Real-World OpenMP®
Language Constructs

Presenter:
AMD @ Tsukuba University
Oct 21-23, 2025

AMD 1

together we advance_



Complex compute directives

Oct 21-23, 2025 AMD @ Tsukuba University



Breaking down the compute directive

target offloads the enclosed code to the device (GPU)

teams creates a “league of teams” with the initial thread of each executing the code
region with all of the data on each thread

distribute loop iterations are distributed out across the teams and executed on the main
thread

parallel Create multiple threads (of a team)
for/do spread out different portions of work over threads

simd vectorization (use SIMD instructions), but not used by most compilers, including
amdclang

loop effectively replaces "distribute parallel for simd"
In OpenMP 6.0, also "teams distribute parallel for simd"

SIMD - Single Instruction Multiple Data is a term from Flynn’s Taxonomy that categorizes types of computer architectures.
In this architecture, a single instruction is applied to multiple data. One of the examples of this type is a vector unit where
one instruction is applied to multiple lanes. The GPU is very much like a wide vector unit and is also a SIMD architecture. It
is often described as SIMT, Single Instruction Multiple Thread, a subcategory of SIMD with some important distinctions.

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_




Breaking down the compute directive — C/C++ and Fortran

target #pragma omp target I$omp target
{structured code block} <code block>
I$omp end target

#pragma omp target teams I$omp target teams
{structured code block} <code block>
I$omp end target teams

distribute #pragma omp target teams 1$omp target teams distribute
distribute <code block>
{structured code block} I$omp end target teams distribute

parallel for/do simd #pragma omp target teams I$omp target teams distribute parallel do simd
distribute parallel for simd <code block>
{structured code block} I$omp end target teams distribute parallel do simd

loop #pragma omp target teams loop !$omp target teams loop
{structured code block} <code block>
I$omp end target teams loop

loop (OpenMP 6.0  #pragma omp target loop* I$omp target loop
standard alternate) {structured code block} <code block>
* both forms valid I$omp end target loop

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_




We know how to shift the data and computation to the device, ...
#pragma omp target

i=0;i<N

Workgroup = Workgroup

_ ...but we only use a tiny fraction of

the hardware!

Move data

>
P

<«

We are only running on one
workgroup on one compute unit

_ and jUSt the initial thread on it.

Or APU: no data
movement necessary

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_



Comparing subsets of GPU parallel compute directive

#pragma omp target #pragma omp target teams
i=0;i<N i=0;i<N i=0;i<N

Workgroup LRI Workgroup

Workgroup Now we are using more

workgroups, but still only the
. first thread on each and each
We are only running on one . workgroup is replicating the

Workgroup LU Workgroup

the hardware! N i=0:i<N

_ ...but we only use a tiny fraction of

workgroup on one compute unit VAR calculation (doing all the
and just the initial thread on it. work)
-
#pragma omp target teams distribute #pragma omp target papallel for
i=0;i<3 i=4;i<7
Workgroup e Workgroup e Workgroup 21 Workgroup .
Workgroup Iterations are split across the _ parallel for causes the work to

be spread across the threads but
we are still just using one
workgroup

N i=g:i<11 teams (workgroups), but we
are still only using the first
i=12:i<16 thread on each.

/

AMDZI\

together we advance_

Oct 21-23, 2025 AMD @ Tsukuba University



The OpenMP® API is directed towards a generic device

Interpretation varies a little on how it applies to a GPU
Compiler implementations may vary in their implementation and support

Some combinations might not make sense
Distribute without teams? — generates error with amdclang

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_



Exploring subsets of the full compute pragma

Replacing the pragma with subsets of the full pragma

See each of the following slides N
7
2O
void saxpy(float a, float *x, float *y, int N) { ~|~$
#pragma omp target teams distribute parallel for simd Q;*/'Q,
. . oL s oo \e\ )
for (int i = 0; i < N; i++) { & \(b\)
y[i] += a * x[i]; ~|~QO QG
} QT o
e® o
W
printf("check output:\n"); @0‘\)
printf("y[0] %1f\n",y[0]); &

printf("y[N-1] %1f\n",y[N-1]);

amdclang -fopenmp --offload-arch=$GPU_ARCH ...

Oct 21-23, 2025 AMD @ Tsukuba University

AMDZU

together we advance_



Querying what implementation does with each compute directive

Add export LIBOMPTARGET_ KERNEL_TRACE=1
#pragma omp target teams distribute parallel for simd

DEVID: © SGN:5 ConstWGSize:256 args: 5 teamsXthrds:( 416X 256) reqd:( ©X 9)
lds _usage:0B sgpr_count:24 vgpr_count:8 sgpr spill count:0 vgpr spill count:0
tripcount:10000000 rpc:0 n: omp offloading 34 8975356 saxpy 18

Time of kernel: 0.082906

The next slide shows four different directives and the results in the same quad chart layout as the earlier slide

Note that the compiler is generating 624 teams or 6 workgroups x 104 compute units for the MI210. We can launch 32
waves per compute unit (CU) for this low register usage. At a workgroup size of 256, we are using 4 waves per
workgroup. 4 waves (per workgroup) times 6 workgroups is 24 waves, a little under the 32 wave limit.

Later versions of the AMD compiler also report the occupancy.

AMDZU

together we advance_

Oct 21-23, 2025 AMD @ Tsukuba University



Comparing subsets of GPU parallel compute directive

#pragma omp target

DEVID: © SGN:3 ConstWGSize:257 args: 5
teamsXthrds:(  1X 256) reqd:( ©X 0)
lds usage:16B sgpr count:16 vgpr _count:3
sgpr_spill count:0 vgpr spill count:0
tripcount:0 rpc:0

n: omp_offloading 34 5c4ed4@a saxpy 18

Time of kernel: 5.407085

#pragma omp target teams

DEVID: © SGN:3 ConstWGSize:257 args: 5
teamsXthrds:( 624X 256) reqd:( ©X 0)
lds usage:16B sgpr count:12 vgpr count:3
sgpr _spill count:0 vgpr spill count:0
tripcount:0 rpc:0

n: omp offloading 34 5c4ed40b_saxpy 18
Time of kernel: 11.166301

#pragma omp target teams distribute

DEVID: © SGN:3 ConstWGSize:257 args: 5
teamsXthrds:( 624X 256) reqd:( ©X 0)
lds usage:16B sgpr count:24 vgpr _count:3
sgpr _spill count:0 vgpr spill count:0
tripcount:10000000 rpc:0

n: omp_offloading 34 5c4ed40c _saxpy 18
Time of kernel: 0.149113

#pragma omp target parallel for

DEVID: © SGN:2 ConstWGSize:256 args: 5
teamsXthrds:(  1X 256) reqd:( ©X 0)
lds usage:32B sgpr count:25
vgpr_count:17 sgpr spill count:0

vgpr _spill count:0 tripcount:0 rpc:0

n: omp_offloading 34 5c4ed416 saxpy 18
Time of kernel: 0.126748

For reference; #pragma omp target teams distribute parallel for from previous slide Time of kernel: ©.082906

Oct 21-23, 2025

AMD @ Tsukuba University

AMDZU

together we advance_



Breaking up the OpenMP® Compute Constructs

The single-line directives can be split apart into separate directives. We've been using the single line
compute construct something like the following

parallel for

But we are not limited to just a single line. We can break up the compute directive into multiple lines. The
simplest multi-line directives are equivalent to the single line form.

Compute on the GPU with all teams (workgroups) and data partitioned, but only the main thread

Parallelize the following for loop (use all the threads in a workgroup)
parallel for

Proper nomenclature is that alone or first on a line, it is a directive. When it follows a directive, it is a
modifier or a clause.

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_



Multi-level Parallel saxpy

We can split the directives across an outer loop and an inner loop to have more control. Usually, it is best
to let the compiler do this as it generally does a better job. But there are special cases where the
application developer may have information about something like typical sizes of loops. Note that this is
somewhat different than the previous saxpy example in that it is built around a 2D data structure.

void saxpy(float a, float **x, float **y, int M, int N) {
double tb, te;

tb = omp_get wtime();

#pragma omp target

for (int j = 0; j < N; j++) {
#pragma omp
for (int i =0; i < M; i++) {

y[31[i] += a * x[J][i];

}

}

te = omp _get wtime();
printf("Time of kernel: %1f\n", te - tb);

printf("check output:\n");
printf("y[@][0] %1f\n",y[0][0]);
printf("y[N-1][M-1] %1f\n",y[N-1][M-1]);
}
Oct 21-23, 2025 AMD @ Tsukuba University AMDZ1

together we advance_



Notes

While this example shows split level pragmas that might be useful in special cases:
We do not recommend doing this in simple cases — let the compiler decide how to do the parallelism
Add a collapse clause instead — it increases the parallel work
Generally, it is not a good idea to use spilit level to force performance optimization, but only to address special cases

Special cases
Small sizes of the outer or inner loop (maybe even unroll a loop?)
Something special being done on the inner loop where the synchronization benefits the required work

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

13 together we advance_



Exploring the split level directive

Again, we'll use the export LIBOMPTARGET KERNEL TRACE=1 setting to explore what the compiler does

with each case
cd HPCTrainingExamples/Pragma_ Examples/OpenMP/C/ComplexComputeConstructs
module load amdclang
make saxpy gpu collapse
./saxpy_gpu_collapse

DEVID: © SGN:5 ConstWGSize:256 args: 6 teamsXthrds:(3907X 256) reqd:(

md LB:-1 md UB:-1 Max Occupancy: 8 Achieved Occupancy: 100%
n: omp_offloading 34 5c4ed40e_saxpy 19
Time of kernel: ©0.027777

0X

sgpr_count:29 vgpr count:17 sgpr spill count:0 vgpr spill count:0 tripcount:1000000 rpc:0 md:0

@) lds usage:0B

Oct 21-23, 2025 AMD @ Tsukuba University

AMDZU

together we advance_



Exploring the split level directive

Now running the split level directive
make saxpy gpu split level
./saxpy_gpu _split level

DEVID: © SGN:3 ConstWGSize:257 args: 6 teamsXthrds:( 416X 256) reqd:( X @) lds usage
sgpr_count:27 vgpr_count:24 sgpr spill count:0 vgpr spill count:0@ tripcount:1000 rpc:0 md:©
md LB:-1 md UB:-1 Max Occupancy: 8 Achieved Occupancy: 50%

n: omp_offloading 34 5c4ed411 saxpy 19

Time of kernel: 0.027449

:36B

We only get a report for the outer loop. Run time is slightly faster. Vector register count has gone up and

occupancy is much lower.

Qraft2 3rd 328085 AMD /B @UWRRANMEO sity

AMDZU

together we advance_



Other compute clauses — tile and more

— block the loops into small tiles rather than a standard loop traversal of all x and then vy.
— launch the kernel with the specified number of thread blocks
— launch the kernel with the specified number of threads

— cause the compiler to generate code with a maximum number of threads, reducing register
pressure (some compilers are still adding this optimization)

— do not wait at end of compute kernel. Default is to wait. This is one of the optimization options, but it can lead
to race conditions and incorrect results

— special case where multiple iterations write to common location(2). This might be a sum, min, max or
similar type of operation

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

16 together we advance_



The thread limit clause: for better compiler optimization

The most commonly used of these compute clauses is thread_limit
The thread limit clause specifies the maximum workgroup size for the compiler generated GPU code

It frees up some additional memory resources in the kernel code such as registers that can make the code
more efficient

num_threads specifies the threads for the code generated for this specific case (but not all situations)

- Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_



Understanding hardware options

rocminfo
110 CUs
Wavefront of size 64
4 SIMDs per CU

Options for

multiple of 64

The total number of threads is:

count of a loop

Node: 11
Device Type: GPU
Cache Info:
L1: 16(ex10) KB
L2: 8192(©x2000) KB
Chip ID: 29704 (ex7408)
Cacheline Size: 64(ox40)
Max Clock Freq. (MHz): 1708
BDFID: 56832
Internal Node ID: 11
Compute Unit: 11e
SIMDs per CU: s
Shader Engines: 8
Shader Arrs. per Eng.: 1
WatchPts on Addr. Ranges:4
Features: KERNEL_DISPATCH
Fast F16 Operation: TRUE
Wavefront Size: 64(ox40)
Workgroup Max Size: 1024 (ex4ee)
Workgroup Max Size per Dimension:
X 1024 (0x400)
y 1024 (0x400)
z 1024 (0x400)
Max Waves Per CU: 32(ex20)
Max Work-item Per CU: 2848(ex800)

Oct 21-23, 2025

AMD @ Tsukuba University

. it is good practice to set the number of workgroups as
a multiple of the CUs (which is 110 in this case)
: the number of threads per workgroup should be a

which should evenly divide the trip

AMDZU

together we advance_



Reductions to scalar or arrays

Oct 21-23, 2025 AMD @ Tsukuba University



OpenMP® Offloading Example: Reduction

i?”ci“ge <Szji‘?t')h; Sum is automatically set to zero for sum reductions.
l1nc.iu < 1b.n> oy
< It does not need to be set for OpenMP, but it is needed

#define N 5000000 . . .
int main(){ for serial code compiled without OpenMP.

double *a, *b; N - Scal . licitly fi . :
a = (double*)malloc(sizeof(double) * N); ote: Scalars are implicitly firstprivate in

b = (double*)malloc(sizeof(double) * N); target constructs (as of OpenMP 4.5)
for(int 1 = 0; i < N; i++){

al[i] = 1.0;

b[i] = 1.0; Data directive to move data to device (GPU)

J

} Compute loop on GPU, copy sum to and from

GPU and do a sum reduction on sum variable
double sum = 0.0;

#pragma omp target data map(to:a[0@:N], b[O:N])
///#pragma omp target teams distribute parallel for private(i) map(tofrom:sum) reduction(+:sum)
#pragma omp target teams distribute parallel for reduction(+:sum)
for(int 1 = 0; i < N; i++)
sum += a[i] * b[i]; clause should not be included if it is a reduction variable. Each
reduction variable is initialized based on the type of reduction and then the

printf("SUM = %f\n", sum); _ , , ) _ _
host version of the reduction variable is updated with the final result.

free(a);
free(b); is also not needed — index variables are automatically private.
return 0;

} AMDZ

Oct 21-23, 2025 AMD @ Tsukuba University

together we advance_



21

Real-world cases

It is pretty common in physics applications that there is a long computational loop and at the end there is a
reduction into an array variable

* Weather/Climate codes where energy contributions are summed into ocean or atmospheric levels
* Reaction energies are summed into a particle array

Oct 21-23, 2025 AMD @ Tsukuba University Qg:?hgvil advance



OpenMP® Offloading Example: Reduction to Array

#include <stdio.h>
#include <stdlib.h>
#define N 5000000
int main(){
double **a, **b;
// allocate 2D arrays a and b Compute loop on GPU, copy sum to and from

GPU and do a sum reduction on sum variable

Data directive to move data to device (GPU)

double sum[n];
#pragma omp target data map(to:a[0:M][0©:N], b[@:M][©:N])
#pragma omp target teams distribute parallel for reduction(+:sum[@:n])
for(int j = 0; j < N; j++){
for(int 1 = @; 1 < N; i++){
sum[j] += a[j]l[1i] * b[jI[i];
}
}

for(int j = 0; j < N; j++){
printf(“SUM = %f\n”, sum);
}

// free 2D arrays

return 0;
} Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

22 together we advance_



23

Calling a subroutine from a target region

Originally, pragma based languages required the in-lining of subroutines in target regions
To call a subroutine from a target region, it must have the pragma declare target added to the specification
block and if not visible, to the prototype

void *compute(){

s

Data can also be declared to be on the target

double constants[10] = { ...}

Not all compilers recognize device routines or can have difficulties with global variables that are used in

device routines.

Oct 21-23, 2025 AMD @ Tsukuba University Qg:?hgvil advance



Global data used in “compute” subroutine

Could be global data in another file (extern), object or common block

double constants[10];

/I another file or lots of code

Compute is called from a target region

Extern double constants[10];

void *compute (int cindex, double *x){
*x = 1.0 + constants[cindex];

}

Oct 21-23, 2025

24

AMD @ Tsukuba University

AMDZU

together we advance_



ROCm Note:

ROCm and LLVM™ trunk are able to build device routines in declare target blocks to be used from within target regions.
There is also the feature of "implicit declare target" where the following code will produce the desired effect:

int foo(int x) {
return x+1;

}

int main() {
int *a = new int[N];

for(size t i = @; i < N; i++)
a[i] = foo(i);

foo will be implicitly made "declare target" by the compiler because when building the call site in the target region, the *definition* of foo is
available.

Conversely, if the definition of foo is in a separate file, then implicit declare target will not be able to build it for the device, and unless the
programmer adds a "declare target" around it, it will result in a linker error.

The second point is that global variables are accessible from within declare target functions when using ROCm.

Oct 21-23, 2025

25

AMD @ Tsukuba University AMD ¢\

together we advance_



26

Complex cases

Usually, the difficulty in porting a code to OpenMP® is due to complex combinations of code
Watch out for structs and classes or any data type that doesn’t map to simple arrays

Allocatables, pointers or implicit allocation/reallocation are tricky to get right, both for the programmer and
the compiler developer

The declare pragma can be tricky for both subroutines and data. Some variation in implementations also
exist across compilers

Deep copies (structs or classes that contain pointers and data that won't be copied over to the device)

Anything that has been added more recently to the OpenMP standard may have portability issues

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_



27

Dynamic arrays dependent on program input

Original code has a statically sized array.

double atmos_temp[nsize];

We want to change it to a dynamic size based on input

double *atmos_temp;

atmos_temp = (double *) malloc(nsize input * sizeof(double));
// use in device computation loop

The malloc is going to assign a new pointer location to atmos_temp. Instead use
allocation and preferably set values in a device loop.

Harder to catch in Fortran and C++

Oct 21-23, 2025 AMD @ Tsukuba University

after

AMDZU

together we advance_



28

Dynamic array as part of a struct

struct {
int n;
double *x;

X = (double *)malloc(nsize*sizeof(double));

/// lots of code
— don’t use delete? (open question)

There is some variation in current compilers on how they handle release vs delete
OpenMP release has same behavior as OpenACC delete

Oct 21-23, 2025 AMD @ Tsukuba University

AMDZU

together we advance_



Summary

AMD OpenMP® compilers can offload computation to AMD GPUs
Good support for C, C++, and Fortran languages
Mature offload model w/ support for asynchronous offload/transfer

Backed by an Industry language standard
Composability across programming languages (C,C++,Fortran)

Portability across GPU platforms for core OpenMP® constructs
Tightly integrates with OpenMP multi-threading on the host

Exercise Instructions:
HPCTrainingExamples/Pragma_Examples/README.md

Oct 21-23, 2025 AMD @ Tsukuba University

29

AMDZU

together we advance_



30

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and
typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but
not limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product
differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has
risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct
or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content
hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY
APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR
ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY
INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© 2025 Advanced Micro Devices, Inc and OpenMP® Architecture Review Board. All rights reserved.

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this
publication are for identification purposes only and may be trademarks of their respective companies.

LLVM is a trademark of LLVM Foundation
The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_



AMD ¢\

Oct 21-23, 2025 AMD @ Tsukuba University



	Slide 1: Real-World OpenMP® Language Constructs
	Slide 2: Complex compute directives
	Slide 3: Breaking down the compute directive
	Slide 4: Breaking down the compute directive – C/C++ and Fortran
	Slide 5: We know how to shift the data and computation to the device, ... #pragma omp target
	Slide 6: Comparing subsets of GPU parallel compute directive
	Slide 7: The OpenMP® API is directed towards a generic device 
	Slide 8: Exploring subsets of the full compute pragma
	Slide 9: Querying what implementation does with each compute directive
	Slide 10: Comparing subsets of GPU parallel compute directive
	Slide 11: Breaking up the OpenMP® Compute Constructs
	Slide 12: Multi-level Parallel saxpy
	Slide 13: Notes
	Slide 14: Exploring the split level directive
	Slide 15: Exploring the split level directive
	Slide 16: Other compute clauses – tile and more
	Slide 17: The thread_limit clause: for better compiler optimization
	Slide 18: Understanding hardware options
	Slide 19: Reductions to scalar or arrays
	Slide 20: OpenMP® Offloading Example: Reduction
	Slide 21: Real-world cases
	Slide 22: OpenMP® Offloading Example: Reduction to Array
	Slide 23: Calling a subroutine from a target region 
	Slide 24: Global data used in “compute” subroutine
	Slide 25: ROCm Note: 
	Slide 26: Complex cases
	Slide 27: Dynamic arrays dependent on program input
	Slide 28: Dynamic array as part of a struct
	Slide 29: Summary
	Slide 30: Disclaimer
	Slide 31

