

ROCm PyTorch Inference Benchmark

Standardized Performance Measurement for Deep Learning Models

Presenter: Bob Robey Oct 13-16, 2025 AMD @ CASTIEL AI Workshop

What is Inferencing?

Inference is the process of using a trained neural network to make predictions on new data.

Key Differences from Training:

Aspect	Training	Inference
Purpose	Learn patterns from data	Make predictions
Direction	Forward + Backward pass	Forward pass only
Gradients	Required	Not required
Batch size	Usually Larger	Often smaller
Performance Goal	Throughput (samples/sec)	Latency (ms/sample) AND throughout
Memory Usage	High (stores activations)	Lower (no gradient storage)

Why Benchmark Inference?

- •Optimize for production deployment
- Understand hardware utilization
- •Compare different models
- Justify hardware purchases
- Identify bottlenecks

Workshop Mission Statement

Challenge

Modern Al workloads run at 10-20% of theoretical hardware performance

Our goal

- Increase samples per second
- Reduce memory usage
- Reduce number of kernels (fuse kernels)

What you'll learn

- Workshop Philosophy: Optimization Cycle
 Measure → Analyze → Optimize → Validate
- Master the complete optimization toolkit: profiling \rightarrow analysis \rightarrow optimization \rightarrow validation

Key Performance Metrics Explained

- Throughput (samples/sec or tokens/sec)
- Latency (milliseconds)
- Memory Usage (MB or GB)
- Kernel Count (launches per iteration)
- Memory Bandwidth Utilization (%)
- Arithmetic Intensity (FLOPs/byte)
- GPU Occupancy (%)
- FLOPS Efficiency (%)

Common Pitfalls and Workshop Guardrails

- Pitfall 1: Optimizing without profiling
- Pitfall 2: Ignoring numerical accuracy
- Pitfall 3: Over-optimizing small operations
- Pitfall 4: Hardware-specific tuning too early

Profiling Ecosystem Overview

PyTorch Profiler

- Operator execution time breakdown
- CPU/GPU timeline visualization
- Memory allocation tracking
- Chrome trace export for detailed analysis

DeepSpeed FLOPSProfiler

- FLOPS per layer (theoretical vs. achieved)
- MACs (multiply-accumulate operations)
- Parameter counts and activation memory
- Model efficiency percentage

ROCm Micro-benchmarking

- Standard model baselines for comparison
- Multi-precision performance characterization
- Multi-GPU scaling validation

Introduction to Hands-on Exercises

Step 0: Environment Setup - Installation verification

Get a node with a GPU
 salloc -N 1 --gpus=2 --cpus=8

Check ROCm rocminfo | grep "Name:" # Should show your GPU

 If you see an error check if ROCm is installed which rocminfo

check GPU Status

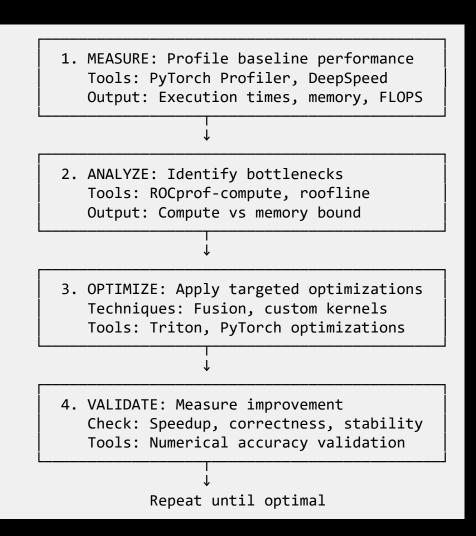
rocm-smi

Expected Output:

GPU[0] : GPU ID: 0GPU[0] : GPU Name: AMD Instinct MI325XGPU[0] : Temperature: 35.0°CGPU[0] : GPU Memory Usage: 256 MB / 196608 MBGPU[0] : GPU Utilization: 0

- If not found, ROCm is not installed (contact system admin)
- Check PyTorch + ROCm
 python -c "import torch; print(torch.__version__); print(torch.cuda.is_available())"
- Expected Output:

```
2.7.1+rocm6.4.4, True
```


Check Triton

```
python -c "import triton; print(triton. version )"
```

See hands-on exercises instructions at HPCTrainingExamples/MLExamples/inference_benchmark/INFERENCE_BENCHMARK.md

Workshop Integration and Workflow

- Benchmark-Driven Optimization Cycle
- Performance Analysis Workflow
 - 1. Establish baseline: Standard model (ResNet50) with default configuration
 - 2. Parameter sweep: Batch size, precision, optimization flags
 - 3. Identify bottlenecks: ROCm profiler integration, kernel analysis
 - 4. Apply optimizations: MIOpen tuning, graph compilation, custom kernels
 - 5. Validate improvements: Re-benchmark, compare against baseline
 - 6. Document results: Performance database, optimization log

Step 1: PyTorch Profiler Integration

Works on ROCm (CUDA API Compatibility)

- Basic Usage Pattern
 - Output Metrics
 - Kernel execution time (microseconds)
 - Memory bandwidth utilization
 - Operator call counts
 - Tensor shapes and memory footprint
- Start with running the benchmark

```
python3 micro_benchmarking_pytorch.py \ --network resnet50  # Model to benchmark --batch-size 64 Number of samples per batch --iterations 20  # Number of iterations to run
```

Profiling Argument - Add optional arguments

Multi-GPU Arguments -- Using torchrun

```
torchrun --nproc-per-node 2 micro_benchmarking_pytorch.py --network resnet50
```

PyTorch 2.0 Argument – optimizes a computational graph for additional performance (almost for free)

```
--compile # Enable torch.compile
--compileContext "{'mode': 'max-autotune'}" # Compilation options
```

See https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html

with torch.profiler.profile(

record shapes=True,

profile memory=True,

print(prof.key averages().table(

torch.profiler.ProfilerActivity.CPU,

sort by="cuda time total", row limit=10))

torch.profiler.ProfilerActivity.CUDA,

activities=[

model(inputs)

) as prof:

Understanding Output

When you run the benchmark, you'll see output like this:

```
Using network: resnet50
Batch size: 64
Iterations: 20
FP16: False
Warming up...
Warmup complete.
Epoch 0: Loss = 6.9088, Time = 0.145 seconds ← SLOW (first run)
Epoch 1: Loss = 6.9088, Time = 0.042 seconds ← Much faster
Epoch 2: Loss = 6.9088, Time = 0.041 seconds ← Stable
Epoch 19: Loss = 6.9088, Time = 0.040 seconds
______
Performance Summary:
_____
Average time per iteration: 0.041 seconds
Throughput: 1560.9 samples/sec
Memory usage: 4523 MB
______
```

Why is the first iteration slow?

- Kernel compilation (Triton, ROCm)
- GPU memory allocation
- Cache warming
- cuDNN/MIOpen autotuning

Understanding Key Metrics

Before we begin the exercises, let's understand what we're measuring:

Throughput (samples/sec or images/sec)

- What: Number of samples processed per second
- Higher is better
- Use case: Batch inference, data center deployments
- Formula: (batch_size × num_iterations) / total_time

Latency (milliseconds)

- What: Time to process a single sample or batch
- Lower is better
- **Use case:** Real-time applications, interactive systems
- Formula: total_time / num_iterations

Memory Usage (MB or GB)

- What: GPU memory consumed by model and data
- Lower is better (allows larger batches)
- Includes: Model weights, activations, gradients (if training)

GPU Utilization (%)

- What: Percentage of GPU compute used
- Higher is better (approaching 100%)
- Note: Can be low if memory-bound or CPU-bound

Memory Usage (MB or GB)

- What: GPU memory consumed by model and data
- Lower is better (allows larger batches)
- Includes: Model weights, activations, gradients (if training)

GPU Utilization (%)

- What: Percentage of GPU compute used
- Higher is better (approaching 100%)
- Note: Can be low if memory-bound or CPU-bound

FLOPS (Floating Point Operations Per Second)

What: Computational throughput

Higher is better

Theoretical vs Achieved: Gap indicates optimization opportunity

Optional: Try Different Batch Sizes

Why does batch size matter?

Larger batches improve GPU utilization but increase memory usage.

```
# Small batch
python3 micro_benchmarking_pytorch.py --network resnet50 --batch-size 8 --iterations 20

# Medium batch (your baseline)
python3 micro_benchmarking_pytorch.py --network resnet50 --batch-size 32 --iterations 20

# Large batch
python3 micro_benchmarking_pytorch.py --network resnet50 --batch-size 128 --iterations 20

# Very Large batch (might 00M!)
python3 micro_benchmarking_pytorch.py --network resnet50 --batch-size 256 --iterations 20
```

Create a quick comparison table:

Batch Size	Throughput (samples/sec)	Memory (MB)	Samples/sec per GB
8	?	?	?
32	516.1	4523	0.114
128	?	?	?
256	OOM or ?	?	?

What do you observe?

- Throughput increases with batch size... but not linearly
- Memory increases with batch size
- There's a sweet spot for efficiency

Exercise: Precision Comparison (FP32 vs FP16)

Objective

Compare FP32 (32-bit floating point) vs FP16 (16-bit floating point) precision.

What you'll learn:

- What FP16 is and why it matters
- Performance benefits of reduced precision
- Memory savings from FP16
- When to use FP16 vs FP32

What is FP16?

Floating Point Precision:

FP32 (Float32): 32 bits = 1 sign + 8 exponent + 23 mantissa

Range: $\pm 1.4 \times 10^{-45}$ to $\pm 3.4 \times 10^{38}$

Precision: ~7 decimal digits

FP16 (Float16): 16 bits = 1 sign + 5 exponent + 10 mantissa

Range: $\pm 6.0 \times 10^{-8}$ to $\pm 6.5 \times 10^{4}$ Precision: ~3 decimal digits

Analyzing the Results

Let's compare FP32 vs FP16:

Create a comparison table:

Metric	FP32	FP16	Improvement
Throughput (samp/s) Memory (MB) Time per batch (ms) Numerical accuracy	516.1 4523 62.0 Full	1032.3 2834 31.0 Reduced	2.00x faster 37% less 2.00x faster

Exercise: Precision Comparison (FP32 vs FP16)

Benefits of FP16:

- 2x less memory (16 bits vs 32 bits)
- 2x more data per memory transaction
- 2-4x faster compute (specialized hardware)
- Lower power consumption

Drawbacks of FP16:

- Lower precision (can cause numerical issues)
- Smaller range (risk of overflow/underflow)
- Requires careful model design

For inference: FP16 is usually safe and recommended!

Running FP32 Baseline (Repeat)

First, let's re-run FP32 to have a fresh comparison:

```
python3 micro_benchmarking_pytorch.py \
    --network resnet50 \
    --batch-size 32 \
    --iterations 20 \
    --fp16 0
```

Running FP16 Benchmark

Now let's run with FP16:

```
python3 micro_benchmarking_pytorch.py \
    --network resnet50 \
    --batch-size 32 \
    --iterations 20 \
    --fp16 1
```

Exercise: Precision Comparison (FP32 vs FP16)

Why is it faster?

- Less Memory Traffic:
 - FP16 tensor: half the size
 - Loading weights from memory: 2x faster
 - Writing activations: 2x faster
- Specialized Hardware:
 - AMD MI200/MI300: Matrix Core FP16 instructions
 - 2-4x higher TFLOPS for FP16 vs FP32
- Cache Efficiency:
 - More data fits in L2 cache
 - Fewer cache misses

Exercise 3: Combining precision and profiling PyTorch Profiler Integration

Running with PyTorch Profiler

Let's modify our benchmark to use the profiler.

```
python3 micro_benchmarking_pytorch.py \
    --network resnet50 \
    --batch-size 32 \
    --iterations 10 \
    --fp16 0 \
    --autograd-profiler
```

Comparing FP32 vs FP16 Profiling

Let's profile both precisions:

```
# FP32
python3 micro_benchmarking_pytorch.py --network
resnet50 --batch-size 32 --iterations 10 --fp16
0 --autograd-profiler > profile_fp32.txt

# FP16
python3 micro_benchmarking_pytorch.py --network
resnet50 --batch-size 32 --iterations 10 --fp16
1 --autograd-profiler > profile_fp16.txt
```

Understanding the output

You'll see LOTS of output! Let's focus on key sections:

Ton 10 openations by tota	CDU +imo.		
Top 10 operations by tota			
Name	Self CPU %		CPU total
aten::convolution	5.23%	128.45ms 52.75ms	
aten::batch_norm	2.15%	52.75ms	1.32s
aten::relu_	1.87%	45.91ms	45.91ms
aten::max_pool2d	0.95%	23.32ms	67.45ms
aten::addmm	0.78%	23.32ms 19.15ms	
aten::linear	0.65%	15.95ms	
aten::add_	0.52%	12.78ms	12.78ms
aten::_convolution	4.87%	119.55ms	8.40s
	78.23%	1.92s	1.92s
aten::cudnn_convolution Top 10 operations by tota	CUDA time:		
Top 10 operations by tota	l CUDA time: Self CUDA	CUDA total	
Top 10 operations by tota Name void cudnn::detail::impli	l CUDA time: Self CUDA cit_convolve_sger	nm 1.82s	
Top 10 operations by tota Name void cudnn::detail::impli void cudnn::bn_fw_tr_1C11	Cit_convolve_sger	nm 1.82s 234.56m	1.82s
Top 10 operations by tota Name void cudnn::detail::impli	CUDA time: Self CUDA Cit_convolve_sger Device)	nm 1.82s 234.56m: 145.32m:	1.82s s 234.56ms s 145.32ms
Top 10 operations by tota	CUDA time: Self CUDA cit_convolve_sger Device) ed_elementwise	nm 1.82s 234.56m: 145.32m:	1.82s s 234.56ms
Top 10 operations by tota Name void cudnn::detail::impli void cudnn::bn fw tr 1C11 Memcpy HtoD (Pageable -> void at::native::vectoriz	Cit_convolve_sger Device) ed_elementwise	nm 1.82s 234.56m: 145.32m:	1.82s s 234.56ms s 145.32ms
Top 10 operations by tota Name void cudnn::detail::impli void cudnn::bn_fw_tr_1C11 Memcpy HtoD (Pageable -> void at::native::vectoriz void cudnn::ops::nchwToNh Memory Profiling:	CUDA time: Self CUDA cit_convolve_sger Device) ed_elementwise	nm 1.82s 234.56m: 145.32m:	1.82s s 234.56ms s 145.32ms
Top 10 operations by tota Name void cudnn::detail::impli void cudnn::bn fw_tr_1C11 Memcpy HtoD (Pageable -> void at::native::vectoriz void cudnn::ops::nchwToNh	CPU Mem	1.82s 234.56m 145.32m 89.45ms 67.23ms	1.82s s 234.56ms s 145.32ms 89.45ms 67.23ms
Top 10 operations by tota Top 10 operations by tota Name void cudnn::detail::impli void cudnn::bn_fw_tr_1C11 Memcpy HtoD (Pageable -> void at::native::vectoriz void cudnn::ops::nchwToNh Memory Profiling:	1 CUDA time: Self CUDA cit_convolve_sger Device) ed_elementwise wc	1.82s 234.56m 145.32m 89.45ms 67.23ms	1.82s s 234.56ms s 145.32ms 89.45ms 67.23ms
Top 10 operations by tota Name void cudnn::detail::impli void cudnn::bn fw_tr_1C11 Memcpy HtoD (Pageable -> void at::native::vectoriz void cudnn::ops::nchwToNh Memory Profiling:	1 CUDA time: Self CUDA cit_convolve_sger Device) ed_elementwise wc	1.82s 234.56m 145.32m 89.45ms 67.23ms	1.82s s 234.56ms s 145.32ms 89.45ms 67.23ms
Top 10 operations by tota Top 10 operations by total Top 10 operations by top 10 operations by total Top 10 operations by top 10 operations by total Top 10 operations	1 CUDA time: Self CUDA cit_convolve_sger Device) ed_elementwise wc	1.82s 234.56m 145.32m 89.45ms 67.23ms	1.82s s 234.56ms s 145.32ms 89.45ms 67.23ms

Exercise: DeepSpeed FLOPS Profiler

Objective

Measure computational efficiency using DeepSpeed FLOPS Profiler.

What you'll learn:

- What FLOPs are and why they matter
- Theoretical vs achieved FLOPS
- Computational efficiency
- Identifying compute vs memory-bound operations

What are FLOPs?

FLOPS = Floating Point Operations Per Second Key concepts:

- Operation Count:
 - Total floating-point operations in your model
 - Example: Matrix multiply (M×K) × (K×N) = 2×M×K×N FLOPs
- Theoretical Peak:
 - Maximum FLOPs your hardware can achieve
 - MI325X: ~653 TFLOPS (FP16), ~326 TFLOPS (FP32)
- Achieved FLOPs:
 - What your model actually achieves
 - Usually much lower than peak!
- Efficiency:
 - (Achieved / Theoretical) × 100%
 - 50%+ is very good!
 - 10-20% is typical for many workloads

Exercise: DeepSpeed FLOPS Profiler

Why Measure FLOPs?

FLOPs efficiency tells you:

- Are you **compute-bound** or **memory-bound**?
 - High efficiency (>40%): Compute-bound (good!)
 - Low efficiency (<20%): Memory-bound (need optimization!)
- How much headroom for optimization?
 - At 10% efficiency: 10x speedup possible!
 - At 80% efficiency: Already well-optimized
- Hardware utilization:
 - Are you getting value from your expensive GPU?

Step 2: DeepSpeed FLOPSProfiler Integration

- Benchmark Integration
- Micro-benchmark Usage
 - Key Metrics
 - Total FLOPS: Theoretical peak compute
 - Achieved FLOPS: Measured throughput
 - Efficiency: (Achieved / Theoretical) × 100%
 - Bottleneck identification: Compute vs. memory bound
- To profile with DeepSpeed FLOPSProfiler

```
python micro_benchmarking_pytorch.py \
   --network resnet50 \
   --amp-opt-level=2 \
   --batch-size=256 \
   --flops-prof-step 10
```

```
from deepspeed.profiling.flops_profiler import FlopsProfiler

prof = FlopsProfiler(model)
prof.start_profile()
outputs = model(inputs)
prof.stop_profile()
prof.print_model_profile(profile_step=1)
```

https://www.deepspeed.ai/tutorials/flops-profiler/

Exercise: DeepSpeed FLOPS Profiler

Understanding Compute vs Memory Bound

```
Compute-bound:
- Lots of arithmetic operations
- GPU cores fully utilized
- Examples: Matrix multiply, convolutions with large kernels
- Optimization: Use faster compute (FP16, Tensor Cores)

Memory-bound:
- Lots of memory reads/writes
- Memory bandwidth saturated
- Examples: Element-wise operations, small convolutions, attention
- Optimization: Reduce memory traffic (fusion, better layouts)
```

Install DeepSpeed

```
# Install DeepSpeed
pip install deepspeed
```

Run with FLOPS profiler

```
python3 micro_benchmarking_pytorch.py \
    --network resnet50 \
    --batch-size 32 \
    --iterations 20 \
    --fp16 0 \
    --flops-prof-step 10
```

Note: --flops-prof-step 10 means profile at iteration 10 (after warmup)

Workshop Summary & Key Takeaways

Core Workshop Philosophy: The Optimization Cycle

- Measure → Analyze → Optimize → Validate (then repeat)
- Never optimize blindly always profile first
- Validation ensures correctness and confirms improvements

Optimization Techniques Demonstrated

- Precision optimization: FP16 provides ~2x speedup + 37% memory reduction with minimal accuracy impact
- Batch size tuning: Balance between throughput and memory find the sweet spot
- torch.compile: Nearly free performance gains through graph optimization
- Multi-GPU scaling: Use torchrun for distributed inference

Key Findings from Exercises

- Modern Al workloads typically run at 10-20% of theoretical hardware performance
- First iteration is always slow (kernel compilation, memory allocation, cache warming)
- FP16 delivers 2-4x faster compute due to specialized Matrix Core hardware
- Convolution operations dominate ResNet50 execution time (~80% of GPU time)
- Memory-bound operations need fusion and layout optimization, not faster compute

Common Pitfalls to Avoid

- X Optimizing without profiling (wasted effort)
- X Ignoring numerical accuracy validation
- X Over-optimizing operations that contribute <5% to total runtime
- X Hardware-specific tuning before algorithmic optimization

Actionable Next Steps

- Establish baseline: Profile your model with PyTorch Profiler + DeepSpeed
- Identify bottlenecks: Check if compute-bound or memorybound
- Apply low-hanging fruit: Enable FP16, torch.compile, optimal batch size
- Target hotspots: Focus optimization on operations taking >10% of runtime
- Validate everything: Compare outputs, measure improvements, document results
- **Iterate**: Re-profile after each change to confirm improvements

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED 'AS IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY CONTENT IS PROVIDED "AS IS" WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR SOLE DISCRETION AND UNDER NO CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR ANY DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD CDNA, AMD ROCm, AMD Instinct, and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of their respective owners.

LLVM is a trademark of LLVM Foundation

Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git Project, in the United States and/or other countries

OpenCL is a trademark of Apple Inc. used by permission by Khronos Group, Inc.

Intel® is a trademark of Intel Corporation or its subsidiaries

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board

#