu_array2

• CuPy has the concept of a current device – usually GPU device 0: gpu_array.device

• Note that the device will be called <CUDA Device 0> even if you are on AMD GPUs.

Oct 13-16, 2025 AMD @ CASTIEL

12 |

[Public]

NumPy – CuPy Interoperability

Oct 13-16, 2025 AMD @ CASTIEL

source: numpy-documentation

❖ CuPy implements a subset of the NumPy interface by implementing cupy.ndarray, a

counterpart to NumPy ndarrays

❖ The cupy.ndarray object implements the __array_ufunc__ interface. This enables

NumPy universal functions (ufunc) to be applied to CuPy arrays. Note that the return type

of these operations is still consistent with the initial type.

 >>> import cupy as cp
 >>> import numpy as np
 >>> gpu_arr = cp.random.randn(1, 2, 3, 4).astype(cp.float32)
 >>> result = np.sum(gpu_arr)
 >>> print(type(result))
 <class 'cupy._core.core.ndarray’>

❖ cupy.ndarray also implements the __array_function__ interface, meaning it is

possible to do operations such as

 a = np.random.randn(100, 100)
 a_gpu = cp.asarray(a)
 qr_gpu = np.linalg.qr(a_gpu)

https://numpy.org/doc/2.2/user/basics.interoperability.html
https://numpy.org/doc/2.2/user/basics.interoperability.html
https://numpy.org/doc/2.2/user/basics.interoperability.html
https://numpy.org/doc/2.2/reference/ufuncs.html

13 |

[Public]

Simple CuPy code example

• First get the example to run from the training examples repository

git clone https://github.com/amd/HPCTrainingExamples

cd HPCTrainingExamples/Python/cupy

• Set up the environment: note the "module" below is not the Python module

module load cupy

• Run the example

python3 cupy_array_sum.py

• Output should be:
CuPy Array: [1 2 3 4 5]
Squared CuPy Array: [1 4 9 16 25]
NumPy Array: [5 6 7 8 9]
CuPy Array from NumPy: [5 6 7 8 9]
Addition Result on GPU: [6 8 10 12 14]
Result on CPU: [6 8 10 12 14]

Oct 13-16, 2025 AMD @ CASTIEL

https://github.com/amd/HPCTrainingExamples

14 |

[Public]

Simple CuPy code example: a closer look
import cupy as cp
import numpy as np

Create a CuPy array
gpu_array = cp.array([1, 2, 3, 4, 5])
print("CuPy Array:", gpu_array)

Perform operations on the GPU
gpu_array_squared = gpu_array ** 2
print("Squared CuPy Array:", gpu_array_squared)

Create a NumPy array
cpu_array = np.array([5, 6, 7, 8, 9])
print("NumPy Array:", cpu_array)

Transfer NumPy array to GPU
gpu_array_from_cpu = cp.asarray(cpu_array)
print("CuPy Array from NumPy:",
gpu_array_from_cpu)

Perform element-wise addition
result_gpu = gpu_array + gpu_array_from_cpu
print("Addition Result on GPU:", result_gpu)

Transfer result back to CPU
result_cpu = cp.asnumpy(result_gpu)
print("Result on CPU:", result_cpu)

Oct 13-16, 2025 AMD @ CASTIEL

Converts NumPy array to CuPy array

Returns an array on the host memory from an

 arbitrary source array (device in this case)

Creates an array on the device

Operations occur on the GPU

Operations occur on the GPU

15 |

[Public]

Verifying that CuPy code example runs on the AMD GPU

•Now run with the AMD_LOG_LEVEL environment variable set

export AMD_LOG_LEVEL=3

python3 cupy_array_sum.py

• Lots of output now – showing just a little bit:

hipMemcpyAsync (0x559ea98f65f0, 0x7f4556800000, 40, hipMemcpyDeviceToHost, stream:<null>)

Signal = (0x7f4d5efff280), Translated start/end = 1083534945452078 / 1083534945453358,
Elapsed = 1280 ns, ticks start/end = 27091222405615 / 27091222405647, Ticks elapsed = 32

Host active wait for Signal = (0x7f4d5efff200) for -1 ns

Set Handler: handle(0x7f4d5efff180), timestamp(0x559eaabead90)

Host active wait for Signal = (0x7f4d5efff180) for -1 ns

hipMemcpyAsync: Returned hipSuccess : : duration: 5948d us

hipStreamSynchronize (stream:<null>)

Handler: value(0), timestamp(0x559eaa7e7350), handle(0x7f4d5efff180)

hipStreamSynchronize: Returned hipSuccess :

hipSetDevice (0)

hipSetDevice: Returned hipSuccess :
CuPy Array: [1 2 3 4 5]

Oct 13-16, 2025 AMD @ CASTIEL

16 |

[Public]

Unified Memory Programming on CuPy

Oct 13-16, 2025 AMD @ CASTIEL

source: cupy docs

On AMD GPUs, you additionally need:
export HSA_XNACK=1

this will enable unified shared memory on MI300A

or managed memory on MI200s and MI300X

https://docs.cupy.dev/en/stable/user_guide/memory.html#unified-memory-programming-ump-support-experimental
https://docs.cupy.dev/en/stable/user_guide/memory.html#unified-memory-programming-ump-support-experimental

17 |

[Public]

Unified Memory Programming on CuPy – benchmark 1/2

Oct 13-16, 2025 AMD @ CASTIEL

Unified memory example in training examples repo:

https://github.com/amd/HPCTrainingExamples/blob/main/Python/cupy/unified_bench.py

How to run the code:

The benchmark will transfer data and run some simple operations comparing a baseline (no UMP)

with the UMP case (export CUPY_ENABLE_UMP=1 and export HAS_XNACK=1)

https://github.com/amd/HPCTrainingExamples/blob/main/Python/cupy/unified_bench.py

18 |

[Public]

Unified Memory Programming on CuPy – benchmark 2/2

Oct 13-16, 2025 AMD @ CASTIEL

Results:

It measures the following:

▪ host to device (HtoD) copies with cp.asarray(np_arr)
▪ device to host (DtoH) copies with cp_arr.get()
▪ adding two arrays on device (x+=y)

▪ pipeline mixing the above three operations (copy to GPU, add on GPU and copy back to CPU)

19 |

[Public]

Additional Examples on CuPy

Oct 13-16, 2025 AMD @ CASTIEL

Code examples by Igor Sfiligoi

git clone https://github.com/sfiligoi/tutorials.git
cd tutorials/2025-09-mi300a/cupy

From 2025 ICPP AI tutorial

by San Diego Supercomputing Center

and AMD.

Compare python3 center_matrix_naive.py with CUPY_ENABLE_UMP=1 \

 HSA_XNACK=1 python3 center_matrix_naive_apu.py

https://www.sdsc.edu/research/experts/sfiligoi_igor.html
https://www.sdsc.edu/research/experts/sfiligoi_igor.html
https://github.com/sfiligoi/tutorials.git

20 |

[Public]

CuPy-Xarray: Xarray on GPUs

• Xarray: Python library to work with labelled multi-dimensional arrays

• Popular for applications where multi-dimensional data needs to be handled (such as climate modeling)

• Built on top of NumPy

• Has built-in support for NetCDF

• Can wrap custom duck array objects (i.e. NumPy-like arrays) that follow specific protocols.

• When used together, Xarray and CuPy can provide an easy way to take advantage of GPU acceleration for

scientific computing tasks.

• CuPy-Xarray provides an interface for using CuPy in Xarray, providing accessors on the Xarray objects.

• CuPy-Xarray relies on an existing CuPy installation, install CuPy first

• Cupy-Xarray github repo: https://github.com/xarray-contrib/cupy-xarray

• Install with pip install cupy-xarray --no-deps after installing CuPy

• Issue with dask: https://github.com/xarray-contrib/cupy-xarray/pull/62

• Did not make it into the latest release

• Make sure to install dask with pip install dask

Oct 13-16, 2025 AMD @ CASTIEL
source: cupy-xarray documentation

https://docs.xarray.dev/en/stable/
https://docs.xarray.dev/en/stable/
https://github.com/xarray-contrib/cupy-xarray
https://github.com/xarray-contrib/cupy-xarray
https://github.com/xarray-contrib/cupy-xarray
https://github.com/xarray-contrib/cupy-xarray
https://github.com/xarray-contrib/cupy-xarray
https://github.com/xarray-contrib/cupy-xarray/pull/62
https://github.com/xarray-contrib/cupy-xarray/pull/62
https://github.com/xarray-contrib/cupy-xarray/pull/62
https://github.com/xarray-contrib/cupy-xarray/pull/62
https://github.com/xarray-contrib/cupy-xarray/pull/62
https://cupy-xarray.readthedocs.io/latest/examples/02_introduction.html
https://cupy-xarray.readthedocs.io/latest/examples/02_introduction.html
https://cupy-xarray.readthedocs.io/latest/examples/02_introduction.html
https://cupy-xarray.readthedocs.io/latest/examples/02_introduction.html

21 |

[Public]

Simple CuPy-Xarray code example

• First get the example to run from the training examples repository

git clone https://github.com/amd/HPCTrainingExamples

cd HPCTrainingExamples/Python/cupy

• Set up the environment: note the "module" below is not the Python module

module load cupy

• Run the example

python cupy_xarray_test.py

Is the array used to create da_np on device? False

Is the array used to create da_cp on device? True

da_cp.data is of type: <class 'cupy.ndarray'>

check that arr_gpu and cupy_array are the same with CuPy: True

check the arr_gpu and cupy_array are the same with NumPy (interoperability): True

arr_gpu is on device: <CUDA Device 0>

arr_cpu is on device: cpu

total number of available devices: 8

arr_gpu2 is on device: <CUDA Device 2>

Oct 13-16, 2025 AMD @ CASTIEL
source: cupy-xarray documentation

https://github.com/amd/HPCTrainingExamples
https://cupy-xarray.readthedocs.io/latest/examples/02_introduction.html
https://cupy-xarray.readthedocs.io/latest/examples/02_introduction.html
https://cupy-xarray.readthedocs.io/latest/examples/02_introduction.html
https://cupy-xarray.readthedocs.io/latest/examples/02_introduction.html

22 |

[Public]

Simple CuPy-Xarray code example: a closer look
import cupy as cp

import numpy as np

import xarray as xr

import cupy_xarray

arr_cpu = np.random.rand(10, 10, 10)

arr_gpu = cp.random.rand(10, 10, 10)

da_np = xr.DataArray(arr_cpu, dims=["x", "y", "time"])

da_cp = xr.DataArray(arr_gpu, dims=["x", "y", "time"])

. . . (some code omitted) . . .

cupy_array = da_cp.data

print("check that arr_gpu and cupy_array are the same with CuPy:",
cp.allclose(cupy_array,arr_gpu))

print("check the arr_gpu and cupy_array are the same with NumPy
(interoperability):", np.allclose(cupy_array,arr_gpu))

. . . (some code omitted) . . .

with cp.cuda.Device(2):

 arr_gpu2 = cp.array([1, 2, 3, 4, 5])

print("arr_gpu2 is on device:", arr_gpu2.device)

Oct 13-16, 2025 AMD @ CASTIEL

Adds .cupy to Xarray objects

Creates an array on the CPU with NumPy

Creates an array on the GPU with CuPy

Creates a DataArray using NumPy array

Creates a DataArray using CuPy array

Access the underlying CuPy array used to create the xarray.DataArray

Use CuPy to check that the array used to create

 the xarray and the one given by xarray are the same

Use NumPy to check that the array used to create

 the xarray and the one given by xarray are the same

Use the device context manager to create data on

a different device

23 |

[Public]

Additional Resources

Oct 13-16, 2025 AMD @ CASTIEL

• CuPy vs NumPy speed comparison: https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-

basics.html#cupy-vs-numpy-speed-comparison

• Real world example of Cupy-Xarray: https://cupy-xarray.readthedocs.io/latest/examples/06_real-

example.html

o Note: you might need to modify the data read line to this if it is taking too long to get the data:
da = xr.open_mfdataset(file_objs, engine="h5netcdf", compat="override",
coords='minimal')[var].load()

• Cupy with Xarray vs NumPy with Xarray performance comparison: https://cupy-

xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-

with-xarray-vs-numpy-with-xarray

https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-basics.html#cupy-vs-numpy-speed-comparison
https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-basics.html#cupy-vs-numpy-speed-comparison
https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-basics.html#cupy-vs-numpy-speed-comparison
https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-basics.html#cupy-vs-numpy-speed-comparison
https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-basics.html#cupy-vs-numpy-speed-comparison
https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-basics.html#cupy-vs-numpy-speed-comparison
https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-basics.html#cupy-vs-numpy-speed-comparison
https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-basics.html#cupy-vs-numpy-speed-comparison
https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-basics.html#cupy-vs-numpy-speed-comparison
https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-basics.html#cupy-vs-numpy-speed-comparison
https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-basics.html#cupy-vs-numpy-speed-comparison
https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-basics.html#cupy-vs-numpy-speed-comparison
https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-basics.html#cupy-vs-numpy-speed-comparison
https://cupy-xarray.readthedocs.io/latest/examples/06_real-example.html
https://cupy-xarray.readthedocs.io/latest/examples/06_real-example.html
https://cupy-xarray.readthedocs.io/latest/examples/06_real-example.html
https://cupy-xarray.readthedocs.io/latest/examples/06_real-example.html
https://cupy-xarray.readthedocs.io/latest/examples/06_real-example.html
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray

24 |

[Public]

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The

information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes,

component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS

flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no

obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time

to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF

AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD

SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN

NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING

FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY CONTENT IS

PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR SOLE DISCRETION AND UNDER NO

CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR ANY

DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD CDNA, AMD ROCm, AMD Instinct, and combinations thereof are

trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of

their respective owners.

Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git Project, in the United States

and/or other countries

Oct 13-16, 2025 AMD @ CASTIEL

	Slide 1: CuPy and CuPy-Xarray:
	Slide 2: What is CuPy
	Slide 3: CuPy and HIP
	Slide 4: CuPy functions
	Slide 5: CuPy Installation – GitHub Repos
	Slide 6: CuPy Installation – Versions
	Slide 7: Current AMD work to be integrated into upstream repo
	Slide 8: CuPy – Installation with pip3 (pre-built wheel for Linux x86_64)
	Slide 9: CuPy – Simple Installation from Source (latest version)
	Slide 10: CuPy – Robust Installation from Source
	Slide 11: Basics of CuPy
	Slide 12: NumPy – CuPy Interoperability
	Slide 13: Simple CuPy code example
	Slide 14: Simple CuPy code example: a closer look
	Slide 15: Verifying that CuPy code example runs on the AMD GPU
	Slide 16: Unified Memory Programming on CuPy
	Slide 17: Unified Memory Programming on CuPy – benchmark 1/2
	Slide 18: Unified Memory Programming on CuPy – benchmark 2/2
	Slide 19: Additional Examples on CuPy
	Slide 20: CuPy-Xarray: Xarray on GPUs
	Slide 21: Simple CuPy-Xarray code example
	Slide 22: Simple CuPy-Xarray code example: a closer look
	Slide 23: Additional Resources
	Slide 24: Disclaimer
	Slide 25

