HIP and ROCm

Presenter: Bob Robey
AMD @ Tsukuba University
Oct 21-23, 2025

AMD ¢

together we advance_

Agenda AMD GPU programming concepts
HIP API calls and GPU kernel code

Error checking, device management, and asynchronous
computing

Shared memory and thread synchronization
ROCm and ROCm libraries

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

1. AMD GPU programming concepts

Device Kernels: Grid Hierarchy

In HIP, kernels are executed on a "grid" of threads that run on a GPU
» 1D, 2D, and 3D grids are supported, but most work maps well to 1D
< The grid is what you map your problem to

Each dimension of the grid is partitioned into equal sized "blocks" of threads

Each block is made up of multiple "threads"
TERMINOLOGY

The grid and its associated blocks are just
organizational constructs, the threads are
the things that do the work

AMD NVIDIA
Grid Grid

Workgroup Thread Block

Thread Thread

If you're familiar with CUDA already, Wavefront (64) Warp (32)
avefron arp

the grid+block structure is very similar in HIP

AMDZU

together we advance_

Oct 21-23, 2025 AMD @ Tsukuba University

The Grid: blocks of threads in 1D

Threads in grid have access to:

- Their respective block (workgroup): blockldx.x
- Their respective thread ID in a block: threadldx.x Each small square is a thread
- Their block’s dimension (# of threads in the block): blockDim.x
- The grid’s dimension (# of blocks in the grid): gridDim.x

Each color is a block of threads
A

Block 0 Block 1 Block 2
Global thread ID int id = blockDim.x * blockIdx.x + threadIdx.x;
For example, the fourth thread of = 4 * 2 + 3
block 2 would have a global thread = 11
ID of 11

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

[Public]

The Grid: blocks of threads in 2D

NSNS EEEEE NN EEEENNENEEEE
e e T
_] T e e e T
The concept is the same in 1D and 2D EEEEEEEEEEEN EEEESEEEEEEEEEEEE

EEE
I
In 2D each block and thread now has a two- EEEEEEEEEEEEEEEEEEEEE NN EEEEE NN
dimensional index EEEEEEENEEEEEEENEEEn
EEEEEEEEEEE NN EEEE NN
EEEEEEEEEEEEEEEEE NS EEEE NN
EEEEEEEEEEE NSNS EEEE NN
EEEEEEEEEEE NN EEEE NN
_— I
Threads in grid have access to: EEEEEEEEEEEEEEEEEEEEE NN EEEEE N
- Their respective block IDs: blockldx.x, blockldx.y N EEE R EEE R e EEE R e
- Their respective thread IDs in a block: threadldX.X, s m m i e i o o 5 o i i o o o o
EEEEEEEEEEEEEEEEEEEE
threadldx.y EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
. Ete EEEEEEEEEEEEEEEEEEEEE NN EEEEE NN
: EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEEEEEE NN EEEEEEEE
EEEEEEEEEEEEEEEEE NN NN
EEEEEEEEEEE NSNS EEEE NN

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ
6 together we advance_

2. HIP API calls and GPU kernel code

What is HIP?

AMD’s Heterogeneous-compute Interface for
Portability, or HIP, is a C++ runtime APl and kernel
language that allows developers to create portable
applications that can run on AMD'’s accelerators as well
as CUDA devices

- Open-source

+ Syntactically similar to CUDA. Most CUDA API calls
can be converted in place: cuda -> hip

+ Supports a strong subset of CUDA runtime
functionality

Oct 21-23, 2025 AMD @ Tsukuba University ng,gv‘:': advance

https://rocm.docs.amd.com/projects/HIP/en/latest/.doxygen/docBin/html/index.html

HIP API

Device Management:

OF (), 0
Memory Management
(), (), OF 0
Streams
(), (), (), ()
Events
(), (), OF ()

Device Kernels
__global , device

Device code
threadIdx, blockIdx, blockDim, , 200+ math functions covering entire CUDA math library.

Error handling
(), 0

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

https://rocm.docs.amd.com/projects/HIP/en/latest/.doxygen/docBin/html/index.html

Example: simple discrete GPU multiply

Oct 21-23, 2025

global multiply (*A, n) hipMemcpy(d A, h A, bytes, hipMemcpyHostToDevice);
{
id = blockDim.x * blockIdx.x + threadIdx.x; thr per blk = ;
if (id < n) A[id] = 2.0 * A[id]; blk in grid = ceil((N) / thr per blk);

main (argc, *argv([]) {
hipMemcpy (h A, d A, bytes, hipMemcpyDeviceToHost) ;
N = M
bytes = N * sizeof (double); free(h_A);
hipFree(d A);
*h A = (*)malloc (bytes) ;
printf () ;
for (i=0; 1i<N; i++) {
h A[i] = (yrand () / () ; return 0;

//////’—_////////F_,////////’—\\\\\\\\

*d A,

hipMalloc (&d A, bytes);

multiply<<<blk in grid,thr per blk>>>(d A, N);

AMD @ Tsukuba University AMD ¢\

together we advance_

Example: simple discrete GPU multiply

Include header for HIP runtime

{

1f (id < n) Af[id] =

main (argc,

N =

*h A = (

Oct 21-23, 2025

.
14

bytes = N * sizeof (double);

__global multiply (*A, n)

id = blockDim.x * blockIdx.x + threadIdx.x;

2.0 * A[id];

*argv([]) {

*)malloc (bytes) ;

for (i=0; 1i<N; i++) {

//////’—_////////F_,////////’—\\\\\\\\

*d A,

hipMalloc (&d A, bytes);
hipMemcpy(d A, h A, bytes, hipMemcpyHostToDevice);

thr per blk = ;
blk in grid = ceil((N) / thr per blk);

multiply<<<blk in grid,thr per blk>>>(d A, N);
hipMemcpy (h A, d A, bytes, hipMemcpyDeviceToHost) ;

free(h A);
hipFree(d A);

printf () ;

return H

AMD @ Tsukuba University AMDZ1

together we advance_

Example: simple discrete GPU multiply

GPU kernel

{

__global

id = blockDim.x * blockIdx.x + threadIdx.x;
2.0 * A[id];

1f (1id < n) A[id]

multiply (

*A, n)

main (argc,

N =

*argv([]) {

.
14

bytes = N * sizeof (double);

*h A = (

for(i=0; 1<N;

Oct 21-23, 2025

*)malloc (bytes) ;

/\/\/\

*d A,

hipMalloc (&d A, bytes);
hipMemcpy(d A, h A, bytes, hipMemcpyHostToDevice);

thr per blk = ;
blk in grid = ceil((N) / thr per blk);

multiply<<<blk in grid,thr per blk>>>(d A, N);
hipMemcpy (h A, d A, bytes, hipMemcpyDeviceToHost) ;

free(h A);
hipFree(d A);

printf () ;

return H

AMD @ Tsukuba University AMD ¢\

together we advance_

Example: simple discrete GPU multiply

__global wvoild multiply(double *A, 1int n)

{
int id = blockDim.x * blockIdx.x + threadIdx.x;
1f (id < n) A[id] = 2.0 * A[id];

Allocate and initialize host memory buffer

int main(int argc, char *argv/[]) {
int N = ;
size t bytes = N * sizeof (double);
double *h A = (double*)malloc (bytes);

for(int 1i=0; 1<N; 1i++) {
h A[i] = (double)rand()/ (double) ;
}

T T~ N T

W

double *d A;

hipMalloc (&d A, bytes);
hipMemcpy(d A, h A, bytes, hipMemcpyHostToDevice);

int thr per blk = ;
int blk in grid = ceil(float(N) / thr per blk);

multiply<<<blk in grid,thr per blk>>>(d A, N);
hipMemcpy (h A, d A, bytes, hipMemcpyDeviceToHost) ;

free(h A);
hipFree(d A);

printf () ;

return ;

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

Example: simple discrete GPU multiply Allocate GPU buffer and copy values

__global wvoild multiply(double *A, 1int n)

{
int id = blockDim.x * blockIdx.x + threadIdx.x;
1f (id < n) A[id] = 2.0 * A[id];

int main(int argc, char *argv/[]) {

int N = H
size t bytes = N * sizeof (double);

double *h A = (double*)malloc (bytes);
for(int 1i=0; 1i<N; 1i++){

h A[i] = (double)rand()/ (double) ;
}

T T~ N T

from CPU buffer to GPU buffer

W

oubie Td_A; Not needed for APU

hipMalloc (&d A, bytes); ;
programming model
hipMemcpy(d A, h A, bytes, hipMemcpyHostToDevice);

int thr per blk = ;
int blk in grid = ceil(float(N) / thr per blk);

multiply<<<blk in grid,thr per blk>>>(d A, N);
hipMemcpy (h A, d A, bytes, hipMemcpyDeviceToHost) ;

free(h A);
hipFree(d A);

printf () ;

return ;

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

Example: simple discrete GPU multiply

__global wvoild multiply(double *A, 1int n)

{
int id = blockDim.x * blockIdx.x + threadIdx.x;
1f (id < n) A[id] = 2.0 * A[id];

int main(int argc, char *argv/[]) {

int N = H
size t bytes = N * sizeof (double);

double *h A = (double*)malloc (bytes);
for(int 1i=0; 1i<N; 1i++){

h A[i] = (double)rand()/ (double) ;
}

T T~ N T

W

double *d A;

hipMalloc (&d A, bytes);

hipMemcpy(d A, h A, bytes, hipMemcpyHostToDevice);

int thr per blk = ;
int blk in grid = ceil(float(N) / thr per blk);

multiply<<<blk in grid, thr per blk>>>(d A, N);

hipMemcpy (h A, d A, bytes, hipMemcpyDeviceToHost) ;

free (h A); Launch GPU

hipFree (d_A); kernel We could pass
h A with APU

printf () ; T

programming model

return ;

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

Example: simple discrete GPU multiply

double *d A;
hipMalloc (&d A, bytes);
global void multiply(double *A, int n) hipMemcpy(d A, h A, bytes, hipMemcpyHostToDevice);
int id = blockDim.x * blockIdx.x + threadIdx.x; int thr per blk = ’
if (id < n) A[id] = 2.0 * A[id]; int blk in grid = ceil(float(N) / thr per blk);
multiply<<<blk in grid,thr per blk>>>(d A, N);
int main(int argc, char *argv/[]) {
hipMemcpy (h A, d A, bytes, hipMemcpyDeviceToHost) ;
ot Ne= 2 . _ Not needed for APU
size t bytes = N * sizeof (double); hipFree (d_A); .
= programming model
double *h A = (double*)malloc (bytes); free(h_A);
printf () ;
for(int 1i=0; 1i<N; 1i++){
h A[i] = (double)rand()/ (double) ; return 0; Copy data from GPU buffer
) } to CPU buffer and free memory
Oct 21-23, 2025 AMD @ Tsukuba University AMDZ1

together we advance_

for (int i1d=0; id<n; 1id++){

Example: simple discrete GPU multiply bl m e el

> Kernel

CPU Implementation

Indicates this is a HIP kernel function
launched from host GPU kernels do not return anything

/ / Kernel arguments

re
_ global void multiply(double a,“ T n)

{
int id = blockDim.x * blockIdx.x + threadIdx.x;

1f (1d < n) A[id] = * Alid]; ‘\\\\\\\\\
} a

N

Define global thread ID

Ensure we do not access memory that
does not belong to us

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

Example: simple discrete GPU multiply

Type dim3 Ex; BLOCKS IN GRID(<nblocksx>,

> Launching the kernel <nblocksy>,
t///////// l <nblocksz>)

kernel name<<< BLOCKS IN GRID, THREADS PER BLOCK,
[OPTIONAL] BYTES OF SHARED MEMORY, [OPTIONAL] STREAM ID >>>

(ARG1, ARG2, ...);
— @ x
thr per blk = H
blk in grid = ceil((N) / thr per blk);

multiply<<<blk in grid, thr per blk>>>(d A, N);

NOTE: GPU kernel launches are asynchronous with respect to the host.

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

18 together we advance_

Software to __ |
hardware mapping

L1 Cache LDS

Scalar Unit SIMD1 SIVID3

Blocks and threads allow a natural mapping of kernels to hardware:
« Upon kernel launch, a grid of thread blocks is launched to compute the kernel on the compute units (CUs)

Threads within a thread block (workgroup):

 Execute on the same CU in chunks of 64 threads called wavefronts (or waves).
« Share Local Data Share (LDS) memory and L1 cache

« Can synchronize

About wavefronts:
» Wavefronts execute on SIMD units (located inside the CU)
» If a wavefront stalls (e.g., data dependency) CUs can quickly context switch to another wavefront

A good practice is to make the block size a multiple of 64 and have several wavefronts (e.g., 256 threads)

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

3. Error checking, device management, and
asynchronous computing

21

Error Checking

There are two main types of HIP errors to check for:

 Errors returned from HIP API calls
— HIP APl calls return a hipError t status

* Errors from HIP kernels
— Synchronous errors: related to kernel launch
— Asynchronous errors: related to kernel execution

Let's look at how to check for these errors...

Oct 21-23, 2025 AMD @ Tsukuba University

AMDZU

together we advance_

Error checking — API errors
The hipError t value should be checked for all HIP API calls!

The easiest method is wrapping the API calls in a macro, which can be reused in all your HIP codes.
Recent compiler versions give a warning if the error is not checked.

do
if
while
main (argc, *argv[]) {

gpuCheck (hipMalloc (&d A, bytes));

Oct 21-23, 2025 AMD @ Tsukuba University Qg:?hgvil advance

23

Error checking — kernel errors

Why are kernel errors handled differently?

« HIP kernels do not have a return value. gpuCheck (hipGetlLastirror());

« When a kernel is launched, execution is

immediately given back to the host process. if (DEBUG)
gpuCheck (hipDeviceSynchronize());

So how do we handle kernel errors?

multiply<<<blk in grid, thr per blk>>>(d A, N);

» Errors related to the kernel launch (e.g., invalid execution parameters)
— Manually check for the last error that occurred using hipGetlLastError ()

— These are known as synchronous errors

« Errors related to kernel execution (e.g., invalid memory access) can happen at any time while the kernel is running

— Must synchronize the device to make sure we catch these errors (hipDeviceSychronize ()).

— These are known as asynchronous errors

NOTE: Device synchronization can cause reduced performance so should be reserved for debugging.

Oct 21-23, 2025 AMD @ Tsukuba University

AMDZU

together we advance_

Blocking vs Nonblocking API functions

Launching a kernel is non-blocking for the host
After sending instructions/data, the host continues to do more work while the device executes the kernel

However, is blocking for the host
The data pointed to in the arguments can be safely accessed/modified after the function returns

To make asynchronous copies, we need to allocate non-pageable (pinned) host memory using
and copy using

(h_a, Nbytes, hipHostMallocDefault);
(d_a, h_a, Nbytes, hipMemcpyHostToDevice, stream);

It is not safe to access/modify the arguments of without some sort of synchronization.

Side Note: H2D/D2H bandwidth increases significantly (~2x) when host memory is pinned
It is good practice to use pinned host memory where data is frequently transferred to/from the device

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

24 together we advance_

Streams

A stream in HIP is a queue of tasks (e.g. kernels, memcpys, events).
Tasks enqueued in a stream complete in order on that stream.
Tasks being executed in different streams are allowed to overlap and share device resources.

Streams are created via:
stream;
(&stream);

And destroyed via:
(stream);

Passing O or as the argument to a function instructs the function to execute on a
stream called the ‘NULL Stream’:
No task on the NULL stream will begin until all previously enqueued tasks in all other streams have completed.
Blocking calls like run on the NULL stream.

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

25 together we advance_

Streams

- Suppose we have 4 small kernels to execute:
myKernell<<<dim3(1), dim3(), 9, 0>>>(, d_al);
myKernel2<<<dim3(1), dim3(), 9, 0>>>(, d_a2);
myKernel3<<<dim3(1), dim3(), 9, 0>>>(, d_a3);
myKernel4<<<dim3(1), dim3(), 9, 0>>>(, d_ad);

- Even though these kernels use only one block each, they’ll execute in serial on the NULL stream:

NULL
Stream

Time ‘ > ‘

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

26 together we advance_

Streams

With streams we can effectively share the GPU’s compute resources:
myKernell<<<dim3(1), dim3(), @, streaml>>>(, d_al);
myKernel2<<<dim3(1), dim3(), @, stream2>>>(, d_a2);
myKernel3<<<dim3(1), dim3(), @, stream3>>>(, d_a3);
myKernel4<<<dim3(1), dim3(), @, stream4>>>(, d_ad);

NULL
Stream
Stream1
Stream?2
Stream3

Stream4

Note 1: Kernels must modify different parts of memory to avoid data races.
Note 2: With large kernels, overlapping computations may not help performance.

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

28

Streams

There is another use for streams besides concurrent kernels;:
Overlapping kernels with data movement.

AMD GPUs have separate engines for:
Host->Device memcpys
Device->Host memcpys
Compute kernels.

These three different operations can overlap without dividing the GPU’s resources.
The overlapping operations should be in separate, non-NULL, streams.
The host memory should be pinned.

Oct 21-23, 2025 AMD @ Tsukuba University

AMDZU

together we advance_

Streams

Suppose we have 3 kernels which require moving data to and from the device:

(d_al, h_al, Nbytes, hipMemcpyHostToDevice));
(d_a2, h_a2, Nbytes, hipMemcpyHostToDevice));
(d_a3, h_a3, Nbytes, hipMemcpyHostToDevice));

myKernell<<<blocks, threads, @, 9>>>(N, d_al);
myKernel2<<<blocks, threads, 9, 9>>>(N, d_a2);
myKernel3<<<blocks, threads, 9, 9>>>(N, d_a3);

(h_al, d_al, Nbytes, hipMemcpyDeviceToHost);

(h_a2, d_a2, Nbytes, hipMemcpyDeviceToHost);
(h_a3, d_a3, Nbytes, hipMemcpyDeviceToHost);

NULL Stream Everything happens here in the above case

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

29 together we advance_

30

Streams

Changing to asynchronous memcpys and using streams:

(d_al, h_al, Nbytes, hipMemcpyHostToDevice,
(d_a2, h_a2, Nbytes, hipMemcpyHostToDevice,
(d_a3, h_a3, Nbytes, hipMemcpyHostToDevice,

myKernell<<<blocks, threads,
myKernel2<<<blocks, threads,
myKernel3<<<blocks, threads,

NULL Stream
Stream1
Stream?2
Stream3

Oct 21-23, 2025

(h_al, d _al, Nbytes, hipMemcpyDeviceToHost,
(h_a2, d a2, Nbytes, hipMemcpyDeviceToHost,
(h_a3, d_a3, Nbytes, hipMemcpyDeviceToHost,

HToD1

HToD2

, streaml>>>(N, d _al);
, stream2>>>(N, d _a2);
, stream3>>>(N, d _a3);

DToH1
DToH2

AMD @ Tsukuba University

streaml);
stream2);
stream3);

streaml);
stream2);
stream3);

AMDZU

together we advance_

4. Shared memory and thread syncronization

32

Synchronization

How do we coordinate execution on device streams with host execution? Need some synchronization points.

()
Heavy-duty sync point.
Blocks host until all work in all device streams has reported complete.

(stream);
Blocks host until all work in stream has reported complete.

Can a stream synchronize with another stream? For that we need ‘Events’:
https://rocm.docs.amd.com/projects/HIP/en/latest/.doxygen/docBin/html/group

event.html

Oct 21-23, 2025 AMD @ Tsukuba University

AMDZU

together we advance_

https://rocm.docs.amd.com/projects/HIP/en/latest/.doxygen/docBin/html/group___event.html

33

HIP stream example

In real stream overlapping, the communication and computation time will not be the same
For a real example of overlapping compute and communication in HIP

git clone https://github.com/AMD/HPCTrainingExamples

cd HPCTrainingExamples/HIP/Stream Overlap

Oct 21-23, 2025 AMD @ Tsukuba University

AMDZU

together we advance_

https://github.com/AMD/HPCTrainingExamples

34

Device management
Multiple GPUs in system? Multiple host threads/MPI ranks? What device are we running on?

Host can query number of devices visible to system:
numDevices = 0O;
(&numDevices);

Host tells the runtime to issue instructions to a particular device:
devicelID = ©O;
(devicelD);

Host can query what device is currently selected and device properties:

(&devicelD);
props;
(&props, devicelD);

The host can manage several devices by swapping the currently selected device during runtime.
Different processes can use different devices or over-subscribe (share) the same device.

Oct 21-23, 2025 AMD @ Tsukuba University

AMDZU

together we advance_

Function qualifiers

hipcc makes two compilation passes through source code. One to compile host code, and one to compile
device code.

functions:
These are entry points to device code, called from the host
Code in these regions will execute on SIMD units

functions:
Can be called from and other functions.
Cannot be called from host code.
Not compiled into host code — essentially ignored during host compilation pass

functions:
Can be called from] , and host functions.
Will execute on SIMD units when called from device codel!

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

36

Memory declarations in device code

Malloc/free not supported in device code.

Variables/arrays can be declared on the stack.

Stack variables declared in device code are allocated in registers and are private to each thread.

Threads can all access common memory via device pointers, but otherwise do not share memory.
Important exception: memory

Stack variables declared as
Allocated once per block in LDS memory
Shared and accessible by all threads in the same block

Access is faster than device global memory (but slower than register)
Must have size known at compile time

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

37

Thread Synchronization

Blocks a thread in a block from continuing execution until all threads in the block have reached

0

Memory transactions made by a thread before () are visible to all other threads in the block
after ()

Can have a noticeable overhead if called repeatedly

AMDZU

together we advance_

Oct 21-23, 2025 AMD @ Tsukuba University

Shared Memory Example

tid = threadIdx.x;
s _a[tid] = d_a[tid];

*d a) {
1; //array of doubles, shared in this block

//each thread fills one entry

//all threads in the block must reach this point before they are allowed to continue.

d_a[tid] =
}

0 A

reverse<<<

Oct 21-23, 2025

38

();

s_al

(1),

)

J

-tid]; //write out array in reverse order

>>>(d_a); //Launch kernel

AMD @ Tsukuba University

AMDZU

together we advance_

5. ROCm and ROCm libraries

[Public]

ROCm GPU libraries

ROCm provides several GPU math libraries

« Typically, two versions:
* roc* -> AMD GPU library, usually written in HIP
« hip* -> Thin interface between roc* and Nvidia cu* library

When developing an application meant to target both CUDA
and AMD devices, use the hip* libraries (portability)

When developing an application meant to target only AMD
devices, may prefer the roc* library API (performance).

- Some roc* libraries perform better by using addition APIs not
available in the cu* equivalents

AMDZN

40 together we advance_

Oct 21-23, 2025 AMD @ Tsukuba University

[Public]

AMD math library equivalents: “decoder ring”

Basic Linear Algebra
Subroutines

Fast Fourier Transforms

Random Number
Generation

ROCRAND

ROCTHRUST C++ Parallel Algorithms

Optimized Parallel
Primitives

Oct 21-23, 2025 AMD @ Tsukuba University AMDA

41 together we advance_

[Public]

AMD math library equivalents: “decoder ring”
CUSPARSE CSPARS Sparse BLAS, SpMV, etc.

Linear Solvers

Solvers and preconditioners
for sparse linear systems

See the link below for the full list:

Oct 21-23, 2025 AMD @ Tsukuba University AMDA

42 together we advance_

https://github.com/ROCm/HIP/blob/amd-staging/docs/how-to/hip_porting_guide.md
https://github.com/ROCm/HIP/blob/amd-staging/docs/how-to/hip_porting_guide.md
https://github.com/ROCm/HIP/blob/amd-staging/docs/how-to/hip_porting_guide.md
https://github.com/ROCm/HIP/blob/amd-staging/docs/how-to/hip_porting_guide.md
https://github.com/ROCm/HIP/blob/amd-staging/docs/how-to/hip_porting_guide.md
https://github.com/ROCm/HIP/blob/amd-staging/docs/how-to/hip_porting_guide.md

43

Querying system

rocminfo: Queries and displays information on the system’s hardware
More info at: hitps://github.com/ROCm/rocminfo

Querying ROCm version:
If you install ROCm in the standard location (/opt/rocm) version info is at: /opt/rocm/.info/version-dev

rocm-smi: Queries and sets AMD GPU frequencies, power usage, and fan speeds
sudo privileges are needed to set frequencies and power limits
sudo privileges are not needed to query information

Get more info by running rocm-smi -h or looking at:
https://github.com/ROCm/rocm smi lib/tree/master/python smi tools
$ /opt/rocm/bin/rocm-smi

ROCm System Management Interface

X

[¢)
o

GPU Temp AvgPwr SCLK MCLK Fan Perf PwrCap VRAM GPU%
1 38.0c 18.0wW 1440Mhz 945Mhz 0.0% manual 220.0W 0% 0%

End of ROCm SMI Log

Oct 21-23, 2025 AMD @ Tsukuba University

AMDZU

together we advance_

https://github.com/ROCm/rocminfo
https://github.com/ROCm/rocm_smi_lib/tree/master/python_smi_tools

44

Hands-on exercises

Located in our HPC Training Examples repo:
https://github.com/amd/HPCTrainingExamples

A table of contents for the READMEs if available at the top-level README in the repo

Relevant exercises for this presentation located in HIP directory.

Link to instructions on how to run the tests: HIP/README.md and subdirectories

Log into the AAC node and clone the repo:

ssh <username>@aac6.amd.com -p 7000 -i <path _to ssh key>
git clone https://github.com/amd/HPCTrainingExamples.git

Oct 21-23, 2025 AMD @ Tsukuba University

AMDZU

together we advance_

https://github.com/amd/HPCTrainingExamples
https://github.com/amd/HPCTrainingExamples/blob/main/README.md
https://github.com/amd/HPCTrainingExamples/tree/main/HIP
https://github.com/amd/HPCTrainingExamples/blob/main/HIP/README.md

45

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical
errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product
and roadmap changes, component and motherboard version changes, new model and/or product releases, product differences between differing
manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot
be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves
the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such
revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS 1S.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS
HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS
INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR
ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR
OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY
CONTENT IS PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR

SOLE DISCRETION AND UNDER NO CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL
RISK AND ARE SOLELY RESPONSIBLE FOR ANY DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD CDNA, AMD ROCm, AMD Instinct, and
combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for
informational purposes only and may be trademarks of their respective owners.

Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git Project, in the
United States and/or other countries

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

	Slide 1: HIP and ROCm
	Slide 2: Agenda
	Slide 3: 1. AMD GPU programming concepts
	Slide 4: Device Kernels: Grid Hierarchy
	Slide 5: The Grid: blocks of threads in 1D
	Slide 6: The Grid: blocks of threads in 2D
	Slide 7: 2. HIP API calls and GPU kernel code
	Slide 8: What is HIP?
	Slide 9: HIP API
	Slide 10: Example: simple discrete GPU multiply
	Slide 11: Example: simple discrete GPU multiply
	Slide 12: Example: simple discrete GPU multiply
	Slide 13: Example: simple discrete GPU multiply
	Slide 14: Example: simple discrete GPU multiply
	Slide 15: Example: simple discrete GPU multiply
	Slide 16: Example: simple discrete GPU multiply
	Slide 17: Example: simple discrete GPU multiply
	Slide 18: Example: simple discrete GPU multiply
	Slide 19: Software to hardware mapping
	Slide 20: 3. Error checking, device management, and asynchronous computing
	Slide 21: Error Checking
	Slide 22: Error checking – API errors
	Slide 23: Error checking – kernel errors
	Slide 24: Blocking vs Nonblocking API functions
	Slide 25: Streams
	Slide 26: Streams
	Slide 27: Streams
	Slide 28: Streams
	Slide 29: Streams
	Slide 30: Streams
	Slide 31: 4. Shared memory and thread syncronization
	Slide 32: Synchronization
	Slide 33: HIP stream example
	Slide 34: Device management
	Slide 35: Function qualifiers
	Slide 36: Memory declarations in device code
	Slide 37: Thread Synchronization
	Slide 38: Shared Memory Example
	Slide 39: 5. ROCm and ROCm libraries
	Slide 40: ROCm GPU libraries
	Slide 41: AMD math library equivalents: “decoder ring”
	Slide 42: AMD math library equivalents: “decoder ring”
	Slide 43: Querying system
	Slide 44: Hands-on exercises
	Slide 45: Disclaimer
	Slide 46

