
Introduction to OpenMP®

Offload on AMD GPUs

Presenter: Bob Robey

AMD @ Tsukuba University

Oct 21-23, 2025

2 |

[Public]

Motivation for OpenMP for GPUs

Fortran:

!$omp parallel do private(i) shared(NI,…)

do i=1,NI

…

end do

!$omp end parallel

C/C++:

#pragma omp parallel for private(i) shared(NI,…)

for(int i=0, i<NI, i++){

…

}

• Why use OpenMP for porting to GPUs?

✓ OpenMP is standardized

✓ Portable code

✓ Fortran, C, and C++ supported

• Many HPC codes are already OpenMP (+MPI)

parallelized on CPUs

✓ Porting requires only few code changes

✓ Easy to learn

• Interoperability with HIP and ROCm libraries

✓ Flexibility

• GPU code can be compiled for the CPU, too

✓ Start porting before having access to GPUs

✓ Majority of correctness checks possible without

access to GPUs

Oct 21-23, 2025 AMD @ Tsukuba University

3 |

[Public]

Compilers – two major strands

AMD @ Tsukuba UniversityOct 21-23, 2025

• LLVM based
• ROCm compilers provide support for both HIP and OpenMP®

• hipcc -- /opt/rocm/bin

• amdclang -- /opt/rocm/llvm/bin

• AOMP: AMD OpenMP® research compiler for prototyping new features

• GCC based -- GNU Compilers
• Provide offloading support to AMD GPUs (OpenMP®, OpenACC)

• GCC 11 added offloading for the AMD MI100 GPUs

• GCC 13 adds support for the AMD MI200 GPU series.

• https://gcc.gnu.org/wiki/Offloading

Use LLVM based

compilers for

production

(or Cray if available)

Primary Support

Functionality Only

https://gcc.gnu.org/wiki/Offloading
https://gcc.gnu.org/wiki/Offloading

4 |

[Public]

amdflang-new beta pre-release of AMD Fortran compiler

Installed on aac6 to use in this training:

 module load amdflang-new/

 Module will set the following:

 export FC=amdflang-new

AMD is working on a Fortran compiler and is ready to share a beta version. During the training, you will have

hands-on access to the beta. Going forward, AMD will continue to provide early access via AFARs (Advanced

Feature Access Releases) as improvements and features are added to the beta. As with any beta, we are

looking to gather feedback on functionality, usability and user experience.

New Flang is released in the ROCm 7.0 version!

Blog post about next gen Fortran compiler: https://rocm.blogs.amd.com/ecosystems-and-partners/fortran-

journey/README.html

PRE-PRODUCTION SOFTWARE: The software accessible on this training may be a pre-production version, intended to provide advance access to features that may or may not eventually be included

into production version of the software. Accordingly, pre-production software may not be fully functional, may contain errors, and may have reduced or different security, privacy, accessibility,

availability, and reliability standards relative to production versions of the software. Use of pre-production software may result in unexpected results, loss of data, project delays or other unpredictable

damage or loss. Pre-production software is not intended for use in production, and your use of pre-production software is at your own risk.

Oct 21-23, 2025 AMD @ Tsukuba University

https://rocm.blogs.amd.com/ecosystems-and-partners/fortran-journey/README.html
https://rocm.blogs.amd.com/ecosystems-and-partners/fortran-journey/README.html
https://rocm.blogs.amd.com/ecosystems-and-partners/fortran-journey/README.html
https://rocm.blogs.amd.com/ecosystems-and-partners/fortran-journey/README.html
https://rocm.blogs.amd.com/ecosystems-and-partners/fortran-journey/README.html
https://rocm.blogs.amd.com/ecosystems-and-partners/fortran-journey/README.html
https://rocm.blogs.amd.com/ecosystems-and-partners/fortran-journey/README.html

5 |

[Public]

Enabling OpenMP® on AMD Hardware

AMD @ Tsukuba UniversityOct 21-23, 2025

LLVM GCC

Compiler Module amdclang/aomp/clacc gcc/og

Command Flags Command Flags

L
a

n
g

u
a

g
e

C
amdclang
clang

-fopenmp --offload-arch=<gfx###> gcc -fopenmp --foffload=-march=<gfx###>

C++
amdclang++
clang++

-fopenmp --offload-arch=<gfx###> g++ -fopenmp --foffload=-march=<gfx###>

Fortran
amdflang(-new)
flang(-new)

-fopenmp --offload-arch=<gfx###> gfortran -fopenmp --foffload=-march=<gfx###>

Offloading Target

(CPU/GPU/GCD)

Architecture
<gfx###>

AMD MI300 Series gfx942

AMD MI200 Series gfx90a

AMD MI100 gfx908

Native Host (CPU) -fopenmp-targets=amdgcn-amd-amdhsa

6 |

[Public]

Sample OpenMP® Makefile
EXEC = reduction
default: ${EXEC}
all: ${EXEC}

ROCM_GPU ?= $(strip $(shell rocminfo |grep -m 1 -E gfx[^0]{1} | sed -e 's/ *Name: *//'))

CC1=$(notdir $(CC))

ifeq ($(findstring amdclang,$(CC1)), amdclang)
 OPENMP_FLAGS = -fopenmp --offload-arch=$(ROCM_GPU)
else ifeq ($(findstring clang,$(CC1)), clang)
 OPENMP_FLAGS = -fopenmp --offload-arch=$(ROCM_GPU)
else ifeq ($(findstring gcc,$(CC1)), gcc)
 OPENMP_FLAGS = -fopenmp -foffload=-march=$(ROCM_GPU)
else ifeq ($(findstring cc,$(CC1)), cc)
 OPENMP_FLAGS = -fopenmp
 #the cray compiler decides the offload-arch by loading appropriate modules
 #module load craype-accel-amd-gfx942 for example
endif

CFLAGS = -g -O3 -fstrict-aliasing ${OPENMP_FLAGS}
LDFLAGS = ${OPENMP_FLAGS} -fno-lto -lm

${EXEC}: ${EXEC}.o codelet.o
 $(CC) $(LDFLAGS) $^ -o $@

Cleanup
clean:
 rm -f *.o ${EXEC}

Oct 21-23, 2025 AMD @ Tsukuba University

7 |

[Public]

Sample OpenMP® CMakeLists
cmake_minimum_required(VERSION 3.21 FATAL_ERROR)

project(Memory_pragmas LANGUAGES CXX)

set (CMAKE_CXX_STANDARD 17)

if (NOT CMAKE_BUILD_TYPE)

 set(CMAKE_BUILD_TYPE RelWithDebInfo)

endif(NOT CMAKE_BUILD_TYPE)

string(REPLACE -O2 -O3 CMAKE_CXX_FLAGS_RELWITHDEBINFO ${CMAKE_CXX_FLAGS_RELWITHDEBINFO})

set(CMAKE_CXX_FLAGS_DEBUG "-ggdb")

if ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "Clang")

 # using Clang

 set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fopenmp --offload-arch=gfx942 -fstrict-aliasing")

elseif ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "GNU")

 # using GCC

 set(CMAKE_CXX_FLAGS

 "${CMAKE_CXX_FLAGS} -fopenmp -foffload=-march=gfx942 -fstrict-aliasing -fopt-info-optimized-omp")

elseif (CMAKE_CXX_COMPILER_ID MATCHES "Cray")

endif()

add_executable(mem1 mem1.cc)

Oct 21-23, 2025 AMD @ Tsukuba University

8 |

[Public]

How we begin

• The first step in porting an application to use OpenMP® for offloading work to a GPU is to add a compute

pragma/directive to a loop

• Choose one of the more expensive loops in your application for the first loop to add a compute pragma

• This will give the most compute speedup to offset the slowdown from memory transfers to the GPU and back

• Testing OpenMP® parallelism on the CPU can identify potential problems

• Another quick test is to reverse the loop direction on a loop to see if there is an order required for correctness

• A profile of your existing code will help identify potential loops to offload to the GPU

• Pay attention to what data needs to be moved to enable the offloading

• While this appears simple, many complex physics applications can be difficult to approach

• You may want to try simpler loops first just to get some experience with the process

Oct 21-23, 2025 AMD @ Tsukuba University

9 |

[Public]

Running example for this presentation: saxpy

void saxpy(float a, float *x, float *y, int N) {

#pragma omp parallel for
for (int i = 0; i < N; i++) {

y[i] += a * x[i];
}

printf("check output:\n");
printf("y[0] %lf\n",y[0]);
printf("y[N-1] %lf\n",y[N-1]);

}

This is the code we want to execute on a

target device (i.e., GPU) with appropriate

directives to be introduced next

This is for CPU: OpenMP®

Pragma to run in parallel with

multiple threads

Declaration and

Initialization of arrays on CPU

in main routine (not shown)

WARNING: operations like saxpy should be done through an efficient library (e.g. hipblas) in production codes

Oct 21-23, 2025 AMD @ Tsukuba University

10 |

[Public]

If you prefer Fortran

subroutine saxpy(a, x, y, n)
use iso_fortran_env
implicit none
integer,intent(in) :: n
real(kind=real32),intent(in) :: a
real(kind=real32), dimension(:),allocatable,intent(in) :: x
real(kind=real32), dimension(:),allocatable,intent(inout) :: y
integer :: i

!$omp parallel do simd
do i=1,n

y(i) = a * x(i) + y(i)
end do

write(*,*) "plausibility check:"
write(*,'("y(1) ",f8.6)') y(1)

write(*,'("y(n-1) ",f8.6)') y(n-1)

end subroutine saxpy

This is the code we want to execute on a

target device (i.e., GPU) with appropriate

directives to be introduced next

This is for CPU: OpenMP® directive to run

in parallel with multiple threads

| Copyright OpenMP® ARB, used with permission

Declaration and

Initialization of arrays on CPU

in main routine (not shown)

Oct 21-23, 2025 AMD @ Tsukuba University

11 |

[Public]

NOTE: target will move

the computation to the

GPU, but single thread

only instead of using

the whole device.

Occupancy will be <1%

How to offload to the GPU: the target directive

• Transfer control and data from the host to the device

• Syntax (C/C++)
 #pragma omp target [clause[[,] clause],…]
 structured-block

• Syntax (Fortran)
 !$omp target [clause[[,] clause],…]
 structured-block
 !$omp end target

• Clauses
 device(scalar-integer-expression)
 map([{alloc | to | from | tofrom}:] list)
 if(scalar-expr)

Oct 21-23, 2025 AMD @ Tsukuba University

12 |

[Public]

But there is more to a GPU compute directive than just “target”

• We need to tell the compiler what hardware resources to use

• We also need to tell it how to spread out the work

• Sometimes the compiler can detect information and do the right thing, other times it cannot

• Despite all this possible complexity, most compute pragmas are simple one-liners to use all the hardware

and distribute all the work

• #pragma omp target teams distribute parallel for simd

or for Fortran

• !$omp target teams distribute parallel do simd

• C/C++ uses pragmas as directives to the compiler

• Fortran uses a comment syntax for its directives

• We‘ll go into each part of this pragma in the next talk

Oct 21-23, 2025 AMD @ Tsukuba University

13 |

[Public]

Example: saxpy_gpu_singleunit_static

int main(int argc, char *argv[]){
int N=100000;
float a=2.0f;
float x[N], y[N];

for (int i = 0; i < N; i++) {
x[i] = 1.0f; y[i] = 2.0f;

}

#pragma omp target teams distribute parallel for simd
for (int i = 0; i < N; i++) {

y[i] += a * x[i];
}

printf("check output:\n");
printf("y[0] %lf\n",y[0]);
printf("y[N-1] %lf\n",y[N-1]);

}

h
o
s
t

ta
rg
e
t

h
o
s
t

a
x[0:N]
y[0:N]

x[0:N]
y[0:N]

All accessed arrays are

copied from host to

device and back.

Copying x back is

not necessary. It

was not changed.

The compiler identifies variables

that are used in the target region

Compiler does the work

Oct 21-23, 2025 AMD @ Tsukuba University

14 |

[Public]

Example: saxpy_gpu_singleunit_dynamic

int main(int argc, char *argv[]){
int N=10000000;
float a=2.0f;

float *x = (float *)malloc(N*sizeof(float));
float *y = (float *)malloc(N*sizeof(float));

for (int i = 0; i < N; i++) {
x[i] = 1.0f; y[i] = 2.0f;

}

#pragma omp target teams distribute parallel for simd
for (int i = 0; i < N; i++) {

y[i] += a * x[i];
}

printf("check output:\n");
printf("y[0] %lf\n",y[0]);
printf("y[N-1] %lf\n",y[N-1]);

free(x); free(y);
}

h
o
s
t

ta
rg
e
t

h
o
s
t

a
x[0:N]
y[0:N]

x[0:N]
y[0:N]

All accessed arrays are

copied from host to

device and back.

Copying x back is

not necessary. It

was not changed.

The compiler identifies variables that are used

in the target region but cannot get the sizes

Oct 21-23, 2025 AMD @ Tsukuba University

In Fortran allocatable arrays

are mapped by default

15 |

[Public]

A note on the simd clause

• C/C++

• #pragma omp target teams distribute parallel for simd

• Fortran

• !$omp target teams distribute parallel do simd

• Note on the compute construct:
• The simd clause doesn’t do anything with the AMD OpenMP compiler and can be dropped.

• Nvidia also doesn’t use it.

• Cray used to be the most common compiler where it was used, but they are moving to drop it as well.

• But…there are still OpenMP compilers such as the Intel® compiler that recognize it and use it.

• So…for maximum portability, we include it. But you may want to drop it depending on the systems you plan to run on.

• If you use the simd clause, you will get warnings about not being able to vectorize during compilation. These are harmless and can be

ignored.

Oct 21-23, 2025 AMD @ Tsukuba University

16 |

[Public]

Other compute clauses -- loop

• The loop clause was added as a simpler option that gives the compiler more freedom in implementing the

parallelism for a for loop

#pragma omp target teams loop

• Reduces the pragma complexity

• Compilers may not optimize (or implement) this case as well because it is new.

• ROCm will generate an optimized target region implementation for AMD GPUs to use

#pragma omp target teams loop

Instead of

#pragma omp target teams distribute parallel for

In OpenMP 6.0, replaces teams distribute parallel for

• The loop clause will be coming soon for the AMD next generation flang compiler.

Oct 21-23, 2025 AMD @ Tsukuba University

17 |

[Public]

Example: saxpy

void saxpy(float a, float *x, float *y, int N) {
#pragma omp target teams loop

for (int i = 0; i < N; i++) {
y[i] += a * x[i];

}

printf("check output:\n");
printf("y[0] %lf\n",y[0]);
printf("y[N-1] %lf\n",y[N-1]);

}

h
o
s
t

ta
rg
e
t

h
o
s
t

a
x[0:N]
y[0:N]

x[0:N]
y[0:N]

amdclang -fopenmp --offload-arch=$GPU_ARCH ...

Simpler “loop” pragma/directive is equivalent to
#pragma omp target teams distribute

parallel do simd

Oct 21-23, 2025 AMD @ Tsukuba University

18 |

[Public]

Nested Loops – collapse clause

• collapse(n) clause will collapse nested loops into one

parallel construct. It can generate more work groups to

help fill up the GPUs

• Originally, only perfectly nested loops could be collapsed (no

extra lines of code between the for/do loops)

• This constraint has been relaxed and some lines of code are

now acceptable both before and after the inner loop

• This example can be collapsed by the ROCm LLVM

OpenMP® compiler (and LLVM trunk)

int A[N][N];

int B[N][N];

int e = -1;

#pragma omp target teams distribute
parallel for collapse(2)

for (int j = 0; j< N; j++) {

 e++;

 for (int i = 0; i < N; i++)

 a[j][i]=b[j][i]+e;

 e++;

}

Oct 21-23, 2025 AMD @ Tsukuba University

19 |

[Public]

Nested Loops – collapse clause example
subroutine saxpy(a, x, y, m, n)
 use iso_fortran_env
 implicit none
 integer,intent(in) :: m, n
 real(kind=real32),intent(in) :: a
 real(kind=real32), dimension(:,:),allocatable,intent(in) :: x
 real(kind=real32), dimension(:,:),allocatable,intent(inout) :: y
 integer :: i, j
 real(kind=real64) :: start, finish

 !$omp target teams distribute parallel do collapse(2)
 do j=1,n
 do i=1,m
 y(i,j) = a * x(i,j) + y(i,j)

 end do
 end do

 write(*,*) "plausibility check:"
 write(*,'("y(1,1) ",f8.6)') y(1,1)
 write(*,'("y(m,n) ",f8.6)') y(m,n)

end subroutine saxpy

Collapse clause causes the

work to be distributed from

both loops

Oct 21-23, 2025 AMD @ Tsukuba University

20 |

[Public]

Optimizing Data Transfers is Key to Performance on discrete GPUs

• Connections between host and accelerator are typically lower-bandwidth, higher-latency interconnects

• Bandwidth host memory: hundreds of GB/sec

• Bandwidth accelerator memory: TB/sec

• PCIe® Gen 4 bandwidth (16x): tens of GB/sec

• Unnecessary data transfers must be avoided, by

• only transferring what is actually needed for the computation, and

• making the lifetime of the data on the target device as long as possible.

Accelerators

Host

Oct 21-23, 2025 AMD @ Tsukuba University

21 |

[Public]

Example: saxpy

void saxpy(float a, float* x, float* y,
int n) {

double t = 0.0;
double tb, te;
tb = omp_get_wtime();
#pragma omp target map(to:x[0:n]) \

map(tofrom:y[0:n])
for (int i = 0; i < n; i++) {

y[i] = a * x[i] + y[i];
}
te = omp_get_wtime();
t = te - tb;
printf("Time of kernel: %lf\n", t);

}

h
o
s
t

ta
rg
e
t

h
o
s
t

a
x[0:n]
y[0:n]

y[0:n]

The compiler cannot determine the

size of memory behind the pointer.

Programmers have to help the compiler

with the amount of data to transfer.

Oct 21-23, 2025 AMD @ Tsukuba University

22 |

[Public]

OpenMP® Device Constructs: target data

• Create scoped data environment and transfer data from the host to the device and
back

• Syntax (C/C++)
 #pragma omp target data [clause[[,] clause],…]
 structured-block

• Syntax (Fortran)
 !$omp target data [clause[[,] clause],…]
 structured-block
 !$omp end target data

• Clauses
 device(scalar-integer-expression)
 map([{alloc | to | from | tofrom | release | delete}:] list)
 if(scalar-expr)

Oct 21-23, 2025 AMD @ Tsukuba University

23 |

[Public]

Optimize Data Transfers

• Reduce the amount of time spent transferring data

• Use map clauses to enforce direction of data transfer.

• Use target data, target enter data, target exit data constructs to keep data environment on

the target device (see next slide).

void example() {
 float tmp[N], a[N], b[N], c[N];
 #pragma omp target data map(alloc:tmp[:N]) \
 map(to:a[:N],b[:N]) \
 map(tofrom:c[:N])
 {
 zeros(tmp, N);
 compute_kernel_1(tmp, a, N); // uses target
 saxpy(2.0f, tmp, b, N);
 compute_kernel_2(tmp, b, N); // uses target
 saxpy(2.0f, c, tmp, N);
} }

void zeros(float* a, int n) {
 #pragma omp target teams distribute parallel for
 for (int i = 0; i < n; i++)
 a[i] = 0.0f;
}

void saxpy(float a, float* y, float* x, int n) {
 #pragma omp target teams distribute parallel for
 for (int i = 0; i < n; i++)
 y[i] = a * x[i] + y[i];
}

Create data environment.

No map clauses! Presence checks

will find data via the pointer.

Oct 21-23, 2025 AMD @ Tsukuba University

24 |

[Public]

Unstructured Data Regions

• Some programming styles such as C++ classes are difficult to enclose in a structured data region

• Unstructured data regions with the target enter/exit data were added to the standard to handle these

cases

• Often, the target enter data will be right after allocation. And the target exit data will be right before the free.

float *tmp, *a, *b, *c;
int main(int argc, char *argv[]) {
 int N = 100;
 tmp = (float *)malloc(N*sizeof(float));
 a = (float *)malloc(N*sizeof(float));
 b = (float *)malloc(N*sizeof(float));
 c = (float *)malloc(N*sizeof(float));

 #pragma omp target enter data \
 map(alloc:tmp[:N], a[:N], b[:N], C[:N])
 zeros(tmp, N);

 compute_kernel_1(tmp, a, N);
 saxpy(2.0f, tmp, b, N);

 compute_kernel_2(tmp, b, N);
 saxpy(2.0f, c, tmp, N);

#pragma omp target exit data map(delete:tmp, a, b, c)
 free(tmp, a, b, c);
}

void zeros(float* a, int n) {
 #pragma omp target teams distribute parallel for
 for (int i = 0; i < n; i++)
 a[i] = 0.0f;
}

void saxpy(float a, float* y, float* x, int n) {
 #pragma omp target teams distribute parallel for
 for (int i = 0; i < n; i++)
 y[i] = a * x[i] + y[i];
}

Oct 21-23, 2025 AMD @ Tsukuba University

25 |

[Public]

OpenMP® Device Constructs: target update

• Issue data transfers to or from existing data device environment

• Syntax (C/C++)
 #pragma omp target update [clause[[,] clause],…]

• Syntax (Fortran)
 !$omp target update [clause[[,] clause],…]

• Clauses
 device(scalar-integer-expression)
 to(list)
 from(list)
 if(scalar-expr)

Oct 21-23, 2025 AMD @ Tsukuba University

26 |

[Public]

Example: target data and target update

#pragma omp target data map(alloc:tmp[:N]) map(to:input[:N]) map(from:res)

 {

#pragma omp target

#pragma omp teams distribute parallel for simd

 for (int i=0; i<N; i++)

 tmp[i] = some_computation(input[i], i);

 update_input_array_on_the_host(input);

#pragma omp target update to(input[:N])

#pragma omp target

#pragma omp teams parallel for simd reduction(+:res)

 for (int i=0; i<N; i++)

 res += final_computation(input[i], tmp[i], i);

 }

h
o
s
t

ta
rg
e
t

h
o
s
t

ta
rg
e
t

h
o
s
t

Oct 21-23, 2025 AMD @ Tsukuba University

27 |

[Public]

Review of Data Movement/ Management pragmas and clauses

map(to:var[0:n]), map(from:var[0:n]), map(tofrom:var[0:n]) can be added to any compute

directive

• Structured data regions – a block of code in a functional unit that will have data mapped over at the start

and mapped back at the end

#pragma omp target data map(to:x[0:n]) map(from:y[0:n])

• Unstructured data regions are more flexible and can be done after array creation on the host and just

before freeing the memory

#pragma omp target enter data map(alloc:var[0:n])

#pragma omp target exit data map(release:var[0:n])

• Updating data from host to device or vice-versa

#pragma omp target update to(var) -- host to device

#pragma omp target update from(var) -- device to host

Oct 21-23, 2025 AMD @ Tsukuba University

28 |

[Public]

CPU CODE DISCRETE GPU CODE APU CODE

!allocation on host
ALLOCATE(var(1:N))

!compute on host
!$omp parallel do &
!$omp private(i), shared(var)
DO i=1,N
 var(i) = …
END DO
!$omp end parallel do
!sync barrier at omp end …
…
!deallocation
DEALLOCATE(var)

!allocation on host
ALLOCATE(var(1:N))

!compute on device, expl. mem movement!
!$omp target teams distribute parallel do &
!$omp map(tofrom:var) private(i),shared(var)
 DO i=1,N
 var(i) = …
 END DO
!$omp end target teams distribute parallel do
!host-device sync barrier at omp end …
…
!deallocation
DEALLOCATE(var)

!$omp requires unified_shared_memory
!allocation of unified memory
ALLOCATE(var(1:N))

!compute on device, no expl. mem movement!
!$omp target teams distribute parallel do &
!$omp private(i),shared(var)
 DO i=1,N
 var(i) = …
 END DO
!$omp end target teams distribute parallel do
!host-device sync barrier at omp end …

!deallocation of unified memory
DEALLOCATE(var)

GPU and APU Programming model with OpenMP

AMD @ Tsukuba UniversityOct 21-23, 2025

Costly to switch

CPU -> GPU!
Cheap CPU -> GPU

copy with APU

• Compute kernel
• Special directive to enable unified memory
• Explicit memory management between CPU & GPU -> not needed for APU!
• Synchronization Barrier

29 |

[Public]

Exercises Introduction to OpenMP Offload

https://github.com/amd/HPCTrainingExamples/tree/main/Pragma_Examples

C/C++ exercises:

Pragma_Examples/README.md (Instructions for Introduction to OpenMP in the first sections)

Pragma_Examples/OpenMP/C/ (Code)

Pragma_Examples/OpenMP/CXX/ (Code)

Pragma_Examples/OpenMP/C/USM (Example code for #pragma omp requires unified_shared_memory and

XNACK=0 or 1 behaviour)

Fortran exercises:

Pragma_Examples/OpenMP/Fortran/README.md

Further READMEs in sub-directories with guided exercises with and without XNACK=0 or 1

Oct 21-23, 2025 AMD @ Tsukuba University

https://github.com/amd/HPCTrainingExamples/tree/main/Pragma_Examples

30 |

[Public]

Disclaimer
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions,
and typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many
reasons, including but not limited to product and roadmap changes, component and motherboard version changes, new model
and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware
upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or
mitigated. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right
to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any
person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO
THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS
THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE
TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING
FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

© 2025 Advanced Micro Devices, Inc and OpenMP® Architecture Review Board. All rights reserved.

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used
in this publication are for identification purposes only and may be trademarks of their respective companies.

Intel is a trademark of Intel Corporation or its subsidiaries

LLVM is a trademark of LLVM Foundation

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board

PCIe is a registered trademark of PCI-SIG Corporation.

Oct 21-23, 2025 AMD @ Tsukuba University

	Slide 1: Introduction to OpenMP® Offload on AMD GPUs
	Slide 2: Motivation for OpenMP for GPUs
	Slide 3: Compilers – two major strands
	Slide 4: amdflang-new beta pre-release of AMD Fortran compiler
	Slide 5: Enabling OpenMP® on AMD Hardware
	Slide 6: Sample OpenMP® Makefile
	Slide 7: Sample OpenMP® CMakeLists
	Slide 8: How we begin
	Slide 9: Running example for this presentation: saxpy
	Slide 10: If you prefer Fortran
	Slide 11: How to offload to the GPU: the target directive
	Slide 12: But there is more to a GPU compute directive than just “target”
	Slide 13: Example: saxpy_gpu_singleunit_static
	Slide 14: Example: saxpy_gpu_singleunit_dynamic
	Slide 15: A note on the simd clause
	Slide 16: Other compute clauses -- loop
	Slide 17: Example: saxpy
	Slide 18: Nested Loops – collapse clause
	Slide 19: Nested Loops – collapse clause example
	Slide 20: Optimizing Data Transfers is Key to Performance on discrete GPUs
	Slide 21: Example: saxpy
	Slide 22: OpenMP® Device Constructs: target data
	Slide 23: Optimize Data Transfers
	Slide 24: Unstructured Data Regions
	Slide 25: OpenMP® Device Constructs: target update
	Slide 26: Example: target data and target update
	Slide 27: Review of Data Movement/ Management pragmas and clauses
	Slide 28
	Slide 29: Exercises Introduction to OpenMP Offload
	Slide 30: Disclaimer
	Slide 31

