Introduction to OpenMP®
Offload on AMD GPUs

Presenter: Bob Robey
AMD @ Tsukuba University
Oct 21-23, 2025

AMD 1

together we advance_

Motivation for OpenMP for GPUs

Fortran: Why use OpenMP for porting to GPUs?
OpenMP is standardized

ISomp parallel do private(i) shared(NI,...) Portable cod
ortable code

doi=1.NI S Fortran, C, and C++ supported
S
end do (0(0 Many HPC codes are already OpenMP (+MPI)
ISomp end parallel @“\‘ parallelized on CPUs
QO Porting requires only few code changes
C) Easy to learn
C/C++:
#pragma omp parallel for private(i) shared(Nl,...) Interoperability with HIP and ROCm libraries

for(int i=0, i<NI, i++){ Flexibility
GPU code can be compiled for the CPU, too
} Start porting before having access to GPUs

Majority of correctness checks possible without
access to GPUs

AMDZU

together we advance_

Oct 21-23, 2025 AMD @ Tsukuba University

Compilers — two major strands

Primary Support Use LLVM based

¢ |_|_V|\/|TM based compilers for

production
 ROCm compilers provide support for both HIP and OpenMP® (or Cray if available)

hipcc -- /opt/rocm/bin
amdclang -- /opt/rocm/llvm/bin

 AOMP: AMD OpenMP® research compiler for prototyping new features

Functionality Only

« GCC based -- GNU Compilers
 Provide offloading support to AMD GPUs (OpenMP®, OpenACC)
+ GCC 11 added offloading for the AMD MI100 GPUs
« GCC 13 adds support for the AMD MI200 GPU series.

« https://gcc.gnu.org/wiki/Offloading

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

https://gcc.gnu.org/wiki/Offloading
https://gcc.gnu.org/wiki/Offloading

amdflang-new beta pre-release of AMD Fortran compiler

Installed on aac6 to use in this training:
module load amdflang-new/

Module will set the following:
export FC=amdflang-new

AMD is working on a Fortran compiler and is ready to share a beta version. During the training, you will have
hands-on access to the beta. Going forward, AMD will continue to provide early access via AFARs (Advanced
Feature Access Releases) as improvements and features are added to the beta. As with any beta, we are
looking to gather feedback on functionality, usability and user experience.

New Flang is released in the ROCm 7.0 version!

Blog post about next gen Fortran compiler: https://rocm.blogs.amd.com/ecosystems-and-partners/fortran-
journey/README .html

PRE-PRODUCTION SOFTWARE: The software accessible on this training may be a pre-production version, intended to provide advance access to features that may or may not eventually be included
into production version of the software. Accordingly, pre-production software may not be fully functional, may contain errors, and may have reduced or different security, privacy, accessibility,
availability, and reliability standards relative to production versions of the software. Use of pre-production software may result in unexpected results, loss of data, project delays or other unpredictable
damage or loss. Pre-production software is not intended for use in production, and your use of pre-production software is at your own risk.

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

https://rocm.blogs.amd.com/ecosystems-and-partners/fortran-journey/README.html
https://rocm.blogs.amd.com/ecosystems-and-partners/fortran-journey/README.html
https://rocm.blogs.amd.com/ecosystems-and-partners/fortran-journey/README.html
https://rocm.blogs.amd.com/ecosystems-and-partners/fortran-journey/README.html
https://rocm.blogs.amd.com/ecosystems-and-partners/fortran-journey/README.html
https://rocm.blogs.amd.com/ecosystems-and-partners/fortran-journey/README.html
https://rocm.blogs.amd.com/ecosystems-and-partners/fortran-journey/README.html

Enabling OpenMP® on AMD Hardware

LLVM

Compiler Module = amdclang/aomp/clacc

Language

Fortran

Oct 21-23, 2025

Command Flags

amdclang -fopenmp --offload-arch=<gfx###>
clang

amdclang++ -fopenmp --offload-arch=<gfx###>
clang++

amdflang(-new) -fopenmp --offload-arch=<gfx###>
flang(-new)

Command

gcc

GCC
gcclog
Flags

-fopenmp --foffload=-march=<gfx###>

-fopenmp --foffload=-march=<gfx###>

-fopenmp --foffload=-march=<gfxi#i#>

Offloading Target Architecture
(CPU/GPU/GCD) <gfxittt>

AMD MI300 Series gfx942
AMD MI200 Series gfx90a
AMD MI100 gfx908

Native Host (CPU) -fopenmp-targets=amdgcn-amd-amdhsa

AMD @ Tsukuba University

AMDZU

together we advance_

[Public]

Sample OpenMP® Makefile

Oct 21-23, 2025 AMD @ Tsukuba University AMDA

together we advance_

[Public]

Sample OpenMP® CMakelLists

Oct 21-23, 2025 AMD @ Tsukuba University AMDA

together we advance_

How we begin

The first step in porting an application to use OpenMP® for offloading work to a GPU is to add a compute
pragmal/directive to a loop

Choose one of the more expensive loops in your application for the first loop to add a compute pragma
This will give the most compute speedup to offset the slowdown from memory transfers to the GPU and back
Testing OpenMP® parallelism on the CPU can identify potential problems
Another quick test is to reverse the loop direction on a loop to see if there is an order required for correctness

A profile of your existing code will help identify potential loops to offload to the GPU
Pay attention to what data needs to be moved to enable the offloading

While this appears simple, many complex physics applications can be difficult to approach
You may want to try simpler loops first just to get some experience with the process

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

Running example for this presentation: saxpy

Declaration and
Initialization of arrays on CPU
in main routine (not shown)
void saxpy(float a, float *x, float *y, int N) {

llel f 3
pr‘igr:a(ci)rrr:z Eaza@.ei (O;_ irt) { This is the code we want to execute on a
vk erat. > target device (i.e., GPU) with appropriate
yl[i] += a * x[1]; o .
} directives to be introduced next

printf("check output:\n");
printf("y[0] %1f\n",y[0]);
printf("y[N-1] %1f\n",y[N-1]);

WARNING: operations like saxpy should be done through an efficient library (e.g. hipblas) in production codes

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

If you prefer Fortran

subroutine saxpy(a, X, y, n) Declaration and
use iso_fortran_env Initialization of arrays on CPU
implicit none in main routine (not shown)
integer,intent(in) :: n
real(kind=real32),intent(in) :: a
real(kind=real32), dimension(:),allocatable,intent(in) :: x
real(kind=real32), dimension(:),allocatable,intent(inout) :: y
integer :: i

| i .
'$omp parallel do simd This is the code we want to execute on a

do i=1,n : . . :
1y(i) S a % x(i) + y(i) ta_lrget. device (|.§., GPU) with appropriate
end do directives to be introduced next

write(*,*) "plausibility check:"
write(*,'("y(1) ",f8.6)") y(1)
write(*,'("y(n-1) ",f8.6)") y(n-1)

end subroutine saxpy

AMDZU

together we advance_

Oct 21-23, 2025 AMD @ Tsukuba University

How to offload to the GPU: the target directive

Transfer control and data from the host to the device

Syntax (C/C++)
#pragma omp target
structured-block

Syntax (Fortran)
l$omp target NOTE: target will move
structured-block the computation to the
$omp end target GPU, but single thread

only instead of using
the whole device.
Clauses Occupancy will be <1%
device(scalar-integer-expression)
map([{alloc | to | from | tofrom}:] List)
if(scalar-expr)

Oct 21-23, 2025 AMD @ Tsukuba University

AMDZU

together we advance_

But there is more to a GPU compute directive than just “target”

We need to tell the compiler what hardware resources to use
We also need to tell it how to spread out the work
Sometimes the compiler can detect information and do the right thing, other times it cannot

Despite all this possible complexity, most compute pragmas are simple one-liners to use all the hardware
and distribute all the work

#pragma omp target teams distribute parallel for simd
or for Fortran
I$omp target teams distribute parallel do simd

C/C++ uses pragmas as directives to the compiler
Fortran uses a comment syntax for its directives

We'll go into each part of this pragma in the next talk

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

Example: saxpy _gpu_singleunit_static Compiler does the work

int main(int argc, char *argv[]){

int N=100000; _
float Xx[N],
-y
&
for (int 1 = 0; 1 < N; i++) { cr a
x[i] = 1.0f; y[i] = 2.0f; X[0:N]
} ~yle:N]

#pragma omp target teams distribute parallel for simd

for (3 i=0; 1< N; i++) {
= a * x[i];

}

|
\ 1obuey ’

xX[0:N]

printf("check output:\n"); y[0:N]

printf("y[@] %1f\n",y[@]);
printf("y[N-1] %1f\n",y[N-1]);

1soy

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

int main(int argc, char *argv[]){

#pragma omp target teams distribute parallel for simd ~F§\

}

float a=2.0f;

floa (float *)malloc(N*sizeof(float));
floa (float *)malloc(N*sizeof(float));

Example: saxpy _gpu_singleunit_dynamic

int N=10000000;

for (int 1 = 0; i < N; i++) {
x[i] = 1.0f; y[i] = 2.0f;
}

fo int 1 = 04 ; i++) { P

2 (Ce\% e
} o o
printf("check output:\n");

orintf("y[0] %1f\n",y[0]); \@6 o)
orintf("y[N-1] %1f\n",y[N-1]); 609

In Fortran allocatable arrays

free(x); free(y); are mapped by default
Oct 21-23, 2025 AMD @ Tsukuba University

AMDZU

together we advance_

A note on the simd clause

C/C++

#pragma omp target teams parallel for
Fortran

I$omp target teams parallel do

Note on the compute construct:
The clause doesn’t do anything with the AMD OpenMP compiler and can be dropped.
Nvidia also doesn’t use it.
Cray used to be the most common compiler where it was used, but they are moving to drop it as well.
But...there are still OpenMP compilers such as the Intel® compiler that recognize it and use it.
So...for maximum portability, we include it. But you may want to drop it depending on the systems you plan to run on.

If you use the clause, you will get warnings about not being able to vectorize during compilation. These are harmless and can be
ignored.
Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

Other compute clauses -- 1loop

The loop clause was added as a simpler option that gives the compiler more freedom in implementing the
parallelism for a for loop

#pragma omp target teams
Reduces the pragma complexity
Compilers may not optimize (or implement) this case as well because it is new.

ROCm will generate an optimized target region implementation for AMD GPUs to use
#pragma omp target teams

Instead of
#pragma omp target teams

In OpenMP 6.0, replaces

The loop clause will be coming soon for the AMD next generation flang compiler.

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

Example: saxpy

void saxpy(float a, float float *y, int N) { ;Egm

#pragma omp target teams loop
for (int 1 = 0; i < N; i++) {
y[i] += a * x[i];

¥

x[@:N]

printf("check output:\n");
y[0:N]

printf("y[0] %1f\n",y[0]);
printf("y[N-1] %1f\n",y[N-1]);

amdclang -fopenmp --offload-arch=$GPU_ARCH ...
Oct 21-23, 2025 AMD @ Tsukuba University

AMDZU

together we advance_

Nested Loops — collapse clause

clause will collapse nested loops into one
parallel construct. It can generate more work groups to
help fill up the GPUs

Originally, only perfectly nested loops could be collapsed (no
extra lines of code between the for/do loops)

This constraint has been relaxed and some lines of code are
now acceptable both before and after the inner loop

This example can be collapsed by the ROCm LLVM™
OpenMP® compiler (and LLVM trunk)

Oct 21-23, 2025 AMD @ Tsukuba University

int A[N]J[N];
int B[N][N];
int e = -1;
#pragma omp target teams distribute
parallel for
for (int j = 0; j< N; j++) {
e++;
for (int 1 = 0; i < N; i++)
a[jl[i]=b[j][i]+e;
e++;

AMDZU

together we advance_

Nested Loops — collapse clause example

subroutine saxpy(a, x, y, m, n)
use iso_fortran_env
implicit none
integer,intent(in) :: m, n
real(kind=real32),intent(in) :: a
real(kind=real32), dimension(:,:),allocatable,intent(in) :: x
real(kind=real32), dimension(:,:),allocatable,intent(inout) :: vy
integer :: i, j
real(kind=real64) :: start, finish

I$omp target teams distribute parallel dol collapse(2)
do j=1,n
do i=1,m
y(i,3) = a * x(i,J) + y(i,])
end do
end do

write(*,*) "plausibility check:"

write(*,"("y(1,1) ",f8.6)") y(1,1)

write(*, " ("y(m,n) ",8.6)") y(m,n)
end subroutine saxpy

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

20

Optimizing Data Transfers is Key to Performance on discrete GPUs

+ Connections between host and accelerator are typically lower-bandwidth, higher-latency interconnects

+ Bandwidth host memory: hundreds of GB/sec
- Bandwidth accelerator memory: TB/sec
- PCle® Gen 4 bandwidth (16x): tens of GB/sec

* Unnecessary data transfers must be avoided, by
+ only transferring what is actually needed for the computation, and
+ making the lifetime of the data on the target device as long as possible.

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

Example: saxpy

void saxpy(float a, float* x

int n) {
double t = 0.0;
double tb, te;
tb = omp get wtime();
#pragma omp target \

for (int i = 0; i < n; i++) {
@ a * x[i] + y[il;

}

te = omp_get wtime();

t = te - tb;
printf("Time of kernel: %1f\n", t);

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

22

OpenMP® Device Constructs: target data

Create scoped data environment and transfer data from the host to the device and
back

Syntax (C/C++)

#pragma omp target data
structured-block

Syntax (Fortran)
I$omp target data
structured-block
I$omp end target data

Clauses
device(scalar-integer-expression)
map([{alloc | to | from | tofrom | release | delete}:] List)
if(scalar-expr)

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

Optimize Data Transfers

* Reduce the amount of time spent transferring data
+ Use map clauses to enforce direction of data transfer.

« Use target data, target enter data, target exit data constructs to keep data environment on
the target device (see next slide).

void example() { void zeros(float* a, int n) {
float tmp[N], a[N], b[N], c[N]; #pragma omp target teams distribute parallel for
for (int i = 0; i < n; i++)

al[i] = @.eof;
}

zeros(tmp, N);
compute_kernel 1(tmp, a, N); // uses target void saxpy(float a, float* y, float* x, int n) {

saxpy(2.0f, tmp, b, N); #pragma omp target teams distribute parallel for
compute_kernel 2(tmp, b, N); // uses target for (int i = 0; i < n; i++)
saxpy(2.0f, c, tmp, N); y[i] = a * x[i] + y[i];
}ool }
Oct 21-23, 2025 AMD @ Tsukuba University AMDZ1

23 together we advance_

Unstructured Data Regions

Some programming styles such as C++ classes are difficult to enclose in a structured data region

Unstructured data regions with the target enter/exit data were added to the standard to handle these
cases

Often, the target enter data will be right after allocation. And the target exit data will be right before the free.

float *tmp, *a, *b, *c; void zeros(float* a, int n) {
int main(int argc, char *argv[]) { #pragma omp target teams distribute parallel for
int N = 100; for (int i = 0; i < n; i++)
tmp = (float *)malloc(N*sizeof(float)); al[i] = @.ef;
a = (float *)malloc(N*sizeof(float)); }
b = (float *)malloc(N*sizeof(float));
¢ = (float *)malloc(N*sizeof(float)); void saxpy(float a, float* y, float* x, int n) {

#pragma omp target teams distribute parallel for
for (int i = 0; 1 < n; i++)

zeros(tmp, N); YIil = a * x[1] + y[i];

compute_kernel 1(tmp, a, N); }

saxpy(2.0f, tmp, b, N);

compute_kernel 2(tmp, b, N);
saxpy(2.0f, c, tmp, N);

free(tmp, a, b, c);
} Oct21-23, 2025 AMD @ Tsukuba University AMDAQ

24 together we advance_

25

OpenMP® Device Constructs: target update

Issue data transfers to or from existing data device environment

Syntax (C/C++)
#pragma omp target update

Syntax (Fortran)
I$omp target update

Clauses
device(scalar-integer-expression)
to(Llist)
from(List)
if(scalar-expr)

Oct 21-23, 2025 AMD @ Tsukuba University

AMDZU

together we advance_

Example: target data and target update

#pragma omp teams distribute parallel for simd
for (int i=0; i<N; i++)
tmp[i] = some_ computation(input[i], 1i);

update _input_array on_the host(input);

#pragma omp teams parallel for simd reduction(+:res)
for (int i=0; i<N; i++)
res += final computation(input[i], tmp[i], 1);

Oct 21-23, 2025 AMD @ Tsukuba University

26

30y

isoy
19b4e]

19b4e]

350y

AMDZU

together we advance_

Review of Data Movement/ Management pragmas and clauses

can be added to any compute
directive

Structured data regions — a block of code in a functional unit that will have data mapped over at the start
and mapped back at the end

Unstructured data regions are more flexible and can be done after array creation on the host and just
before freeing the memory

Updating data from host to device or vice-versa
-- host to device
-- device to host

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

27 together we advance_

GPU and APU Programming model with OpenMP

CPU CODE

lallocation on host
ALLOCATE(var(1:N))

Icompute on host
I$omp parallel do &
l$omp private(i), shared(var)
DO i=1,N
var(i) = ..
END DO
I$omp end parallel do
Isync barrier at omp end ..

ldeallocation
DEALLOCATE (var)

e Compute kernel

DISCRETE GPU CODE

lallocation on
ALLOCATE(var(1:

Icompute on device, expl. mem movement!
I$omp target teams distribute parallel do &
I$omp map(tofrom:var) private(i),shared(var)

DO i=1,N
var(i) = ..
END DO

I$omp end target teams distribute parallel do
lhost-device sync barrier at omp end ..

ldeallocation
DEALLOCATE (var)

host
N))

CPU -> GPU!

e Special directive to enable unified memory

+Explicit-memory—management betweenCRPU-& GPYU—-> not needed

e Synchronization Barrier

Oct 21-23, 2025

AMD @ Tsukuba University

Costly to switch

APU CODE

I$omp requires unified shared_memory
'allocation of unified
ALLOCATE(var(1:N))

Cheap CPU -> GPU
copy with APU

Icompute on device, no expl. mem movement!
I$omp target teams distribute parallel do &
I$omp private(i),shared(var)
DO i=1,N

var(i) = ..
END DO
I$omp end target teams distribute parallel do
lhost-device sync barrier at omp end ..

!deallocation of unified memory
DEALLOCATE (var)

for APU!

29

Exercises Introduction to OpenMP Offload

https://github.com/amd/HPCTrainingExamples/tree/main/Pragma Examples

C/C++ exercises:
Pragma_ Examples/README.md (Instructions for Introduction to OpenMP in the first sections)
Pragma_Examples/OpenMP/C/ (Code)

Pragma_Examples/OpenMP/CXX/ (Code)

Pragma_Examples/OpenMP/C/USM (Example code for #pragma omp requires unified_shared _memory and
XNACK=0 or 1 behaviour)

Fortran exercises:
Pragma_Examples/OpenMP/Fortran/README.md
Further READMEsS in sub-directories with guided exercises with and without XNACK=0 or 1

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

https://github.com/amd/HPCTrainingExamples/tree/main/Pragma_Examples

30

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions,
and typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many
reasons, including but not limited to product and roadmap changes, component and motherboard version changes, new model
and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware
upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or

mitigated. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right
to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any
person of such revisions or changes.

THIS INFORMATION IS PROVIDED °‘AS 1S.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO
THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS
THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILLAMD BE LIABLE
TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING
FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

© 2025 Advanced Micro Devices, Inc and OpenMP® Architecture Review Board. All rights reserved.

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used
in this publication are for identification purposes only and may be trademarks of their respective companies.

Intel is a trademark of Intel Corporation or its subsidiaries

LLVM is a trademark of LLVM Foundation

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board
PCle is a registered trademark of PCI-SIG Corporation.

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

	Slide 1: Introduction to OpenMP® Offload on AMD GPUs
	Slide 2: Motivation for OpenMP for GPUs
	Slide 3: Compilers – two major strands
	Slide 4: amdflang-new beta pre-release of AMD Fortran compiler
	Slide 5: Enabling OpenMP® on AMD Hardware
	Slide 6: Sample OpenMP® Makefile
	Slide 7: Sample OpenMP® CMakeLists
	Slide 8: How we begin
	Slide 9: Running example for this presentation: saxpy
	Slide 10: If you prefer Fortran
	Slide 11: How to offload to the GPU: the target directive
	Slide 12: But there is more to a GPU compute directive than just “target”
	Slide 13: Example: saxpy_gpu_singleunit_static
	Slide 14: Example: saxpy_gpu_singleunit_dynamic
	Slide 15: A note on the simd clause
	Slide 16: Other compute clauses -- loop
	Slide 17: Example: saxpy
	Slide 18: Nested Loops – collapse clause
	Slide 19: Nested Loops – collapse clause example
	Slide 20: Optimizing Data Transfers is Key to Performance on discrete GPUs
	Slide 21: Example: saxpy
	Slide 22: OpenMP® Device Constructs: target data
	Slide 23: Optimize Data Transfers
	Slide 24: Unstructured Data Regions
	Slide 25: OpenMP® Device Constructs: target update
	Slide 26: Example: target data and target update
	Slide 27: Review of Data Movement/ Management pragmas and clauses
	Slide 28
	Slide 29: Exercises Introduction to OpenMP Offload
	Slide 30: Disclaimer
	Slide 31

