
Real-World OpenMP®

Language Constructs

Presenter:

AMD @ Tsukuba University

Oct 21-23, 2025

Complex compute directives

Oct 21-23, 2025 AMD @ Tsukuba University

3 |

[Public]

Breaking down the compute directive

Directive/Clause Meaning

target offloads the enclosed code to the device (GPU)

teams creates a “league of teams” with the initial thread of each executing the code

region with all of the data on each thread

distribute loop iterations are distributed out across the teams and executed on the main

thread

parallel Create multiple threads (of a team)

for/do spread out different portions of work over threads

simd vectorization (use SIMD instructions), but not used by most compilers, including

amdclang

loop effectively replaces "distribute parallel for simd"

In OpenMP 6.0, also "teams distribute parallel for simd"

SIMD – Single Instruction Multiple Data is a term from Flynn’s Taxonomy that categorizes types of computer architectures.

In this architecture, a single instruction is applied to multiple data. One of the examples of this type is a vector unit where

one instruction is applied to multiple lanes. The GPU is very much like a wide vector unit and is also a SIMD architecture. It

is often described as SIMT, Single Instruction Multiple Thread, a subcategory of SIMD with some important distinctions.

Oct 21-23, 2025 AMD @ Tsukuba University

4 |

[Public]

Breaking down the compute directive – C/C++ and Fortran

Directive/Clause C/C++ Fortran

target #pragma omp target
{structured code block}

!$omp target
<code block>

!$omp end target

teams #pragma omp target teams
{structured code block}

!$omp target teams
<code block>

!$omp end target teams

distribute #pragma omp target teams
distribute
{structured code block}

!$omp target teams distribute
<code block>

!$omp end target teams distribute

parallel for/do simd #pragma omp target teams
 distribute parallel for simd
{structured code block}

!$omp target teams distribute parallel do simd
<code block>

!$omp end target teams distribute parallel do simd

loop #pragma omp target teams loop
{structured code block}

!$omp target teams loop
<code block>

!$omp end target teams loop

loop (OpenMP 6.0

standard alternate)

#pragma omp target loop*
{structured code block}

* both forms valid

!$omp target loop
<code block>

!$omp end target loop

Oct 21-23, 2025 AMD @ Tsukuba University

5 |

[Public]

CU Workgroup

We know how to shift the data and computation to the device, ...
#pragma omp target

Compute unit (CU)

CU

…

G
P

U

CPU

Move data

…but we only use a tiny fraction of

the hardware!

We are only running on one

workgroup on one compute unit

and just the initial thread on it.

Or APU: no data

movement necessary

… Workgroup …
i=0;i<N

Oct 21-23, 2025 AMD @ Tsukuba University

6 |

[Public]

Comparing subsets of GPU parallel compute directive

#pragma omp target #pragma omp target teams

#pragma omp target teams distribute #pragma omp target parallel for

Oct 21-23, 2025 AMD @ Tsukuba University

7 |

[Public]

The OpenMP® API is directed towards a generic device

• Interpretation varies a little on how it applies to a GPU

• Compiler implementations may vary in their implementation and support

• Some combinations might not make sense

• Distribute without teams? – generates error with amdclang

Oct 21-23, 2025 AMD @ Tsukuba University

8 |

[Public]

Exploring subsets of the full compute pragma

Replacing the pragma with subsets of the full pragma

See each of the following slides

void saxpy(float a, float *x, float *y, int N) {
#pragma omp target teams distribute parallel for simd

for (int i = 0; i < N; i++) {
y[i] += a * x[i];

}

printf("check output:\n");
printf("y[0] %lf\n",y[0]);
printf("y[N-1] %lf\n",y[N-1]);

}

amdclang -fopenmp --offload-arch=$GPU_ARCH ...

Oct 21-23, 2025 AMD @ Tsukuba University

9 |

[Public]

Querying what implementation does with each compute directive

• Add export LIBOMPTARGET_KERNEL_TRACE=1

#pragma omp target teams distribute parallel for simd

• The next slide shows four different directives and the results in the same quad chart layout as the earlier slide

• Note that the compiler is generating 624 teams or 6 workgroups x 104 compute units for the MI210. We can launch 32

waves per compute unit (CU) for this low register usage. At a workgroup size of 256, we are using 4 waves per

workgroup. 4 waves (per workgroup) times 6 workgroups is 24 waves, a little under the 32 wave limit.

• Later versions of the AMD compiler also report the occupancy.

DEVID: 0 SGN:5 ConstWGSize:256 args: 5 teamsXthrds:(416X 256) reqd:(0X 0)
lds_usage:0B sgpr_count:24 vgpr_count:8 sgpr_spill_count:0 vgpr_spill_count:0
tripcount:10000000 rpc:0 n:__omp_offloading_34_8975356_saxpy_l8
Time of kernel: 0.082906

Oct 21-23, 2025 AMD @ Tsukuba University

10 |

[Public]

Comparing subsets of GPU parallel compute directive

#pragma omp target #pragma omp target teams

#pragma omp target teams distribute #pragma omp target parallel for

DEVID: 0 SGN:3 ConstWGSize:257 args: 5
teamsXthrds:(1X 256) reqd:(0X 0)
lds_usage:16B sgpr_count:16 vgpr_count:3
sgpr_spill_count:0 vgpr_spill_count:0
tripcount:0 rpc:0
n:__omp_offloading_34_5c4ed40a_saxpy_l8

Time of kernel: 5.407085

DEVID: 0 SGN:3 ConstWGSize:257 args: 5
teamsXthrds:(624X 256) reqd:(0X 0)
lds_usage:16B sgpr_count:12 vgpr_count:3
sgpr_spill_count:0 vgpr_spill_count:0
tripcount:0 rpc:0
n:__omp_offloading_34_5c4ed40b_saxpy_l8
Time of kernel: 11.166301

DEVID: 0 SGN:3 ConstWGSize:257 args: 5
teamsXthrds:(624X 256) reqd:(0X 0)
lds_usage:16B sgpr_count:24 vgpr_count:3
sgpr_spill_count:0 vgpr_spill_count:0
tripcount:10000000 rpc:0
n:__omp_offloading_34_5c4ed40c_saxpy_l8
Time of kernel: 0.149113

DEVID: 0 SGN:2 ConstWGSize:256 args: 5
teamsXthrds:(1X 256) reqd:(0X 0)
lds_usage:32B sgpr_count:25
vgpr_count:17 sgpr_spill_count:0
vgpr_spill_count:0 tripcount:0 rpc:0
n:__omp_offloading_34_5c4ed416_saxpy_l8
Time of kernel: 0.126748

For reference; #pragma omp target teams distribute parallel for from previous slide Time of kernel: 0.082906

Oct 21-23, 2025 AMD @ Tsukuba University

11 |

[Public]

Breaking up the OpenMP® Compute Constructs

• The single-line directives can be split apart into separate directives. We've been using the single line

compute construct something like the following

• #pragma omp target teams distribute parallel for simd

• But we are not limited to just a single line. We can break up the compute directive into multiple lines. The

simplest multi-line directives are equivalent to the single line form.

• Compute on the GPU with all teams (workgroups) and data partitioned, but only the main thread

• #pragma omp target teams distribute

• Parallelize the following for loop (use all the threads in a workgroup)

• #pragma omp parallel for simd

Proper nomenclature is that alone or first on a line, it is a directive. When it follows a directive, it is a

modifier or a clause.

Oct 21-23, 2025 AMD @ Tsukuba University

12 |

[Public]

• We can split the directives across an outer loop and an inner loop to have more control. Usually, it is best

to let the compiler do this as it generally does a better job. But there are special cases where the

application developer may have information about something like typical sizes of loops. Note that this is

somewhat different than the previous saxpy example in that it is built around a 2D data structure.

void saxpy(float a, float **x, float **y, int M, int N) {
 double tb, te;

 tb = omp_get_wtime();
 #pragma omp target teams distribute
 for (int j = 0; j < N; j++) {

 #pragma omp parallel for simd
 for (int i = 0; i < M; i++) {

 y[j][i] += a * x[j][i];
 }

 }
 te = omp_get_wtime();

 printf("Time of kernel: %lf\n", te - tb);

 printf("check output:\n");
 printf("y[0][0] %lf\n",y[0][0]);
 printf("y[N-1][M-1] %lf\n",y[N-1][M-1]);

}

Multi-level Parallel saxpy

Oct 21-23, 2025 AMD @ Tsukuba University

13 |

[Public]

Notes

• While this example shows split level pragmas that might be useful in special cases:

o We do not recommend doing this in simple cases – let the compiler decide how to do the parallelism

o Add a collapse clause instead – it increases the parallel work

o Generally, it is not a good idea to use split level to force performance optimization, but only to address special cases

• Special cases

o Small sizes of the outer or inner loop (maybe even unroll a loop?)

o Something special being done on the inner loop where the synchronization benefits the required work

Oct 21-23, 2025 AMD @ Tsukuba University

14 |

[Public]

Exploring the split level directive
• Again, we'll use the export LIBOMPTARGET_KERNEL_TRACE=1 setting to explore what the compiler does

with each case

cd HPCTrainingExamples/Pragma_Examples/OpenMP/C/ComplexComputeConstructs

module load amdclang

make saxpy_gpu_collapse

./saxpy_gpu_collapse

DEVID: 0 SGN:5 ConstWGSize:256 args: 6 teamsXthrds:(3907X 256) reqd:(0X 0) lds_usage:0B
sgpr_count:29 vgpr_count:17 sgpr_spill_count:0 vgpr_spill_count:0 tripcount:1000000 rpc:0 md:0
md_LB:-1 md_UB:-1 Max Occupancy: 8 Achieved Occupancy: 100%
n:__omp_offloading_34_5c4ed40e_saxpy_l9
Time of kernel: 0.027777

Oct 21-23, 2025 AMD @ Tsukuba University

15 |

[Public]

Exploring the split level directive
• Now running the split level directive

make saxpy_gpu_split_level

./saxpy_gpu_split_level

• We only get a report for the outer loop. Run time is slightly faster. Vector register count has gone up and

occupancy is much lower.

DEVID: 0 SGN:3 ConstWGSize:257 args: 6 teamsXthrds:(416X 256) reqd:(0X 0) lds_usage:36B
sgpr_count:27 vgpr_count:24 sgpr_spill_count:0 vgpr_spill_count:0 tripcount:1000 rpc:0 md:0
md_LB:-1 md_UB:-1 Max Occupancy: 8 Achieved Occupancy: 50%
n:__omp_offloading_34_5c4ed411_saxpy_l9
Time of kernel: 0.027449

Oct 21-23, 2025 AMD @ Tsukuba University

16 |

[Public]

Other compute clauses – tile and more

• tile – block the loops into small tiles rather than a standard loop traversal of all x and then y.

• num_teams(x) – launch the kernel with the specified number of thread blocks

• num_threads(x) – launch the kernel with the specified number of threads

• thread_limit(x) – cause the compiler to generate code with a maximum number of threads, reducing register

pressure (some compilers are still adding this optimization)

• nowait – do not wait at end of compute kernel. Default is to wait. This is one of the optimization options, but it can lead

to race conditions and incorrect results

• reduction(op: x) – special case where multiple iterations write to common location(2). This might be a sum, min, max or

similar type of operation

Oct 21-23, 2025 AMD @ Tsukuba University

17 |

[Public]

The thread_limit clause: for better compiler optimization

• The most commonly used of these compute clauses is thread_limit

• The thread_limit clause specifies the maximum workgroup size for the compiler generated GPU code

• It frees up some additional memory resources in the kernel code such as registers that can make the code

more efficient

• num_threads specifies the threads for the code generated for this specific case (but not all situations)

Oct 21-23, 2025 AMD @ Tsukuba University

18 |

[Public]

Understanding hardware options

• rocminfo
• 110 CUs

• Wavefront of size 64

• 4 SIMDs per CU #pragma omp target teams distribute parallel for simd

Options for #pragma omp target teams:
• num_teams(220): it is good practice to set the number of workgroups as

a multiple of the CUs (which is 110 in this case)

• thread_limit(256): the number of threads per workgroup should be a

multiple of 64

The total number of threads is:

num_teams*thread_limit which should evenly divide the trip

count of a loop

Oct 21-23, 2025 AMD @ Tsukuba University

Reductions to scalar or arrays

Oct 21-23, 2025 AMD @ Tsukuba University

20 |

[Public]

OpenMP® Offloading Example: Reduction

AMD @ Tsukuba UniversityOct 21-23, 2025

#include <stdio.h>
#include <stdlib.h>
#define N 5000000
int main(){
double *a, *b;
 a = (double*)malloc(sizeof(double) * N);
 b = (double*)malloc(sizeof(double) * N);
 for(int i = 0; i < N; i++){

 a[i] = 1.0;
 b[i] = 1.0;

 }

 double sum = 0.0;
#pragma omp target data map(to:a[0:N], b[0:N])

 ///#pragma omp target teams distribute parallel for private(i) map(tofrom:sum) reduction(+:sum)
#pragma omp target teams distribute parallel for reduction(+:sum)

 for(int i = 0; i < N; i++)
 sum += a[i] * b[i];

 printf("SUM = %f\n", sum);
 free(a);
 free(b);
 return 0;

}

Data directive to move data to device (GPU)

Compute loop on GPU, copy sum to and from

GPU and do a sum reduction on sum variable

map clause should not be included if it is a reduction variable. Each

reduction variable is initialized based on the type of reduction and then the

host version of the reduction variable is updated with the final result.

private(i) is also not needed – index variables are automatically private.

Sum is automatically set to zero for sum reductions.

It does not need to be set for OpenMP, but it is needed

for serial code compiled without OpenMP.

Note: Scalars are implicitly firstprivate in

target constructs (as of OpenMP 4.5)

21 |

[Public]

Real-world cases

It is pretty common in physics applications that there is a long computational loop and at the end there is a

reduction into an array variable

* Weather/Climate codes where energy contributions are summed into ocean or atmospheric levels

* Reaction energies are summed into a particle array

Oct 21-23, 2025 AMD @ Tsukuba University

22 |

[Public]

OpenMP® Offloading Example: Reduction to Array

AMD @ Tsukuba UniversityOct 21-23, 2025

#include <stdio.h>
#include <stdlib.h>
#define N 5000000
int main(){
 double **a, **b;
 // allocate 2D arrays a and b

 double sum[n];
#pragma omp target data map(to:a[0:M][0:N], b[0:M][0:N])
#pragma omp target teams distribute parallel for reduction(+:sum[0:n])

 for(int j = 0; j < N; j++){
 for(int i = 0; i < N; i++){
 sum[j] += a[j][i] * b[j][i];
 }
 }

 for(int j = 0; j < N; j++){
 printf(“SUM = %f\n”, sum);
 }

 // free 2D arrays

 return 0;
}

Data directive to move data to device (GPU)

Compute loop on GPU, copy sum to and from

GPU and do a sum reduction on sum variable

23 |

[Public]

Calling a subroutine from a target region

Originally, pragma based languages required the in-lining of subroutines in target regions

To call a subroutine from a target region, it must have the pragma declare target added to the specification

block and if not visible, to the prototype

#pragma omp declare target

void *compute(){

 ….

};

#pragma omp end declare target

Data can also be declared to be on the target
#pragma omp declare target

double constants[10] = { ….}

#pragma omp end declare target

Not all compilers recognize device routines or can have difficulties with global variables that are used in

device routines.

Oct 21-23, 2025 AMD @ Tsukuba University

24 |

[Public]

Global data used in “compute” subroutine

• Could be global data in another file (extern), object or common block
#pragma omp declare target

double constants[10];

#pragma omp end declare target

• // another file or lots of code

• Compute is called from a target region
#pragma omp declare target

Extern double constants[10];

#pragma omp end declare target

#pragma omp declare target

void *compute (int cindex, double *x){

*x = 1.0 + constants[cindex];

}

#pragma omp end declare target

•

Oct 21-23, 2025 AMD @ Tsukuba University

25 |

[Public]

ROCm Note:
• ROCm and LLVM trunk are able to build device routines in declare target blocks to be used from within target regions.

• There is also the feature of "implicit declare target" where the following code will produce the desired effect:

int foo(int x) {

 return x+1;

}

int main() {

 int *a = new int[N];

 #pragma omp target teams loop

 for(size_t i = 0; i < N; i++)

 a[i] = foo(i);

}

• foo will be implicitly made "declare target" by the compiler because when building the call site in the target region, the *definition* of foo is

available.

• Conversely, if the definition of foo is in a separate file, then implicit declare target will not be able to build it for the device, and unless the

programmer adds a "declare target" around it, it will result in a linker error.

• The second point is that global variables are accessible from within declare target functions when using ROCm.

Oct 21-23, 2025 AMD @ Tsukuba University

26 |

[Public]

Complex cases

• Usually, the difficulty in porting a code to OpenMP® is due to complex combinations of code

• Watch out for structs and classes or any data type that doesn’t map to simple arrays

• Allocatables, pointers or implicit allocation/reallocation are tricky to get right, both for the programmer and

the compiler developer

• The declare pragma can be tricky for both subroutines and data. Some variation in implementations also

exist across compilers

• Deep copies (structs or classes that contain pointers and data that won’t be copied over to the device)

• Anything that has been added more recently to the OpenMP standard may have portability issues

Oct 21-23, 2025 AMD @ Tsukuba University

27 |

[Public]

Dynamic arrays dependent on program input

• Original code has a statically sized array.
#pragma omp target data

double atmos_temp[nsize];

#pragma omp end target data

• We want to change it to a dynamic size based on input
#pragma omp target data

double *atmos_temp;

#pragma omp end target data

atmos_temp = (double *) malloc(nsize_input * sizeof(double));

// use in device computation loop

• The malloc is going to assign a new pointer location to atmos_temp. Instead use enter data after

allocation and preferably set values in a device loop.
#pragma omp target enter data (alloc:atmos_temp[0:nsize_input])

Harder to catch in Fortran and C++

Oct 21-23, 2025 AMD @ Tsukuba University

28 |

[Public]

Dynamic array as part of a struct

#pragma omp target data

struct {

 int n;

 double *x;

}

#pragma omp end target data

x = (double *)malloc(nsize*sizeof(double));

#pragma omp target enter data (alloc:x[0:nsize]))

/// lots of code

#pragma omp target exit data (release:x) – don’t use delete? (open question)

o There is some variation in current compilers on how they handle release vs delete

o OpenMP release has same behavior as OpenACC delete

Oct 21-23, 2025 AMD @ Tsukuba University

29 |

[Public]

Summary

• AMD OpenMP® compilers can offload computation to AMD GPUs

• Good support for C, C++, and Fortran languages

• Mature offload model w/ support for asynchronous offload/transfer

• Backed by an Industry language standard

• Composability across programming languages (C,C++,Fortran)

• Portability across GPU platforms for core OpenMP® constructs

• Tightly integrates with OpenMP multi-threading on the host

• Exercise Instructions:

• HPCTrainingExamples/Pragma_Examples/README.md

Oct 21-23, 2025 AMD @ Tsukuba University

30 |

[Public]

Disclaimer
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and

typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but

not limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product

differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has

risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct

or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content

hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE

CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY

APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR

ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY

INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© 2025 Advanced Micro Devices, Inc and OpenMP® Architecture Review Board. All rights reserved.

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this

publication are for identification purposes only and may be trademarks of their respective companies.

LLVM is a trademark of LLVM Foundation

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board

Oct 21-23, 2025 AMD @ Tsukuba University

Oct 21-23, 2025 AMD @ Tsukuba University

	Slide 1: Real-World OpenMP® Language Constructs
	Slide 2: Complex compute directives
	Slide 3: Breaking down the compute directive
	Slide 4: Breaking down the compute directive – C/C++ and Fortran
	Slide 5: We know how to shift the data and computation to the device, ... #pragma omp target
	Slide 6: Comparing subsets of GPU parallel compute directive
	Slide 7: The OpenMP® API is directed towards a generic device
	Slide 8: Exploring subsets of the full compute pragma
	Slide 9: Querying what implementation does with each compute directive
	Slide 10: Comparing subsets of GPU parallel compute directive
	Slide 11: Breaking up the OpenMP® Compute Constructs
	Slide 12: Multi-level Parallel saxpy
	Slide 13: Notes
	Slide 14: Exploring the split level directive
	Slide 15: Exploring the split level directive
	Slide 16: Other compute clauses – tile and more
	Slide 17: The thread_limit clause: for better compiler optimization
	Slide 18: Understanding hardware options
	Slide 19: Reductions to scalar or arrays
	Slide 20: OpenMP® Offloading Example: Reduction
	Slide 21: Real-world cases
	Slide 22: OpenMP® Offloading Example: Reduction to Array
	Slide 23: Calling a subroutine from a target region
	Slide 24: Global data used in “compute” subroutine
	Slide 25: ROCm Note:
	Slide 26: Complex cases
	Slide 27: Dynamic arrays dependent on program input
	Slide 28: Dynamic array as part of a struct
	Slide 29: Summary
	Slide 30: Disclaimer
	Slide 31

