CuPy and CuPy-Xarray:

Presenter: Giacomo Capodaglio
Oct 14th 2025:
AMD @ CASTIEL

AMD ¢

together we advance_

What is CuPy

NumPy is a Python interface to optimized routines written in C that provide arrays, multi-dimensional
arrays and common numerical operations on them. These are much faster than operating on Python
lists

SciPy provides fundamental algorithms common in scientific and numerical computing. The underlying
code is a mixture of Fortran, C and C++

CuPy is a NumPy/SciPy-compatible array library for GPU-accelerated computing with Python. It is not
an Nvidia product, despite the Nvidia sounding nhame.

CuPy acts as a drop-in replacement to run existing NumPy/SciPy code on Nvidia CUDA or AMD
ROCm™ platforms

CuPy provides the N-dimensional array (ndarray), sparse matrices, and the associated routines for
GPU devices, most having the same APl as NumPy and SciPy

CuPy provides interfaces to GPU optimized libraries such as rocBLAS, rocSPARSE, rocFFT, and

RCCL
source: cupy documentation

Oct 13-16, 2025 AMD @ CASTIEL AMDZ\

together we advance_

https://docs.cupy.dev/en/stable/overview.html#project-goal
https://docs.cupy.dev/en/stable/overview.html#project-goal

CuPy and HIP

CuPy uses HIP as backhand to run on AMD GPUs

HIP: Heterogeneous-compute Interface for Portability
C++ runtime API and kernel language
Works on AMD and Nvidia GPUs

The CPU is often referred to as the host, and the GPU as the device

In HIP, launching a kernel is non-blocking for the host

After sending instructions/data, the host continues to do more work while the device executes the
kernel. This means GPU execution and CPU activity can overlap

What it means for CuPy: appropriate synchronization calls have to be made after a kernel call:
cupy.cuda.Device(0@).synchronize()
cupy.cuda.Stream.synchronize()

In HIP, memory copies such as hipMemcpy is blocking for the host
All activity on the host stops until the copy has completed.
What it means for CuPy: no need to sync if calling a memory copy right after a kernel.

Oct 13-16, 2025 AMD @ CASTIEL AMDZ\

together we advance_

click for differences between CuPy and NumPy
CuPy functions . s nympy AP

CuPy-specific functions

Here is a list of NumPy / SciPy APIs and its corresponding CuPy implementations.

- in CuPy column denotes that CuPy implementation is not provided yet. We welcome contributions Cu Py-SDECIfIC functions are p|aCEd under cupyx nam espace.

for these functions.

Returns the reciprocal square root.

(a, slices, value) Adds given values to specified elements of an

array.
Module-Level

NumPy Cupy (a, slices, value) Stores a maximum value of elements specified

by indices to an array.
numpy .DataSource cupy.DataSource [Gf{'GS Of numpy .DataSource)

(a, slices, value) Stores a minimum value of elements specified by

numpy .ScalarType
indices to an array.

numpy .abs cupy.abs

(shape[, dtype, order]) Returns a new, uninitialized NumPy array with

the given shape and dtype.

(a[, dtype, order, ...]) Returns a new, uninitialized NumPy array with
the same shape and dtype as those of the given
array.

full list here: cupy APl vs numpy AP full list here: cupy documentation
Oct 13-16, 2025 AMD @ CASTIEL AMDQ

together we advance_

https://docs.cupy.dev/en/stable/reference/comparison.html#numpy-cupy-apis
https://docs.cupy.dev/en/stable/reference/comparison.html#numpy-cupy-apis
https://docs.cupy.dev/en/stable/reference/comparison.html#numpy-cupy-apis
https://docs.cupy.dev/en/stable/reference/comparison.html#numpy-cupy-apis
https://docs.cupy.dev/en/stable/reference/ext.html
https://docs.cupy.dev/en/stable/user_guide/difference.html

CuPy Installation — GitHub Repos

There are two GitHub repos to take the CuPy source code from to run on AMD GPUs

We are using the upstream CuPy repository: https://github.com/cupy/cupy

— O cupy / cupy

<> Code (%) Issues 543 17 Pull requests 81 ® Actions [Projects 3 0 wiki @ Security

';gg cupy Public

There is also a fork of the CuPy upstream repository in the ROCm github: https://github.com/rocm/cupy
= O ROCm / cupy

<> Code 1 Pullrequests 4 ® Actions [Projects 01 wiki @ Security [~ Insights

@ cu py Public

forked from cu upy

¥ master ~ ¥ Branches © Tags

Oct 13-16, 2025 AMD @ CASTIEL AMDZ\

together we advance_

https://github.com/cupy/cupy
https://github.com/rocm/cupy

CuPy Installation — Versions

= O cupy / cupy = O ROCm / cupy

<> Code () Issues 543 IV Pull requests 81 ® Actions [Projects 3 [Wiki <> Code 17 Pullrequests 5 () Actions [Projects O Wiki) Security

Releases Tags Releases Tags

© Tags

v13.0.0b1 e

Upstream versions are more recent ROCm repo versions tend to be behind

The one above is the one we have installed There is work from AMD to get changes pushed
directly to the upstream repo

As of September 23 2025 The ROCm/cupy will soon be updated too

Oct 13-16, 2025 AMD @ CASTIEL AMDZ\
together we advance_

Current AMD work to be integrated into upstream repo

As of September 23 2025

0 Q

Open 24 (Closed 441 Author ~ Labels ~ Projects ~ Milestones ~

11 Enable rocm7 (cat:enhancement | | prio:high
cupy/cupy#9398 - gpinkert opened last week - @ Review required ‘:P v14.0.0a2 - X 5/9

Adding ROCm 7.0.0 to the Cl matrices. (cattest | (priothigh) = skip-ci

cupy/cupy#9397 - by gpinkert was closed last week - @ .’A:Jpre:-'-.-'e:J-EP v14.0.0a2 - v 5/14

Hipblas v2 api

cupy/cupy#9389 - by amd-nicknick was closed last week - @ Review required - + 1/3

feat(hipCUB) Use c++17 for hipCUB (cat:enhancement | { prio:medium
cupy/cupy#9384 - gpinkert opened 2 weeks ago - @ Review required EP vi4.0.0a2 - v 5/9

feat(kernels) fix HIPRTC build error ROCm 6/7 | catenhancement = | prio:medium

cupy/cupy#9382 - by gpinkert was closed last week - @ .-‘A:Jpre:-'-.-e:I-EF’ vi4.0.0a2 - X 6/12

feat(Cl) ROCm 6.4.3 (cat:test | (prio:medium) = skip-ci

cupy/cupy#9380 - by gpinkert was closed last week - @ Review required ‘:P v14.0.0a2 - v 5/10

feat(import) Raise import error ' catinstall prio:medium
cupy/cupy#9351 - gpinkert opened 3 weeks ago - @ Review required EIP vid .~ 4710

Support CUDA Array Inferface in ROCm build (cat:enhancement ' (prio:medium
cupy/cupy#9340 - by gpinkert was closed last week - @ Review required EF’ v14.00a2 - « 7/9

Oct 13-16, 2025 AMD @ CASTIEL AMDZ\

together we advance_

CuPy - Installation with pip3 (pre-built wheel for Linux x86_64)

& https://pypi.org/project/cupy/

W 2025 Python Packaging Survey is now live! JRelTCEmEr e c)
: : S As of September 2314 2025

cupy 13.6.0 v | s

pip install cupy o Released: Aug 18,2025

CuPy: NumPy & SciPy for GPU
pip3 install cupy-rocm-5-0

Navigation Project description

pip3 install cupy-rocm-4-3

Only old versions of ROCm
currently available as
CuPy is .JHmFI | -compatible array library for GPU-accelerated computing with Python. pre_built Wheels

istribution. For most users, use of pre-build wheel distributions are recommended:

CuPy : NumPy & SciPy for GPU

a Cupy cudeiia foreeomizg Wheels for ROCm 6.4 and 7
- will soon be available

€) Repository
the detailed instructions.

Oct 13-16, 2025 AMD @ CASTIEL AMDZ\

8 together we advance_

CuPy - Simple Installation from Source (latest version)

NOTE: it will not work on Ubuntu 24.04

export CUPY_INSTALL_USE_HIP=1 need to use a virtual environment

expor‘t ROCM_HOME=${ROCM_PATH} error: externally-managed-environment

eXpOPt HIPCC=${ROCM_HOME}/bln/hlpCC % This environment is externally managed

expor‘t HCC_AMDGPU_ARCH=${AMDGPU_GFXMODE|_} "> To install Python packages system-wide, try apt ir.'ustall
python3-xyz, where xyz is the package you are trying to
install.

pip3 install cupy --target=$CUPY_PATH

Note

If you don't specify the ncc_ampbepu_TarceT environment variable, CuPy will be built for the GPU architectures

available on the build host. This behavior is specific to ROCm builds; when building CuPy for NVIDIA CUDA, the build

result is not affected by the host configuration.

source: cupy docs

Oct 13-16, 2025 AMD @ CASTIEL AMDZ\

together we advance_

https://docs.cupy.dev/en/stable/install.html
https://docs.cupy.dev/en/stable/install.html

CuPy — Robust Installation from Source

Installation from source script available in our model installation repository:
https://github.com/amd/HPCTrainingDock/blob/main/extras/scripts/cupy setup.sh also installs numpy-allocator

to leverage unified shared memory
... most relevant part reported below... and cupy-xarray

export CUPY_INSTALL USE_HIP=1
export ROCM_HOME=${ROCM_PATH}
export HIPCC=${ROCM HOME}/bin/hipcc
export HCC_ AMDGPU_ARCH=${AMDGPU_GFXMODEL}
python3 -m venv cupy build
source cupy build/bin/activate
pip3 install -v --target=$CUPY_PATH pytest mock xarray[complete] dask build numpy-allocator --no-cache
export PYTHONPATH=$PYTHONPATH:$CUPY_PATH
Get source from the upstream repository of CuPy.
git clone -q --depth 1 -b v$CUPY_VERSION --recursive https://github.com/cupy/cupy.git
cd cupy
python3 -m build --wheel
pip3 install -v --upgrade --target=$CUPY_PATH dist/*.whl
pip3 install -v --target=$CUPY_PATH cupy-xarray --no-deps
deactivate
Oct 13-16, 2025 AMD @ CASTIEL AMDZ

together we advance_

https://github.com/amd/HPCTrainingDock/blob/main/extras/scripts/cupy_setup.sh

Basics of CuPy

Must import the CuPy Python™ module in your Python code: import cupy as cp
To create an array on the device use cp.array: gpu_array = cp.array(cpu_array)
To copy data from GPU to CPU, use cp.asnumpy: cpu_array = cp.asnumpy(gpu_array)
To copy back from CPU to GPU use cp.asarray: gpu_array2 = cp.asarray(cpu_array)

Operations between GPU arrays will be done on the GPU: result gpu = gpu array + gpu_array2
CuPy has the concept of a current device — usually GPU device O: gpu_array.device

Note that the device will be called <CUDA Device 0> even if you are on AMD GPUs.

Oct 13-16, 2025 AMD @ CASTIEL AMDZ\

together we advance_

NumPy — CuPy Interoperability

CuPy implements a subset of the NumPy interface by implementing cupy.ndarray, a
counterpart to NumPy ndarrays

The cupy.ndarray object implements the __array ufunc__ interface. This enables
NumPy universal functions (ufunc) to be applied to CuPy arrays. Note that the return type
of these operations is still consistent with the initial type.

>>> import cupy as cp

>>> import numpy as np

>>> gpu_arr = cp.random.randn(1l, 2, 3, 4).astype(cp.float32)
>>> result = np.sum(gpu_arr)

>>> print(type(result))

<class 'cupy. core.core.ndarray’>

cupy.ndarray also implements the __array_function__ interface, meaning it is
possible to do operations such as

a = np.random.randn(100, 100)

a_gpu = cp.asarray(a) source: numpy-documentation
gr_gpu = np.linalg.qr(a_gpu)
Oct 13-16, 2025 AMD @ CASTIEL

AMDZU

together we advance_

https://numpy.org/doc/2.2/user/basics.interoperability.html
https://numpy.org/doc/2.2/user/basics.interoperability.html
https://numpy.org/doc/2.2/user/basics.interoperability.html
https://numpy.org/doc/2.2/reference/ufuncs.html

Simple CuPy code example

First get the example to run from the training examples repository
git clone https://github.com/amd/HPCTrainingExamples
cd HPCTrainingExamples/Python/cupy

Set up the environment: note the "module” below is not the Python™ module
module load cupy

Run the example
python3 cupy array_sum.py

Output should be:
CuPy Array: [1 2 3 4 5]
Squared CuPy Array: [1 4 9 16 25]
NumPy Array: [5 6 7 8 9]
CuPy Array from NumPy: [5 6 7 8 9]
Addition Result on GPU: [6 8 10 12 14]
Result on CPU: [6 8 10 12 14]

Oct 13-16, 2025 AMD @ CASTIEL

AMDZU

together we advance_

https://github.com/amd/HPCTrainingExamples

Simple CuPy code example: a closer look

import cupy as cp
import numpy as np

Create a CuPy array .
gpu_array = cp.array([1, 2, 3, 4, 5]) < Creates an array on the device
print("CuPy Array:", gpu_array)

Perform operations on the GPU _
gpu_array squared = gpu_array ** 2 < Operations occur on the GPU

print("Squared CuPy Array:", gpu_array squared)

Create a NumPy array

cpu_array = np.array([5, 6, 7, 8, 9])

print("NumPy Array:", cpu_array)

Transfer NumPy array to GPU

gpu_array_from cpu = cp.asarray(cpu_array) < Converts NumPy array to CuPy array
print("CuPy Array from NumPy:",

gpu_array_from cpu)

Perform element-wise addition _
result_gpu = gpu_array + gpu_array_from cpu < Operations occur on the GPU

print("Addition Result on GPU:", result gpu)
Transfer result back to CPU

result_cpu = cp.asnumpy(result_gpu) < Returns an array on the host memory from an
print("Result on CPU:", result_cpu) arbitrary source array (device in this case)
Oct 13-16, 2025 AMD @ CASTIEL

AMDZU

together we advance_

Verifying that CuPy code example runs on the AMD GPU

Now run with the AMD_LOG_LEVEL environment variable set
export AMD LOG LEVEL=3

python3 cupy_array_sum.py

Lots of output now — showing just a little bit:
hipMemcpyAsync (©x559ea98f65f0, Ox7f4556800000, 40, hipMemcpyDeviceToHost, stream:<null>)

Signal = (©x7f4d5efff280), Translated start/end = 1083534945452078 / 1083534945453358,
Elapsed = 1280 ns, ticks start/end = 27091222405615 / 27091222405647, Ticks elapsed = 32

Host active wait for Signal = (0x7f4d5efff200) for -1 ns

Set Handler: handle(0x7f4d5efff180), timestamp(@x559eaabead90)

Host active wait for Signal = (0x7f4d5efff180) for -1 ns
hipMemcpyAsync: Returned hipSuccess : : duration: 5948d us
hipStreamSynchronize (stream:<null>)

Handler: value(9), timestamp(©x559eaa7e7350), handle(0x7f4d5efff180)
hipStreamSynchronize: Returned hipSuccess :

hipSetDevice (0)

hipSetDevice: Returned hipSuccess :
CuPy Array: [1 2 3 4 5]

Oct 13-16, 2025 AMD @ CASTIEL AMDZ\

together we advance_

Unified Memory Programming on CuPy

Unified memory programming (UMP) support
(experimental!)

y and CuPy use/share system ted memory on Heteroge

Transla tems, such as the

u need to;

- Superchip. To acti th

ability, current

1. Install
2. Set the environment variable cupy EMABLE UMP=1

Aake a memaon for CuPy to «

import cupy as cp
cp.cuda.set_allocator(cp.cuda.MemoryPool{cp.cuda.memory.malloc_system).malloc)

4, Switch to the aligned allocator for NumPy to dra em memaory

import cupy._ core.numpy_allocator a
import numpy_ allocator

import c

i '_._calloc)
ib. malloc)
i realloc)

malloc

realloc

free type
my_allocator._ enter_ ()

Oct 13-16, 2025

AMD @ CASTIEL

On AMD GPUs, you additionally need:
export HSA XNACK=1

this will enable unified shared memory on MI300A

or managed memory on MI200s and MI300X

With thi . all the data movement APIs such as \ and

is accelerated:

p.r
np.random.random(16@)
np.add(a, b)

cp-matmul(cp.asarray(a), cp.asarray(c))

Apart from the setup configuration for NumPy/CuPy, no user code chage is required.

source: cupy docs

AMDZU

together we advance_

https://docs.cupy.dev/en/stable/user_guide/memory.html#unified-memory-programming-ump-support-experimental
https://docs.cupy.dev/en/stable/user_guide/memory.html#unified-memory-programming-ump-support-experimental

Unified Memory Programming on CuPy — benchmark 1/2

Unified memory example in training examples repo:
https://github.com/amd/HPCTrainingExamples/blob/main/Python/cupy/unified bench.py

How to run the code:

gcapodag@ppac-pll-s24-26:~/repos/HPCTrainingExamples/Python/cupy$ python3 cupy_ump_bench.py --help
usage: cupy_ump_bench.py [-h] [--sizes [SIZES ...]] [--repeats REPEATS] [--warmups WARMUPS] [--dtype DTYPE] [-—csv CSV]

CuPy UMP benchmark (baseline vs UMP).

options:
-h, —-help show this help message and exit

-—-sizes [SIZES ...] Sizes like: 8MiB 64MiB 1GiB (default: 16MiB 256MiB 1GiB)
—-repeats REPEATS Repeats per measurement (default: 100)

——warmups WARMUPS Warmup iterations per measurement (default: 3)
-—dtype DTYPE CuPy dtype name (default: float32)
——csv CSV Optional CSV path

The benchmark will transfer data and run some simple operations comparing a baseline (no UMP)
with the UMP case (export CUPY_ENABLE UMP=1 and export HAS XNACK=1)

Oct 13-16, 2025 AMD @ CASTIEL AMDZ\

together we advance_

https://github.com/amd/HPCTrainingExamples/blob/main/Python/cupy/unified_bench.py

Unified Memory Programming on CuPy — benchmark 2/2

It measures the following:

host to device (HtoD) copies with cp.asarray(np_arr)
device to host (DtoH) copies with cp_arr.get()
adding two arrays on device (x+=y)

pipeline mixing the above three operations (copy to GPU, add on GPU and copy back to CPU)

Results:

gcapodag@ppac—pll—52&—262~/PeposiHPC%PainingExamplesipython/cupy$ python3 cupy_ump_bench.py
=== Running BASELINE (CUPY_ENABLE_UMP=0) ===

=== Running UMP (CUPY_ENABLE_UMP=1) ===

=== RESULTS (avg over repeats) ===

Size | Mode | HtoD ms | HtoD GiB/s | DtoH ms | DtoH GiB/s | Add ms | Pipeline ms
————————— e b b b b b b e
1.00 GiB | BASE | 18.699 | 53.480 | 116.304 | 8.598 | 1.3106 | 160.730
1.00 GiB | UMP | ©.e04 | 242413.024 | 125.652 | 7.958 | 1.381 | 125.048

[BASELINE] device=AMD Instinct MI3@0A, SMs=228, mem=94.17 GiB, dtype=float32, repeats=100, warmups=3
[UMP] device=AMD Instinct MI30@GA, SMs=228, mem=94.17 GiB, dtype=float32, repeats=100, warmups=3

Oct 13-16, 2025 AMD @ CASTIEL

AMDZU

together we advance_

Additional Examples on CuPy

=) sfiigoi / tutorials Code examples by Igor Sfiligoi

¢> Code () Issues 17 Pullrequests () Actions [Projects @ Security |~ Insights git clone https://github.com/sfiligoi/tutorials.git
cd tutorials/2025-09-mi300a/cupy

(0 ¥ main -~ tutorials / 2025-09-mi300a / cupy / (3

From 2025 ICPP Al tutorial
by San Diego Supercomputing Center
and AMD.

Q sfiligoi Fix benchmarking setup

Compare python3 center matrix naive.py with CUPY ENABLE UMP=1\
HSA XNACK=1 python3 center _matrix_naive apu.py

Small on CPU: 0.0279147624969U48242 Small on CPU: ©.033936262130737305
Small on GPU: ©0.011859893798828125 Small on GPU: ©.06000709533691406
Medium matrix shape: (8382, 8382) Medium matrix shape: (8382, 8382)
Medium on CPU: ©0.21364235877990723 Medium on CPU: ©.22278118133544922
Medium on GPU: 0.11696290969848633 Medium on GPU: 0.4624929428100586
Large matrix shape: (25145, 25145) Large matrix shape: (25145, 25145)
Large on CPU: 1.9389822483062744 Large on CPU: 1.8617160320281982
Large on GPU: 1.1117446422576904 Large on GPU: 4.334873U43788147

. Retrying ... Retrying
Large on CPU: 1.8522789478302002 Large on CPU: 1.8007740974U42627
Large on GPU: ©.890662670135498 Large on GPU: ©0.934278U4881591797
Oct 13-16, 2025 AMD @ CASTIEL AMDZ1

together we advance_

https://www.sdsc.edu/research/experts/sfiligoi_igor.html
https://www.sdsc.edu/research/experts/sfiligoi_igor.html
https://github.com/sfiligoi/tutorials.git

20

CuPy-Xarray: Xarray on GPUs

Xarray: Python™ library to work with labelled multi-dimensional arrays
Popular for applications where multi-dimensional data needs to be handled (such as climate modeling)
Built on top of NumPy
Has built-in support for NetCDF
Can wrap custom duck array objects (i.e. NumPy-like arrays) that follow specific protocols.

When used together, Xarray and CuPy can provide an easy way to take advantage of GPU acceleration for
scientific computing tasks.

CuPy-Xarray provides an interface for using CuPy in Xarray, providing accessors on the Xarray objects.
CuPy-Xarray relies on an existing CuPy installation, install CuPy first

Cupy-Xarray github repo: https://github.com/xarray-contrib/cupy-xarray
Install with pip install cupy-xarray --no-deps afterinstalling CuPy

Issue with dask: https://github.com/xarray-contrib/cupy-xarray/pull/62
Did not make it into the latest release
Make sure to install dask with pip install dask

source: cupy-xarray documentation

Oct 13-16, 2025 AMD @ CASTIEL

AMDZU

together we advance_

https://docs.xarray.dev/en/stable/
https://docs.xarray.dev/en/stable/
https://github.com/xarray-contrib/cupy-xarray
https://github.com/xarray-contrib/cupy-xarray
https://github.com/xarray-contrib/cupy-xarray
https://github.com/xarray-contrib/cupy-xarray
https://github.com/xarray-contrib/cupy-xarray
https://github.com/xarray-contrib/cupy-xarray/pull/62
https://github.com/xarray-contrib/cupy-xarray/pull/62
https://github.com/xarray-contrib/cupy-xarray/pull/62
https://github.com/xarray-contrib/cupy-xarray/pull/62
https://github.com/xarray-contrib/cupy-xarray/pull/62
https://cupy-xarray.readthedocs.io/latest/examples/02_introduction.html
https://cupy-xarray.readthedocs.io/latest/examples/02_introduction.html
https://cupy-xarray.readthedocs.io/latest/examples/02_introduction.html
https://cupy-xarray.readthedocs.io/latest/examples/02_introduction.html

Simple CuPy-Xarray code example

First get the example to run from the training examples repository
git clone https://github.com/amd/HPCTrainingExamples

cd HPCTrainingExamples/Python/cupy

Set up the environment: note the "module” below is not the Python™ module
module load cupy

Run the example
python cupy_ xarray_test.py

Is the array used to create da_np on device?

Is the array used to create da_cp on device?

da_cp.data is of type: <class 'cupy.ndarray'>

check that arr_gpu and cupy_array are the same with CuPy:

check the arr_gpu and cupy_array are the same with NumPy (interoperability):
arr_gpu is on device: <CUDA Device 0>

arr_cpu is on device: cpu

total number of available devices: 8

arr_gpu2 is on device: <CUDA Device 2>

source: cupy-xarray documentation
Oct 13-16, 2025 AMD @ CASTIEL AMDZ\

together we advance_

https://github.com/amd/HPCTrainingExamples
https://cupy-xarray.readthedocs.io/latest/examples/02_introduction.html
https://cupy-xarray.readthedocs.io/latest/examples/02_introduction.html
https://cupy-xarray.readthedocs.io/latest/examples/02_introduction.html
https://cupy-xarray.readthedocs.io/latest/examples/02_introduction.html

22

Simple CuPy-Xarray code example: a closer look

import cupy as cp
import numpy as np

import xarray as xr

import cupy_xarray << Adds .CUpy to Xarray ObjeCtS

arr_cpu = np.random.rand(16, 16, 16) < Creates an array on the CPU with NumPy

arr_gpu = cp.random.rand(10, 10, 10) < Creates an array on the GPU with CuPy

da_np = xr.DataArray(arr_cpu, dims=["x", "y", "time"]) <& Creates a DataArray USing NumPy array
da_cp = xr.DataArray(arr_gpu, dims=["x", "y", "time’]) < Creates a DataArray using CuPy array

... (some code omitted) . . .

cupy_array = da_cp.data < Access the underlying CuPy array used to create the xarray.DataArray

print("check that arr_gpu and cupy_array are the same with CuPy:",

cp.allclose(cupy array,arr gpu)) « Use CuPy to check that the array used to create

the xarray and the one given by xarray are the same

print("check the arr_gpu and cupy_array are the same with NumPy

(interoperability):", np.allclose(cupy_array,arr_gpu)) < Use NumPy to check that the array used to create
... (some code omitted) . . . the xarray and the one given by xarray are the same
with cp.cuda.Device(2):
arr_gpu2 = cp.array([1, 2, 3, 4, 5]) < Use the device context manager to create data on
print("arr_gpu2 is on device:", arr_gpu2.device) a different device
Oct 13-16, 2025 AMD @ CASTIEL AMDZ1

together we advance_

23

Additional Resources

CuPy vs NumPy speed comparison: https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-
basics.html#cupy-vs-numpy-speed-comparison

Real world example of Cupy-Xarray: https://cupy-xarray.readthedocs.io/latest/examples/06 real-
example.html

Note: you might need to modify the data read line to this if it is taking too long to get the data:
da = xr.open_mfdataset(file objs, engine="h5netcdf", compat="override",
coords="minimal"')[var].load()

Cupy with Xarray vs NumPy with Xarray performance comparison: https://cupy-
xarray.readthedocs.io/latest/examples/03 basic-computations.html#comparing-performance-cupy-
with-xarray-vs-numpy-with-xarray

Oct 13-16, 2025 AMD @ CASTIEL AMDZ\

together we advance_

https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-basics.html#cupy-vs-numpy-speed-comparison
https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-basics.html#cupy-vs-numpy-speed-comparison
https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-basics.html#cupy-vs-numpy-speed-comparison
https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-basics.html#cupy-vs-numpy-speed-comparison
https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-basics.html#cupy-vs-numpy-speed-comparison
https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-basics.html#cupy-vs-numpy-speed-comparison
https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-basics.html#cupy-vs-numpy-speed-comparison
https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-basics.html#cupy-vs-numpy-speed-comparison
https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-basics.html#cupy-vs-numpy-speed-comparison
https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-basics.html#cupy-vs-numpy-speed-comparison
https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-basics.html#cupy-vs-numpy-speed-comparison
https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-basics.html#cupy-vs-numpy-speed-comparison
https://cupy-xarray.readthedocs.io/latest/examples/01_cupy-basics.html#cupy-vs-numpy-speed-comparison
https://cupy-xarray.readthedocs.io/latest/examples/06_real-example.html
https://cupy-xarray.readthedocs.io/latest/examples/06_real-example.html
https://cupy-xarray.readthedocs.io/latest/examples/06_real-example.html
https://cupy-xarray.readthedocs.io/latest/examples/06_real-example.html
https://cupy-xarray.readthedocs.io/latest/examples/06_real-example.html
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray
https://cupy-xarray.readthedocs.io/latest/examples/03_basic-computations.html#comparing-performance-cupy-with-xarray-vs-numpy-with-xarray

24

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The
information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes,
component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS
flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no
obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time
to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF

AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD
SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN
NO EVENT WILLAMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING
FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY CONTENT IS
PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR SOLE DISCRETION AND UNDER NO
CIRCUMSTANCES WILLAMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR ANY
DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD CDNA, AMD ROCm, AMD Instinct, and combinations thereof are
trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of
their respective owners.

Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git Project, in the United States
and/or other countries

Oct 13-16, 2025 AMD @ CASTIEL AMDZ\

together we advance_

	Slide 1: CuPy and CuPy-Xarray:
	Slide 2: What is CuPy
	Slide 3: CuPy and HIP
	Slide 4: CuPy functions
	Slide 5: CuPy Installation – GitHub Repos
	Slide 6: CuPy Installation – Versions
	Slide 7: Current AMD work to be integrated into upstream repo
	Slide 8: CuPy – Installation with pip3 (pre-built wheel for Linux x86_64)
	Slide 9: CuPy – Simple Installation from Source (latest version)
	Slide 10: CuPy – Robust Installation from Source
	Slide 11: Basics of CuPy
	Slide 12: NumPy – CuPy Interoperability
	Slide 13: Simple CuPy code example
	Slide 14: Simple CuPy code example: a closer look
	Slide 15: Verifying that CuPy code example runs on the AMD GPU
	Slide 16: Unified Memory Programming on CuPy
	Slide 17: Unified Memory Programming on CuPy – benchmark 1/2
	Slide 18: Unified Memory Programming on CuPy – benchmark 2/2
	Slide 19: Additional Examples on CuPy
	Slide 20: CuPy-Xarray: Xarray on GPUs
	Slide 21: Simple CuPy-Xarray code example
	Slide 22: Simple CuPy-Xarray code example: a closer look
	Slide 23: Additional Resources
	Slide 24: Disclaimer
	Slide 25

