
HIP and ROCm

Presenter: Bob Robey

AMD @ Tsukuba University

Oct 21-23, 2025

2

[Public]

Agenda 1. AMD GPU programming concepts

2. HIP API calls and GPU kernel code

3. Error checking, device management, and asynchronous

computing

4. Shared memory and thread synchronization

5. ROCm and ROCm libraries

Oct 21-23, 2025 AMD @ Tsukuba University

1. AMD GPU programming concepts

4

[Public]

Device Kernels: Grid Hierarchy

• In HIP, kernels are executed on a "grid" of threads that run on a GPU
❖ 1D, 2D, and 3D grids are supported, but most work maps well to 1D

❖ The grid is what you map your problem to

• Each dimension of the grid is partitioned into equal sized "blocks" of threads

• Each block is made up of multiple "threads"

• The grid and its associated blocks are just

organizational constructs, the threads are

the things that do the work

• If you’re familiar with CUDA already,

the grid+block structure is very similar in HIP

Oct 21-23, 2025

Thread blocks Grid of thread blocks

Threads

AMD NVIDIA

Grid Grid

Workgroup Thread Block

Thread Thread

Wavefront (64) Warp (32)

AMD @ Tsukuba University

TERMINOLOGY

5

[Public]

The Grid: blocks of threads in 1D

Threads in grid have access to:

• Their respective block (workgroup): blockIdx.x

• Their respective thread ID in a block: threadIdx.x

• Their block’s dimension (# of threads in the block): blockDim.x

• The grid’s dimension (# of blocks in the grid): gridDim.x

Oct 21-23, 2025 AMD @ Tsukuba University

 rid of blocks

 lock of threads
Thread

int id = blockDim.x * blockIdx.x + threadIdx.x;

 = 4 * 2 + 3
 = 11

Block 0 Block 2Block 1 ...

0 1 2 3 0 1 2 3 0 1 2 3 ...

Global thread ID

For example, the fourth thread of

block 2 would have a global thread

ID of 11

Each color is a block of threads

Each small square is a thread

6

[Public]

The Grid: blocks of threads in 2D

• The concept is the same in 1D and 2D

• In 2D each block and thread now has a two-

dimensional index

Threads in grid have access to:

• Their respective block IDs: blockIdx.x, blockIdx.y

• Their respective thread IDs in a block: threadIdx.x,

threadIdx.y

• Etc.

Oct 21-23, 2025 AMD @ Tsukuba University

2. HIP API calls and GPU kernel code

8

[Public]

What is HIP?

Oct 21-23, 2025 AMD @ Tsukuba University

AMD’s Heterogeneous-compute Interface for

Portability, or HIP, is a C++ runtime API and kernel

language that allows developers to create portable

applications that can run on AMD’s accelerators as well

as CUDA devices

• Open-source

• Syntactically similar to CUDA. Most CUDA API calls

can be converted in place: cuda -> hip

• Supports a strong subset of CUDA runtime

functionality

Portable HIP C++ (Host & Device Code)

#include “cuda.h”
#include

“hip_runtime.h”

nvcc hipcc

Nvidia GPU AMD GPU

9

[Public]

HIP API
Device Management:

• hipSetDevice(), hipGetDevice(), hipGetDeviceProperties()

Memory Management

• hipMalloc(), hipMemcpy(), hipMemcpyAsync(), hipFree()

Streams

• hipStreamCreate(), hipDeviceSynchronize(), hipStreamSynchronize(), hipStreamDestroy()

Events

• hipEventCreate(), hipEventRecord(), hipStreamWaitEvent(), hipEventElapsedTime()

Device Kernels

• __global__, __device__

Device code

• threadIdx, blockIdx, blockDim, __shared__, 200+ math functions covering entire CUDA math library.

Error handling

• hipGetLastError(), hipGetErrorString()

Oct 21-23, 2025 AMD @ Tsukuba University

https://rocm.docs.amd.com/projects/HIP/en/latest/.doxygen/docBin/html/index.html

https://rocm.docs.amd.com/projects/HIP/en/latest/.doxygen/docBin/html/index.html

10

[Public]

Example: simple discrete GPU multiply

#include <stdio.h>

#include <math.h>

#include "hip/hip_runtime.h"

__global__ void multiply(double *A, int n)

{

 int id = blockDim.x * blockIdx.x + threadIdx.x;

 if (id < n) A[id] = 2.0 * A[id];

}

int main(int argc, char *argv[]){

 int N = 1024 * 1024;

 size_t bytes = N * sizeof(double);

 double *h_A = (double*)malloc(bytes);

 for(int i=0; i<N; i++){

 h_A[i] = (double)rand()/(double)RAND_MAX;

 }

double *d_A;

 hipMalloc(&d_A, bytes);

 hipMemcpy(d_A, h_A, bytes, hipMemcpyHostToDevice);

 int thr_per_blk = 256;

 int blk_in_grid = ceil(float(N) / thr_per_blk);

 multiply<<<blk_in_grid,thr_per_blk>>>(d_A, N);

 hipMemcpy(h_A, d_A, bytes, hipMemcpyDeviceToHost);

 free(h_A);

 hipFree(d_A);

 printf("__SUCCESS__\n");

 return 0;

}

Oct 21-23, 2025 AMD @ Tsukuba University

11

[Public]

Example: simple discrete GPU multiply

#include <stdio.h>

#include <math.h>

#include "hip/hip_runtime.h"

__global__ void multiply(double *A, int n)

{

 int id = blockDim.x * blockIdx.x + threadIdx.x;

 if (id < n) A[id] = 2.0 * A[id];

}

int main(int argc, char *argv[]){

 int N = 1024 * 1024;

 size_t bytes = N * sizeof(double);

 double *h_A = (double*)malloc(bytes);

 for(int i=0; i<N; i++){

 h_A[i] = (double)rand()/(double)RAND_MAX;

 }

double *d_A;

 hipMalloc(&d_A, bytes);

 hipMemcpy(d_A, h_A, bytes, hipMemcpyHostToDevice);

 int thr_per_blk = 256;

 int blk_in_grid = ceil(float(N) / thr_per_blk);

 multiply<<<blk_in_grid,thr_per_blk>>>(d_A, N);

 hipMemcpy(h_A, d_A, bytes, hipMemcpyDeviceToHost);

 free(h_A);

 hipFree(d_A);

 printf("__SUCCESS__\n");

 return 0;

}

Include header for HIP runtime

Oct 21-23, 2025
AMD @ Tsukuba University

12

[Public]

Example: simple discrete GPU multiply

#include <stdio.h>

#include <math.h>

#include "hip/hip_runtime.h"

__global__ void multiply(double *A, int n)

{

 int id = blockDim.x * blockIdx.x + threadIdx.x;

 if (id < n) A[id] = 2.0 * A[id];

}

int main(int argc, char *argv[]){

 int N = 1024 * 1024;

 size_t bytes = N * sizeof(double);

 double *h_A = (double*)malloc(bytes);

 for(int i=0; i<N; i++){

 h_A[i] = (double)rand()/(double)RAND_MAX;

 }

double *d_A;

 hipMalloc(&d_A, bytes);

 hipMemcpy(d_A, h_A, bytes, hipMemcpyHostToDevice);

 int thr_per_blk = 256;

 int blk_in_grid = ceil(float(N) / thr_per_blk);

 multiply<<<blk_in_grid,thr_per_blk>>>(d_A, N);

 hipMemcpy(h_A, d_A, bytes, hipMemcpyDeviceToHost);

 free(h_A);

 hipFree(d_A);

 printf("__SUCCESS__\n");

 return 0;

}

GPU kernel

Oct 21-23, 2025 AMD @ Tsukuba University

13

[Public]

Example: simple discrete GPU multiply

#include <stdio.h>

#include <math.h>

#include "hip/hip_runtime.h"

__global__ void multiply(double *A, int n)

{

 int id = blockDim.x * blockIdx.x + threadIdx.x;

 if (id < n) A[id] = 2.0 * A[id];

}

int main(int argc, char *argv[]){

 int N = 1024 * 1024;

 size_t bytes = N * sizeof(double);

 double *h_A = (double*)malloc(bytes);

 for(int i=0; i<N; i++){

 h_A[i] = (double)rand()/(double)RAND_MAX;

 }

double *d_A;

 hipMalloc(&d_A, bytes);

 hipMemcpy(d_A, h_A, bytes, hipMemcpyHostToDevice);

 int thr_per_blk = 256;

 int blk_in_grid = ceil(float(N) / thr_per_blk);

 multiply<<<blk_in_grid,thr_per_blk>>>(d_A, N);

 hipMemcpy(h_A, d_A, bytes, hipMemcpyDeviceToHost);

 free(h_A);

 hipFree(d_A);

 printf("__SUCCESS__\n");

 return 0;

}

Allocate and initialize host memory buffer

Oct 21-23, 2025 AMD @ Tsukuba University

14

[Public]

Example: simple discrete GPU multiply

#include <stdio.h>

#include <math.h>

#include "hip/hip_runtime.h"

__global__ void multiply(double *A, int n)

{

 int id = blockDim.x * blockIdx.x + threadIdx.x;

 if (id < n) A[id] = 2.0 * A[id];

}

int main(int argc, char *argv[]){

 int N = 1024 * 1024;

 size_t bytes = N * sizeof(double);

 double *h_A = (double*)malloc(bytes);

 for(int i=0; i<N; i++){

 h_A[i] = (double)rand()/(double)RAND_MAX;

 }

double *d_A;

 hipMalloc(&d_A, bytes);

 hipMemcpy(d_A, h_A, bytes, hipMemcpyHostToDevice);

 int thr_per_blk = 256;

 int blk_in_grid = ceil(float(N) / thr_per_blk);

 multiply<<<blk_in_grid,thr_per_blk>>>(d_A, N);

 hipMemcpy(h_A, d_A, bytes, hipMemcpyDeviceToHost);

 free(h_A);

 hipFree(d_A);

 printf("__SUCCESS__\n");

 return 0;

}

Allocate GPU buffer and copy values

from CPU buffer to GPU buffer

Oct 21-23, 2025 AMD @ Tsukuba University

Not needed for APU

programming model

15

[Public]

Example: simple discrete GPU multiply

#include <stdio.h>

#include <math.h>

#include "hip/hip_runtime.h"

__global__ void multiply(double *A, int n)

{

 int id = blockDim.x * blockIdx.x + threadIdx.x;

 if (id < n) A[id] = 2.0 * A[id];

}

int main(int argc, char *argv[]){

 int N = 1024 * 1024;

 size_t bytes = N * sizeof(double);

 double *h_A = (double*)malloc(bytes);

 for(int i=0; i<N; i++){

 h_A[i] = (double)rand()/(double)RAND_MAX;

 }

double *d_A;

 hipMalloc(&d_A, bytes);

 hipMemcpy(d_A, h_A, bytes, hipMemcpyHostToDevice);

 int thr_per_blk = 256;

 int blk_in_grid = ceil(float(N) / thr_per_blk);

 multiply<<<blk_in_grid,thr_per_blk>>>(d_A, N);

 hipMemcpy(h_A, d_A, bytes, hipMemcpyDeviceToHost);

 free(h_A);

 hipFree(d_A);

 printf("__SUCCESS__\n");

 return 0;

}

Launch GPU

 kernel We could pass
h_A with APU

programming model

Oct 21-23, 2025 AMD @ Tsukuba University

16

[Public]

Example: simple discrete GPU multiply

#include <stdio.h>

#include <math.h>

#include "hip/hip_runtime.h"

__global__ void multiply(double *A, int n)

{

 int id = blockDim.x * blockIdx.x + threadIdx.x;

 if (id < n) A[id] = 2.0 * A[id];

}

int main(int argc, char *argv[]){

 int N = 1024 * 1024;

 size_t bytes = N * sizeof(double);

 double *h_A = (double*)malloc(bytes);

 for(int i=0; i<N; i++){

 h_A[i] = (double)rand()/(double)RAND_MAX;

 }

double *d_A;

 hipMalloc(&d_A, bytes);

 hipMemcpy(d_A, h_A, bytes, hipMemcpyHostToDevice);

 int thr_per_blk = 256;

 int blk_in_grid = ceil(float(N) / thr_per_blk);

 multiply<<<blk_in_grid,thr_per_blk>>>(d_A, N);

 hipMemcpy(h_A, d_A, bytes, hipMemcpyDeviceToHost);

 hipFree(d_A);

 free(h_A);

 printf("__SUCCESS__\n");

 return 0;

}

Copy data from GPU buffer

to CPU buffer and free memory

Oct 21-23, 2025 AMD @ Tsukuba University

Not needed for APU

programming model

17

[Public]

__global__ void multiply(double *A, int n)

{

 int id = blockDim.x * blockIdx.x + threadIdx.x;

 if (id < n) A[id] = 2.0 * A[id];

}

Indicates this is a HIP kernel function

launched from host

Example: simple discrete GPU multiply

GPU kernels do not return anything

Kernel arguments

Define global thread ID

Ensure we do not access memory that

does not belong to us

for (int id=0; id<n; id++){

 a[id] = 2.0 * a[id];

}

CPU Implementation

Oct 21-23, 2025 AMD @ Tsukuba University

➢ Kernel

18

[Public]

int thr_per_blk = 256;

int blk_in_grid = ceil(float(N) / thr_per_blk);

/* Launch multiply kernel */

multiply<<<blk_in_grid, thr_per_blk>>>(d_A, N);

× –

kernel_name<<< BLOCKS_IN_GRID, THREADS_PER_BLOCK,

 [OPTIONAL] BYTES_OF_SHARED_MEMORY, [OPTIONAL] STREAM_ID >>>

 (ARG1, ARG2, ...);

NOTE: GPU kernel launches are asynchronous with respect to the host.

Example: simple discrete GPU multiply
Type dim3 BLOCKS_IN_GRID(<nblocksx>,

 <nblocksy>,

 <nblocksz>)

Ex:

Oct 21-23, 2025 AMD @ Tsukuba University

➢ Launching the kernel

19

[Public]

Software to

hardware mapping

Oct 21-23, 2025 AMD @ Tsukuba University

Blocks and threads allow a natural mapping of kernels to hardware:
• Upon kernel launch, a grid of thread blocks is launched to compute the kernel on the compute units (CUs)

Threads within a thread block (workgroup):
• Execute on the same CU in chunks of 64 threads called wavefronts (or waves).

• Share Local Data Share (LDS) memory and L1 cache

• Can synchronize

About wavefronts:
• Wavefronts execute on SIMD units (located inside the CU)

• If a wavefront stalls (e.g., data dependency) CUs can quickly context switch to another wavefront

A good practice is to make the block size a multiple of 64 and have several wavefronts (e.g., 256 threads)

3. Error checking, device management, and

asynchronous computing

21

[Public]

Error Checking

There are two main types of HIP errors to check for:

• Errors returned from HIP API calls

→ HIP API calls return a hipError_t status

• Errors from HIP kernels

→ Synchronous errors: related to kernel launch

→ Asynchronous errors: related to kernel execution

Let’s look at how to check for these errors…

AMD @ Tsukuba UniversityOct 21-23, 2025

22

[Public]

Error checking – API errors
The hipError_t value should be checked for all HIP API calls!

The easiest method is wrapping the API calls in a macro, which can be reused in all your HIP codes.

Recent compiler versions give a warning if the error is not checked.

/* Macro for checking GPU API return values */

#define gpuCheck(call) \

do{ \

 hipError_t gpuErr = call; \

 if(hipSuccess != gpuErr){ \

 printf("GPU API Error - %s:%d: '%s'\n", __FILE__, __LINE__, hipGetErrorString(gpuErr)); \

 exit(1); \

 } \

}while(0)

int main(int argc, char *argv[]){

 ...

 gpuCheck(hipMalloc(&d_A, bytes));

 ...

}

AMD @ Tsukuba UniversityOct 21-23, 2025

23

[Public]

Error checking – kernel errors
...

/* Launch multiply kernel */

multiply<<<blk_in_grid, thr_per_blk>>>(d_A, N);

/* Check for kernel launch errors */

gpuCheck(hipGetLastError());

/* Check for kernel execution errors */

if (DEBUG)

 gpuCheck (hipDeviceSynchronize());

...

Why are kernel errors handled differently?

• HIP kernels do not have a return value.

• When a kernel is launched, execution is

immediately given back to the host process.

So how do we handle kernel errors?

• Errors related to the kernel launch (e.g., invalid execution parameters)

→ Manually check for the last error that occurred using hipGetLastError()

→ These are known as synchronous errors

• Errors related to kernel execution (e.g., invalid memory access) can happen at any time while the kernel is running

→ Must synchronize the device to make sure we catch these errors (hipDeviceSychronize()).

→ These are known as asynchronous errors

NOTE: Device synchronization can cause reduced performance so should be reserved for debugging.

AMD @ Tsukuba UniversityOct 21-23, 2025

24

[Public]

Blocking vs Nonblocking API functions

• Launching a kernel is non-blocking for the host

• After sending instructions/data, the host continues to do more work while the device executes the kernel

• However, hipMemcpy is blocking for the host

• The data pointed to in the arguments can be safely accessed/modified after the function returns

• To make asynchronous copies, we need to allocate non-pageable (pinned) host memory using

hipHostMalloc and copy using hipMemcpyAsync

 hipHostMalloc(h_a, Nbytes, hipHostMallocDefault);

hipMemcpyAsync(d_a, h_a, Nbytes, hipMemcpyHostToDevice, stream);

• It is not safe to access/modify the arguments of hipMemcpyAsync without some sort of synchronization.

Oct 21-23, 2025 AMD @ Tsukuba University

 Side Note: H2D/D2H bandwidth increases significantly (~2x) when host memory is pinned
• It is good practice to use pinned host memory where data is frequently transferred to/from the device

25

[Public]

Streams

• A stream in HIP is a queue of tasks (e.g. kernels, memcpys, events).

• Tasks enqueued in a stream complete in order on that stream.

• Tasks being executed in different streams are allowed to overlap and share device resources.

• Streams are created via:

hipStream_t stream;

hipStreamCreate(&stream);

• And destroyed via:

hipStreamDestroy(stream);

• Passing 0 or NULL as the hipStream_t argument to a function instructs the function to execute on a

stream called the ‘NULL Stream’:

• No task on the NULL stream will begin until all previously enqueued tasks in all other streams have completed.

• Blocking calls like hipMemcpy run on the NULL stream.

Oct 21-23, 2025 AMD @ Tsukuba University

26

[Public]

Streams

• Suppose we have 4 small kernels to execute:

myKernel1<<<dim3(1), dim3(256), 0, 0>>>(256, d_a1);

myKernel2<<<dim3(1), dim3(256), 0, 0>>>(256, d_a2);

myKernel3<<<dim3(1), dim3(256), 0, 0>>>(256, d_a3);

myKernel4<<<dim3(1), dim3(256), 0, 0>>>(256, d_a4);

• Even though these kernels use only one block each, they’ll execute in serial on the NULL stream:

Oct 21-23, 2025 AMD @ Tsukuba University

NULL

Stream
myKernel1 myKernel2 myKernel3 myKernel4

Time

27

[Public]

Streams

• With streams we can effectively share the PU’s compute resources:
myKernel1<<<dim3(1), dim3(256), 0, stream1>>>(256, d_a1);

myKernel2<<<dim3(1), dim3(256), 0, stream2>>>(256, d_a2);

myKernel3<<<dim3(1), dim3(256), 0, stream3>>>(256, d_a3);

myKernel4<<<dim3(1), dim3(256), 0, stream4>>>(256, d_a4);

Note 1: Kernels must modify different parts of memory to avoid data races.

Note 2: With large kernels, overlapping computations may not help performance.

Oct 21-23, 2025 AMD @ Tsukuba University

NULL

Stream

Stream1

Stream2

Stream3

Stream4

myKernel1

myKernel2

myKernel3

myKernel4

28

[Public]

Streams

• There is another use for streams besides concurrent kernels:

• Overlapping kernels with data movement.

• AMD GPUs have separate engines for:

• Host->Device memcpys

• Device->Host memcpys

• Compute kernels.

• These three different operations can overlap without dividing the PU’s resources.

• The overlapping operations should be in separate, non-NULL, streams.

• The host memory should be pinned.

Oct 21-23, 2025 AMD @ Tsukuba University

29

[Public]

Streams

Suppose we have 3 kernels which require moving data to and from the device:

hipMemcpy(d_a1, h_a1, Nbytes, hipMemcpyHostToDevice));

hipMemcpy(d_a2, h_a2, Nbytes, hipMemcpyHostToDevice));

hipMemcpy(d_a3, h_a3, Nbytes, hipMemcpyHostToDevice));

myKernel1<<<blocks, threads, 0, 0>>>(N, d_a1);

myKernel2<<<blocks, threads, 0, 0>>>(N, d_a2);

myKernel3<<<blocks, threads, 0, 0>>>(N, d_a3);

hipMemcpy(h_a1, d_a1, Nbytes, hipMemcpyDeviceToHost);

hipMemcpy(h_a2, d_a2, Nbytes, hipMemcpyDeviceToHost);

hipMemcpy(h_a3, d_a3, Nbytes, hipMemcpyDeviceToHost);

Oct 21-23, 2025 AMD @ Tsukuba University

NULL Stream Everything happens here in the above case​

30

[Public]

Streams

Changing to asynchronous memcpys and using streams:

hipMemcpyAsync(d_a1, h_a1, Nbytes, hipMemcpyHostToDevice, stream1);

hipMemcpyAsync(d_a2, h_a2, Nbytes, hipMemcpyHostToDevice, stream2);

hipMemcpyAsync(d_a3, h_a3, Nbytes, hipMemcpyHostToDevice, stream3);

myKernel1<<<blocks, threads, 0, stream1>>>(N, d_a1);

myKernel2<<<blocks, threads, 0, stream2>>>(N, d_a2);

myKernel3<<<blocks, threads, 0, stream3>>>(N, d_a3);

hipMemcpyAsync(h_a1, d_a1, Nbytes, hipMemcpyDeviceToHost, stream1);

hipMemcpyAsync(h_a2, d_a2, Nbytes, hipMemcpyDeviceToHost, stream2);

hipMemcpyAsync(h_a3, d_a3, Nbytes, hipMemcpyDeviceToHost, stream3);

Oct 21-23, 2025 AMD @ Tsukuba University

NULL Stream

Stream1

Stream2

Stream3

myKernel

1
myKernel

2
myKernel

3

HToD1

HToD2

HToD3

DToH1

DToH2

DToH3

4. Shared memory and thread syncronization

32

[Public]

Synchronization

How do we coordinate execution on device streams with host execution? Need some synchronization points.

• hipDeviceSynchronize();

• Heavy-duty sync point.

• Blocks host until all work in all device streams has reported complete.

• hipStreamSynchronize(stream);

• Blocks host until all work in stream has reported complete.

Can a stream synchronize with another stream? For that we need ‘Events’:

https://rocm.docs.amd.com/projects/HIP/en/latest/.doxygen/docBin/html/group___event.html

Oct 21-23, 2025 AMD @ Tsukuba University

https://rocm.docs.amd.com/projects/HIP/en/latest/.doxygen/docBin/html/group___event.html

33

[Public]

HIP stream example

In real stream overlapping, the communication and computation time will not be the same

For a real example of overlapping compute and communication in HIP

git clone https://github.com/AMD/HPCTrainingExamples

cd HPCTrainingExamples/HIP/Stream_Overlap

Oct 21-23, 2025 AMD @ Tsukuba University

https://github.com/AMD/HPCTrainingExamples

34

[Public]

Device management
Multiple GPUs in system? Multiple host threads/MPI ranks? What device are we running on?

• Host can query number of devices visible to system:

 int numDevices = 0;

 hipGetDeviceCount(&numDevices);

• Host tells the runtime to issue instructions to a particular device:

 int deviceID = 0;

 hipSetDevice(deviceID);

• Host can query what device is currently selected and device properties:

 hipGetDevice(&deviceID);
 hipDeviceProp_t props;

 hipGetDeviceProperties(&props, deviceID);

The host can manage several devices by swapping the currently selected device during runtime.

Different processes can use different devices or over-subscribe (share) the same device.

Oct 21-23, 2025 AMD @ Tsukuba University

35

[Public]

Function qualifiers

hipcc makes two compilation passes through source code. One to compile host code, and one to compile
device code.

• __global__ functions:
• These are entry points to device code, called from the host

• Code in these regions will execute on SIMD units

• __device__ functions:
• Can be called from __global__ and other __device__ functions.

• Cannot be called from host code.

• Not compiled into host code – essentially ignored during host compilation pass

• __host__ __device__ functions:
• Can be called from __global__, __device__, and host functions.

• Will execute on SIMD units when called from device code!

Oct 21-23, 2025 AMD @ Tsukuba University

36

[Public]

Memory declarations in device code

• Malloc/free not supported in device code.

• Variables/arrays can be declared on the stack.

• Stack variables declared in device code are allocated in registers and are private to each thread.

• Threads can all access common memory via device pointers, but otherwise do not share memory.
• Important exception: __shared__ memory

• Stack variables declared as __shared__:
• Allocated once per block in LDS memory

• Shared and accessible by all threads in the same block

• Access is faster than device global memory (but slower than register)

• Must have size known at compile time

Oct 21-23, 2025 AMD @ Tsukuba University

37

[Public]

Thread Synchronization

_syncthreads():
• Blocks a thread in a block from continuing execution until all threads in the block have reached

__syncthreads()

• Memory transactions made by a thread before __syncthreads() are visible to all other threads in the block

after __syncthreads()

• Can have a noticeable overhead if called repeatedly

Oct 21-23, 2025 AMD @ Tsukuba University

38

[Public]

Shared Memory Example

__global__ void reverse(double *d_a) {

 __shared__ double s_a[256]; //array of doubles, shared in this block

 int tid = threadIdx.x;

 s_a[tid] = d_a[tid]; //each thread fills one entry

 //all threads in the block must reach this point before they are allowed to continue.

 __syncthreads();

 d_a[tid] = s_a[255-tid]; //write out array in reverse order

}

int main() {

 …

 reverse<<<dim3(1), dim3(256), 0, 0>>>(d_a); //Launch kernel

 …

}

Oct 21-23, 2025 AMD @ Tsukuba University

5. ROCm and ROCm libraries

40

[Public]

ROCm GPU libraries

Oct 21-23, 2025 AMD @ Tsukuba University

ROCm provides several GPU math libraries

• Typically, two versions:

• roc* -> AMD GPU library, usually written in HIP

• hip* -> Thin interface between roc* and Nvidia cu* library

When developing an application meant to target both CUDA

and AMD devices, use the hip* libraries (portability)

When developing an application meant to target only AMD

devices, may prefer the roc* library API (performance).

• Some roc* libraries perform better by using addition APIs not

available in the cu* equivalents

hipBLAS

rocBLAS cuBLAS

41

[Public]

AMD math library equivalents: “decoder ring”

Oct 21-23, 2025 AMD @ Tsukuba University

Basic Linear Algebra

Subroutines
CUBLAS ROCBLAS

Fast Fourier TransformsCUFFT ROCFFT

C++ Parallel AlgorithmsTHRUST ROCTHRUST

Optimized Parallel

Primitives
CUB ROCPRIM

CURAND ROCRAND
Random Number

Generation

42

[Public]

AMD math library equivalents: “decoder ring”

Oct 21-23, 2025 AMD @ Tsukuba University

Sparse BLAS, SpMV, etc. CUSPARSE ROCSPARSE

Linear SolversCUSOLVER ROCSOLVER

AMGX ROCALUTION

HTTPS://GITHUB.COM/ROCM/HIP/BLOB/AMD-STAGING/DOCS/HOW-TO/HIP_PORTING_GUIDE.MD

Solvers and preconditioners

for sparse linear systems

See the link below for the full list:

https://github.com/ROCm/HIP/blob/amd-staging/docs/how-to/hip_porting_guide.md
https://github.com/ROCm/HIP/blob/amd-staging/docs/how-to/hip_porting_guide.md
https://github.com/ROCm/HIP/blob/amd-staging/docs/how-to/hip_porting_guide.md
https://github.com/ROCm/HIP/blob/amd-staging/docs/how-to/hip_porting_guide.md
https://github.com/ROCm/HIP/blob/amd-staging/docs/how-to/hip_porting_guide.md
https://github.com/ROCm/HIP/blob/amd-staging/docs/how-to/hip_porting_guide.md

43

[Public]

Querying system

• rocminfo: Queries and displays information on the system’s hardware
• More info at: https://github.com/ROCm/rocminfo

Querying ROCm version:

• If you install ROCm in the standard location (/opt/rocm) version info is at: /opt/rocm/.info/version-dev

• rocm-smi: Queries and sets AMD GPU frequencies, power usage, and fan speeds

• sudo privileges are needed to set frequencies and power limits

• sudo privileges are not needed to query information

• Get more info by running rocm-smi -h or looking at:

https://github.com/ROCm/rocm_smi_lib/tree/master/python_smi_tools

Oct 21-23, 2025 AMD @ Tsukuba University

$ /opt/rocm/bin/rocm-smi

========================ROCm System Management Interface========================

==

GPU Temp AvgPwr SCLK MCLK Fan Perf PwrCap VRAM% GPU%

1 38.0c 18.0W 1440Mhz 945Mhz 0.0% manual 220.0W 0% 0%

==

==============================End of ROCm SMI Log ==============================

https://github.com/ROCm/rocminfo
https://github.com/ROCm/rocm_smi_lib/tree/master/python_smi_tools

44

[Public]

Hands-on exercises

Located in our HPC Training Examples repo:

 https://github.com/amd/HPCTrainingExamples

A table of contents for the READMEs if available at the top-level README in the repo

Relevant exercises for this presentation located in HIP directory.

Link to instructions on how to run the tests: HIP/README.md and subdirectories

Log into the AAC node and clone the repo:

 ssh <username>@aac6.amd.com –p 7000 -i <path_to_ssh_key>

 git clone https://github.com/amd/HPCTrainingExamples.git

Oct 21-23, 2025 AMD @ Tsukuba University

https://github.com/amd/HPCTrainingExamples
https://github.com/amd/HPCTrainingExamples/blob/main/README.md
https://github.com/amd/HPCTrainingExamples/tree/main/HIP
https://github.com/amd/HPCTrainingExamples/blob/main/HIP/README.md

45

[Public]

Disclaimer

Oct 21-23, 2025 AMD @ Tsukuba University

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical

errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product

and roadmap changes, component and motherboard version changes, new model and/or product releases, product differences between differing

manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot

be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves

the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such

revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS

HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS

INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR

ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR

OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY

ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY

CONTENT IS PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR

SOLE DISCRETION AND UNDER NO CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL

RISK AND ARE SOLELY RESPONSIBLE FOR ANY DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD CDNA, AMD ROCm, AMD Instinct, and

combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for

informational purposes only and may be trademarks of their respective owners.

Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git Project, in the

United States and/or other countries

	Slide 1: HIP and ROCm
	Slide 2: Agenda
	Slide 3: 1. AMD GPU programming concepts
	Slide 4: Device Kernels: Grid Hierarchy
	Slide 5: The Grid: blocks of threads in 1D
	Slide 6: The Grid: blocks of threads in 2D
	Slide 7: 2. HIP API calls and GPU kernel code
	Slide 8: What is HIP?
	Slide 9: HIP API
	Slide 10: Example: simple discrete GPU multiply
	Slide 11: Example: simple discrete GPU multiply
	Slide 12: Example: simple discrete GPU multiply
	Slide 13: Example: simple discrete GPU multiply
	Slide 14: Example: simple discrete GPU multiply
	Slide 15: Example: simple discrete GPU multiply
	Slide 16: Example: simple discrete GPU multiply
	Slide 17: Example: simple discrete GPU multiply
	Slide 18: Example: simple discrete GPU multiply
	Slide 19: Software to hardware mapping
	Slide 20: 3. Error checking, device management, and asynchronous computing
	Slide 21: Error Checking
	Slide 22: Error checking – API errors
	Slide 23: Error checking – kernel errors
	Slide 24: Blocking vs Nonblocking API functions
	Slide 25: Streams
	Slide 26: Streams
	Slide 27: Streams
	Slide 28: Streams
	Slide 29: Streams
	Slide 30: Streams
	Slide 31: 4. Shared memory and thread syncronization
	Slide 32: Synchronization
	Slide 33: HIP stream example
	Slide 34: Device management
	Slide 35: Function qualifiers
	Slide 36: Memory declarations in device code
	Slide 37: Thread Synchronization
	Slide 38: Shared Memory Example
	Slide 39: 5. ROCm and ROCm libraries
	Slide 40: ROCm GPU libraries
	Slide 41: AMD math library equivalents: “decoder ring”
	Slide 42: AMD math library equivalents: “decoder ring”
	Slide 43: Querying system
	Slide 44: Hands-on exercises
	Slide 45: Disclaimer
	Slide 46

