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What is Inferencing?

Inference is the process of using a trained neural network to make predictions on new data.

Key Differences from Training:

Aspect Training Inference
Purpose Learn patterns from data Make predictions
Direction Forward + Backward pass Forward pass only
Gradients Required Not required
Batch size Usually Larger Often smaller

Performance Goal Throughput (samples/sec) Latency (ms/sample) AND
throughout

Memory Usage High (stores activations) Lower (no gradient storage)

Why Benchmark Inference?

*Optimize for production deployment
*Understand hardware utilization
*Compare different models

«Justify hardware purchases
+ldentify bottlenecks
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Workshop Mission Statement

Challenge
Modern Al workloads run at 10-20% of theoretical hardware
performance

Our goal
Increase samples per second
Reduce memory usage
Reduce number of kernels (fuse kernels)

What you'll learn
Workshop Philosophy: Optimization Cycle
Measure — Analyze — Optimize — Validate
Master the complete optimization toolkit: profiling — analysis —
optimization — validation
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Key Performance Metrics Explained

Throughput (samples/sec or tokens/sec)
Latency (milliseconds)

Memory Usage (MB or GB)

Kernel Count (launches per iteration)
Memory Bandwidth Utilization (%)
Arithmetic Intensity (FLOPs/byte)

GPU Occupancy (%)

FLOPS Efficiency (%)

Common Pitfalls and Workshop Guardrails
Pitfall 1: Optimizing without profiling
Pitfall 2: Ignoring numerical accuracy
Pitfall 3: Over-optimizing small operations
Pitfall 4: Hardware-specific tuning too early
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Profiling Ecosystem Overview

PyTorch Profiler
Operator execution time breakdown
CPU/GPU timeline visualization
Memory allocation tracking
Chrome trace export for detailed analysis
DeepSpeed FLOPSProfiler
FLOPS per layer (theoretical vs. achieved)
MACs (multiply-accumulate operations)
Parameter counts and activation memory
Model efficiency percentage
ROCm Micro-benchmarking
Standard model baselines for comparison
Multi-precision performance characterization
Multi-GPU scaling validation
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Introduction to Hands-on Exercises
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Step 0: Environment Setup - Installation verification

Get a node with a GPU
salloc -N 1 --gpus=2 --cpus=8
Check ROCm

rocminfo | grep "Name:" # Should show your GPU

If you see an error check if ROCm is installed
which rocminfo

check GPU Status
rocm-smi
Expected Output:

GPU[0] :GPU ID: 0GPU[0] : GPU Name: AMD Instinct MI325XGPU[0] : Temperature: 35.0°CGPU[0] : GPU
Memory Usage: 256 MB / 196608 MBGPUI[0] : GPU Utilization: 0

If not found, ROCm is not installed (contact system admin)
Check PyTorch + ROCm
python -c "import torch; print(torch. __ version__); print(torch.cuda.is_available())"

Expected Output:
2.7.1+4rocm6.4.4, True

Check Triton
python -c "import triton; print(triton.__ version )"

See hands-on exercises instructions at

HPCTrainingExamples/MLExamples/inferen
ce_benchmark/INFERENCE_ BENCHMARK.md
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Workshop Integration and Workflow

. e . — ]
Benchmark-Driven Optimization Cycle | 1. MEASURE: Profile baseline performance |
Performance Analysis Workflow I Zﬁi;st P)E/TZZCQZEO?;EZ xﬁgipeegmps i
. . . \ . ut: Executi1 1 R Y,
Establish baseline: Standard model (ResNet50) with default configuration e —— T 1
Parameter sweep: Batch size, precision, optimization flags !
Identify bottlenecks: ROCm profiler integration, kernel analysis . '
L ) o | 2. ANALYZE: Identify bottlenecks |
Apply op_tlmlzatlons: MIOpen tuning, graph compilation, custom kernels | Tools: ROCprof-compute, roofline |
Validate improvements: Re-benchmark, compare against baseline | Output: Compute vs memory bound |
A |

Document results: Performance database, optimization log I
r——  — - ]
| 3. OPTIMIZE: Apply targeted optimizations |
| Techniques: Fusion, custom kernels |
| Tools: Triton, PyTorch optimizations |
I——]_ - 1

!
- - 1
| 4. VALIDATE: Measure improvement |
| Check: Speedup, correctness, stability |
| Tools: Numerical accuracy validation |
I—_I——I

!

Repeat until optimal
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Step 1: PyTorch Profiler Integration Rl Gr s

activities=[
torch.profiler.ProfilerActivity.CPU,

B . U P tt Works on ROCm (CUDAAP| torch.profiler.ProfilerActivity.CUDA,
dSIC Usage ratiern ibili 15
g . Compatlblhty) record_shapes=True,
OUtPUt Metrics profile_memory=True,
Kernel execution time (microseconds) ) as prof:
Memory bandwidth utilization model (inputs)

Operator call counts
Tensor shapes and memory footprint

Start with running the benchmark

print(prof.key_averages().table(
sort_by="cuda_time_total", row_limit=10))

python3 micro_benchmarking_pytorch.py \ --network resnet50 # Model to benchmark --batch-size 64 e
Number of samples per batch --iterations 20 # Number of iterations to run
Profiling Argument - Add optional arguments
--autograd-profiler # Enable PyTorch autograd profiler
--kineto # Enable Kineto profiler (PyTorch 1.8+)
--flops-prof-step 10 # Enable DeepSpeed FLOPS profiler at step 10

Multi-GPU Arguments -- Using torchrun
torchrun --nproc-per-node 2 micro_benchmarking pytorch.py --network resnet5o

PyTorch 2.0 Argument — optimizes a computational graph for additional performance (almost for free)
--compile # Enable torch.compile
--compileContext "{'mode': 'max-autotune'}" # Compilation options

See https://pytorch.org/tutorials/recipes/recipes/profiler recipe.html
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https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html

Understanding Output
When you run the benchmark, you'll see output like this:

Why is the first iteration slow?
Using network: resnetse « Kernel compilation (Triton, ROCm)
Batch size: 64 * GPU memory allocation
Iterations: 20 . Cache Warming
FP16: False .

*  cuDNN/MIOpen autotuning

Warming up...
Warmup complete.

Epoch @0: Loss = 6.9088, Time = 0.145 seconds .
Epoch 1: Loss = 6.9088, Time = 0.042 seconds .
Epoch 2: Loss = 6.9088, Time = 0.041 seconds « stable

Epoch 19: Loss = 6.9088, Time = 0.040 seconds

Average time per iteration: 0.041 seconds
Throughput: 1560.9 samples/sec
Memory usage: 4523 MB
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Understanding Key Metrics

Before we begin the exercises, let's understand what we're measuring:
Throughput (samples/sec or images/sec)

What: Number of samples processed per second

Higher is better

Use case: Batch inference, data center deployments

Formula: (batch_size x num_iterations) / total time

Latency (milliseconds)
What: Time to process a single sample or batch
Lower is better
Use case: Real-time applications, interactive systems
Formula: total time / num_iterations
Memory Usage (MB or GB)
What: GPU memory consumed by model and data
Lower is better (allows larger batches)
Includes: Model weights, activations, gradients (if training)
GPU Utilization (%)
What: Percentage of GPU compute used
Higher is better (approaching 100%)

Note: Can be low if memory-bound or CPU-bound
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Memory Usage (MB or GB)

What: GPU memory consumed by model and data

Lower is better (allows larger batches)

Includes: Model weights, activations, gradients (if training)
GPU Utilization (%)

What: Percentage of GPU compute used

Higher is better (approaching 100%)

Note: Can be low if memory-bound or CPU-bound
FLOPS (Floating Point Operations Per Second)
What: Computational throughput
Higher is better

Theoretical vs Achieved: Gap indicates optimization opportunity
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Optional: Try Different Batch Sizes

Why does batch size matter?

Larger batches improve GPU utilization but increase memory usage.

# Small batch
python3 micro_benchmarking pytorch.py --network resnet50 --batch-size 8 --iterations 20

# Medium batch (your baseline)
python3 micro_benchmarking_ pytorch.py --network resnet50 --batch-size 32 --iterations 20

# Large batch
python3 micro_benchmarking pytorch.py --network resnet50 --batch-size 128 --iterations 20

# Very large batch (might OOM!)
python3 micro_benchmarking pytorch.py --network resnet50 --batch-size 256 --iterations 20

Create a quick comparison table: What do you observe?

. *  Throughput increases with batch size... but not linearly
Batch Size Throughput Memory (MB) Samples/sec «  Memory increases with batch size

(samples/sec) per GB «  There's a sweet spot for efficiency
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Exercise: Precision Comparison (FP32 vs FP16)

Objective

Compare FP32 (32-bit floating point) vs FP16 (16-bit floating point) precision.
What you'll learn:

. What FP16 is and why it matters

. Performance benefits of reduced precision

. Memory savings from FP16

. When to use FP16 vs FP32

What is FP16?

Floating Point Precision:

FP32 (Float32): 32 bits = 1 sign + 8 exponent + 23 mantissa
Range: *1.4 x 10745 to *3.4 x 1038
Precision: ~7 decimal digits

FP16 (Floatl6): 16 bits = 1 sign + 5 exponent + 10 mantissa
Range: 6.0 x 10~8 to #6.5 x 104
Precision: ~3 decimal digits

Analyzing the Results
Let's compare FP32 vs FP16:
Create a comparison table:

- ‘ ————/70/71//—/—/—// v/ 1
| Metric | FP32 | FP16 | Improvement |

| Throughput (samp/s) | 516.1 | 1032.3 | 2.00x faster |

| Memory (MB) | 4523 | 2834 | 37% less |
| Time per batch (ms) | 62.0 | 31.0 | 2.00x faster |
Numerical accuracy Full Reduced -
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Exercise: Precision Comparison (FP32 vs FP16)

Benefits of FP16:

. 2x less memory (16 bits vs 32 bits)

. 2x more data per memory transaction

. 2-4x faster compute (specialized hardware)

. Lower power consumption

Drawbacks of FP16:

. Lower precision (can cause numerical issues)
. Smaller range (risk of overflow/underflow)

. Requires careful model design

For inference: FP16 is usually safe and recommended!

Running FP32 Baseline (Repeat)
First, let's re-run FP32 to have a fresh comparison:

python3 micro_benchmarking_pytorch.py \
--network resnet50 \
--batch-size 32 \

--iterations 20 \
--fpl6 @

Running FP16 Benchmark
Now let's run with FP16:

python3 micro_benchmarking_pytorch.py \
--network resnet50 \

--batch-size 32 \
--iterations 20 \
--fpl6 1
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Exercise: Precision Comparison (FP32 vs FP16)

Why is it faster?
* Less Memory Traffic:
» FP16 tensor: half the size
« Loading weights from memory: 2x
faster
« Writing activations: 2x faster
« Specialized Hardware:
« AMD MI200/MI300: Matrix Core
FP16 instructions
« 2-4x higher TFLOPS for FP16 vs
FP32
« Cache Efficiency:
* More data fits in L2 cache
« Fewer cache misses
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Exercise 3: Combining precision and profiling PyTorch Profiler Integration

Running with PyTorch Profiler

Let's modify our benchmark to use the profiler.

python3 micro_benchmarking_pytorch.py \
--network resnet50 \
--batch-size 32 \

--iterations 10 \
--fpl6 @ \
--autograd-profiler

Comparing FP32 vs FP16 Profiling

Let's profile both precisions:

# FP32

python3 micro_benchmarking_pytorch.py --network
resnet50 --batch-size 32 --iterations 10 --fpl6
0 --autograd-profiler > profile_fp32.txt

# FP16

python3 micro_benchmarking_pytorch.py --network
resnet50 --batch-size 32 --iterations 10 --fpl6
1 --autograd-profiler > profile_fpl6.txt
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Understanding the output

You'll see LOTS of output! Let's focus on key sections:

::convolution

: :batch_norm
tirelu_

: :max_pool2d

: :addmm

::linear

tiadd_
::_convolution

: :cudnn_convolution

void cudnn::bn_fw_tr_1C11...

Memcpy HtoD (Pageable -> Device)

void at::native: ctorized_elementwise...
void cudnn::ops:

::convolution
: :batch_norm

tirelu_

: :max_pool2d

AMD @ CASTIEL Al Workshop
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Exercise: DeepSpeed FLOPS Profiler

Objective

Measure computational efficiency using DeepSpeed FLOPS Profiler.
What you'll learn:

What FLOPs are and why they matter

. Theoretical vs achieved FLOPS

. Computational efficiency

. Identifying compute vs memory-bound operations

What are FLOPs?
FLOPS = Floating Point Operations Per Second
Key concepts:
. Operation Count:
. Total floating-point operations in your model
. Example: Matrix multiply (MxK) x (KxN) = 2xMxKxN FLOPs
. Theoretical Peak:
. Maximum FLOPs your hardware can achieve
. MI325X: ~653 TFLOPS (FP16), ~326 TFLOPS (FP32)
. Achieved FLOPs:
. What your model actually achieves
. Usually much lower than peak!
. Efficiency:
. (Achieved / Theoretical) x 100%
. 50%+ is very good!
. 10-20% is typical for many workloads
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Exercise: DeepSpeed FLOPS Profiler

Why Measure FLOPs?

FLOPs efficiency tells you:
*  Are you compute-bound or memory-bound?
. High efficiency (>40%): Compute-bound (good!)
+  Low efficiency (<20%): Memory-bound (need optimization!)
*  How much headroom for optimization?
At 10% efficiency: 10x speedup possible!
+ At 80% efficiency: Already well-optimized
. Hardware utilization:
*  Are you getting value from your expensive GPU?
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Step 2: DeepSpeed FLOPSProfiler Integration

Benchmark Integration

Micro-benchmark Usage from deepspeed.profiling.flops_profiler import FlopsProfiler
Key Metrics _ prof = FlopsProfiler(model)
Total FLOPS: Theoretical peak compute prof.start_profile()
Achieved FLOPS: Measured throughput outputs = model(inputs)

Efficiency: (Achieved / Theoretical) x 100% B el shofile(profile stepet)
Bottleneck identification: Compute vs. memory bound - - -

To profile with DeepSpeed FLOPSProfiler
python micro_benchmarking pytorch.py \
--network resnet50 \
--amp-opt-level=2 \
--batch-size=256 \
--flops-prof-step 10

https://www.deepspeed.ai/tutorials/flops-profiler/
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Exercise: DeepSpeed FLOPS Profiler

Understanding Compute vs Memory Bound

Compute-bound:

- Lots of arithmetic operations

- GPU cores fully utilized

- Examples: Matrix multiply, convolutions with
large kernels

- Optimization: Use faster compute (FP16, Tensor
Cores)

Memory-bound:

- Lots of memory reads/writes

- Memory bandwidth saturated

- Examples: Element-wise operations, small
convolutions, attention

- Optimization: Reduce memory traffic (fusion,
better layouts)

Install DeepSpeed
# Install DeepSpeed
pip install deepspeed

Run with FLOPS profiler

python3 micro_benchmarking_pytorch.py \
--network resnet50 \
--batch-size 32 \

--iterations 20 \
--fpl6 0 \
--flops-prof-step 10

Note: --flops-prof-step 10 means profile at
iteration 10 (after warmup)
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Workshop Summary & Key Takeaways

Core Workshop Philosophy: The Optimization Cycle

Measure — Analyze — Optimize — Validate (then repeat)
Never optimize blindly - always profile first

Validation ensures correctness and confirms improvements

Optimization Techniques Demonstrated

Precision optimization: FP16 provides ~2x speedup + 37% memory reduction with minimal accuracy impact

Batch size tuning: Balance between throughput and memory - find the sweet spot
torch.compile: Nearly free performance gains through graph optimization

Multi-GPU scaling: Use torchrun for distributed inference

Key Findings from Exercises

Modern Al workloads typically run at 10-20% of theoretical hardware performance
First iteration is always slow (kernel compilation, memory allocation, cache warming)
FP16 delivers 2-4x faster compute due to specialized Matrix Core hardware

Convolution operations dominate ResNet50 execution time (~80% of GPU time)

Memory-bound operations need fusion and layout optimization, not faster compute

Common Pitfalls to Avoid
X Optimizing without profiling (wasted effort)

X Ignoring numerical accuracy validation
X Over-optimizing operations that contribute <5% to total runtime

X Hardware-specific tuning before algorithmic optimization

Oct 13-16, 2025
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Actlonable Next Steps

Establish baseline: Profile your model with PyTorch
Profiler + DeepSpeed

Identify bottlenecks: Check if compute-bound or memory-
bound

Apply low-hanging fruit: Enable FP16, torch.compile,
optimal batch size

Target hotspots: Focus optimization on operations taking
>10% of runtime

Validate everything: Compare outputs, measure
improvements, document results

Iterate: Re-profile after each change to confirm
improvements
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Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The
information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes,
component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS
flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes
no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to
time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF

AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD
SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE.
IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES
ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY CONTENT IS
PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR SOLE DISCRETION AND UNDER
NO CIRCUMSTANCES WILLAMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR
ANY DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD CDNA, AMD ROCm, AMD Instinct, and combinations thereof are
trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be
trademarks of their respective owners.

LLVM is a trademark of LLVM Foundation

Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git Project, in the United States
and/or other countries

OpenCL is a trademark of Apple Inc. used by permission by Khronos Group, Inc.

Intel® is a trademark of Intel Corporation or its subsidiaries

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board
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