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Overview: AI application profiling

• AI application’s complex multi-layer structure complicates profiling and understanding performance

• Python top-level

• Underlying libraries in C/C++/Fortran

• Heavy reliance on GEMMs (matrix multiplication libraries)

• Both cross-node and intra-node communication

• Memory requirements

• I/O for processing large data sets

• Different parts of an AI application require different tools for performance analysis and optimization

Oct 13-16, 2025 AMD @ CASTIEL AI Workshop
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Profiling Tools: From Simplest to the most Advanced

• PyTorch profiler – built-in to PyTorch, operator-level performance analysis​

• Works on AMD MI300 accelerators

• rocprofv3 (AMD) – collects data from hardware counters on AMD Instinct GPUs

• Can display kernel runtimes and a timeline view of the operations on the GPU

• ROCm Systems Profiler (AMD) – a timeline trace collection tool showing GPU + CPU activity

• rocprof-sys collects data from a wide array of profiling sources and displays them all together in one view

• ROCm Compute Profiler (AMD) – focusing on detailed GPU kernel performance analysis

• Can profile and analyze performance metrics of individual kernels running on the GPU

Oct 13-16, 2025 AMD @ CASTIEL AI Workshop
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Example Problem: Train CIFAR100

• Train a classifier on CIFAR-100 data

    for epoch in range(args.max_epochs):

       for i, (source, targets) in enumerate(train_data):

          opt.zero_grad()

          with precision_context:

                 output = model(source)

                 logits = output["logits"]

                 loss = criterion(logits, targets)

          accuracy = (torch.argmax(logits, axis=-1) == targets).to(torch.float32).mean()

          if args.precision == "automixed":

                 scaler.scale(loss).backward()

                 scaler.step(opt)

                 scaler.update()

          else:

                 loss.backward()

                 opt.step()

• Example in HPCTrainingExamples/MLExamples/PyTorch_Profiling

Oct 13-16, 2025 AMD @ CASTIEL AI Workshop
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Repository Organization

• README.md contains complete description of how to run the exercises

• train_cifar_100.py main script that trains CIFAR100

• download-data.sh utility script for downloading the required input data, run it once in the beginning

• setup.sh utility script for loading the right modules (rocm and pytorch)

• 5 exercises in separate directories with READMEs and helper scripts calling train_cifar_100.py:

1. no-profiling

2. torch-profiler

3. rocprofv3

4. rocm-systems-profiler

5. rocm-compute-profiler

Oct 13-16, 2025 AMD @ CASTIEL AI Workshop
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train_cifar_100.py Script

-h, --help        show this help message and exit

 --data-path DATA_PATH, -dp DATA_PATH # default=“data/”

                        Top level data storage

  --batch-size BATCH_SIZE, -bs BATCH_SIZE # default=“256”

                        Batch size per rank

 --download-only # disabled by default

 --precision {float32,automixed,bfloat16} # default=“automixed”

 --max-epochs MAX_EPOCHS # default=“1”

                        Number of epochs (maximum) to run. Ignored if max_steps is set and is reached first.

 --max-steps MAX_STEPS, -ms MAX_STEPS # default=“20”

                        Maximum number of steps to run for profiling

 --torch-profile # disabled by default

         Activate the pytorch profiler

 --model {resnet,swinv2,vit} # default=“resnet”

                        Vision classification model to use

Oct 13-16, 2025 AMD @ CASTIEL AI Workshop
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Setup

• Set environment variables
export PROFILER_TOP_DIR=$PWD

export MASTER_ADDR=`hostname`

export MASTER_PORT=1234

• OpenMPI will set the following

• OMPI_COMM_WORLD_RANK; for serial do export OMPI_COMM_WORLD_RANK=0

• OMPI_COMM_WORLD_SIZE; for serial do export OMPI_COMM_WORLD_SIZE=1

• Slurm will set the following

• SLURM_PROCID

• SLURM_NPROCS

• Environment setup via modules

• module load rocm pytorch # pytorch module automatically loads openmpi

• Get data (only once, but on a compute node)

• ./download-data.sh # Calls python3 train_cifar_100.py --download-only --data-path data

Oct 13-16, 2025 AMD @ CASTIEL AI Workshop
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Running Example

• Run one of the bash scripts (e.g., ./single_process.sh) or simply do:

• python3 train_cifar_100.py

• Expected output (performance greatly depends on the underlying hardware and software stack

Namespace(data_path='data', batch_size=512, download_only=False, precision='automixed', max_epochs=1, max_steps=20, 
torch_profile=False, model='resnet’)
0 / 0: loss 5.00, acc 0.39%, images / second / gpu: 564.89.
0 / 1: loss 5.06, acc 0.00%, images / second / gpu: 11532.09.
0 / 2: loss 5.02, acc 0.00%, images / second / gpu: 13469.08.
0 / 3: loss 5.07, acc 1.95%, images / second / gpu: 13489.73.
0 / 4: loss 4.92, acc 1.95%, images / second / gpu: 4789.11.
0 / 5: loss 5.70, acc 1.17%, images / second / gpu: 10993.46.
0 / 6: loss 5.66, acc 1.17%, images / second / gpu: 12273.44.
0 / 7: loss 5.45, acc 1.95%, images / second / gpu: 12632.55.
0 / 8: loss 5.27, acc 1.56%, images / second / gpu: 12162.64.
0 / 9: loss 5.26, acc 1.95%, images / second / gpu: 12356.06.
0 / 10: loss 5.41, acc 1.17%, images / second / gpu: 12972.44.
0 / 11: loss 5.22, acc 1.56%, images / second / gpu: 12873.21.
0 / 12: loss 5.27, acc 0.39%, images / second / gpu: 13010.79.
0 / 13: loss 5.12, acc 0.39%, images / second / gpu: 12716.79.
0 / 14: loss 5.08, acc 2.34%, images / second / gpu: 12882.02.
0 / 15: loss 5.16, acc 0.39%, images / second / gpu: 12878.00.
0 / 16: loss 4.92, acc 1.17%, images / second / gpu: 12432.17.
0 / 17: loss 5.44, acc 1.56%, images / second / gpu: 12922.48.
0 / 18: loss 4.83, acc 0.78%, images / second / gpu: 12857.34.
0 / 19: loss 4.95, acc 1.95%, images / second / gpu: 13012.37.
0 / 20: loss 4.85, acc 1.56%, images / second / gpu: 12677.30.

Oct 13-16, 2025 AMD @ CASTIEL AI Workshop
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No Profiling (yet): Establishing Baseline

• Enter the right folder (PROFILER_TOP_DIR should still point to the main, parent directory)

• cd no-profiling

• Running the example

• In serial using a single process: ./single_process.sh

• In parallel using multiple MPI ranks (make sure sufficient number of GPUs is allocated): ./mpi.sh

• With Slurm: ./slurm.sh

• Check if code is really running on a GPU at all using rocm-smi or AMD_LOG_LEVEL

• Inspect scaling efficiency by comparing images/second/gpu from serial and parallel runs

• Modify and inspect impact of train_cifar_100.py default argument (e.g., --batch-size, --precision)

• In the following examples, additionally compare profiling outputs of serial vs parallel runs

Oct 13-16, 2025 AMD @ CASTIEL AI Workshop
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PyTorch Profiler: Operator-level Evaluation

• The PyTorch profiler is built into PyTorch and supports AMD GPUs

• In Python programs, the profiler can be used as a context with:

   if args.torch_profile == True:

      from torch.profiler import profile, record_function, ProfilerActivity, schedule

      this_schedule = schedule(skip_first=3, wait=5, warmup=1, active=3,repeat=1)

      profiling_context = profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], record_shapes=True, schedule=this_schedule)

   …

   if args.torch_profile and rank == 0:

      profiling_context.step()

   … 

   if args.torch_profile and rank == 0:

      profiling_context.export_chrome_trace(f"trace_{epoch}_{i}.json")

      print(profiling_context.key_averages(group_by_stack_n=5).table(sort_by="cuda_time_total", row_limit=10))

• Check PyTorch Profiler docs for more info: https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html

• In this training, activate PyTorch profiler with --torch-profile option (specific to train_cifar_100.py)

• Scripts in torch-profiler folder already have it enabled

Oct 13-16, 2025 AMD @ CASTIEL AI Workshop
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PyTorch Profiler: Single Process Example

• Start by running single process example:

• cd torch-profiler

• ./single-process.sh

• At the end of the execution, check profiling summary for the training run:

• Analyze additionally generated timeline trace output trace_0_##.json

• scp aac6:<directory>/trace_0_###.json .

• Open Chrome (or another browser) and enter ui.perfetto.dev in the search field

• Open downloaded trace_0_###.json trace file

Oct 13-16, 2025 AMD @ CASTIEL AI Workshop
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PyTorch Profiler: Analyzing Timeline with Perfetto

Oct 13-16, 2025 AMD @ CASTIEL AI Workshop

Zoom in or 

scroll with the 

keys shown
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AMD Tools for Profiling PyTorch Apps

librocprofiler-sdk library - tracing and profiling infrastructure for developing tools

rocprofv3 
GPU tracing and counter collection

rocprof-sys
GPU and CPU tracing

rocprof-compute
GPU kernel performance analysis
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rocprofv3: Profiling Basic AMD GPU Activity

• rocprofv3 – performance analysis tool for ROCm based applications (single or multi process)​

• Introduced in ROCm 6.2 (successor of rocprof and rocprofv2)

• Main capabilities:​

• GPU Hotspot analysis – identify performance bottlenecks​

• Device activity tracing – visualize HIP, HSA , GPU kernels, and data transfers a GUI​

• Performance counter collection – analyze kernel performance further

• Supports Python and OpenMP® offload profiling​

• Documented at: https://rocm.docs.amd.com/projects/rocprofiler-sdk/en/latest/how-to/using-rocprofv3.html

Oct 13-16, 2025 AMD @ CASTIEL AI Workshop
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rocprofv3: Collecting GPU Hotspots

• rocprofv3 --stats --kernel-trace -- python3 <app with arguments>

• Run rocprofv3 --help to see all available options 

• For profiling examples, either write your own rocprofv3 command or use existing helper scripts:

• cd rocprofv3

• ./kernels.sh # Calls rocprofv3 --stats --kernel-trace --output-directory single_process --
output-file kernels --output-format csv -- python3 ${PROFILER_TOP_DIR}/train_cifar_100.py --
data-path ${PROFILER_TOP_DIR}/data

• Inspect all output files in the directory:

• ls –lrt single_process/

• head single_process/kernels_kernel_stats.csv

Oct 13-16, 2025 AMD @ CASTIEL AI Workshop
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rocprofv3: GPU Kernels Summary

• For a better look at the data, you can download and view csv files in a spreadsheet viewer

• Many different kernels (with many calls) executed on a GPU

• Performance not dominated by a single GPU kernel (all <10%)

Oct 13-16, 2025 AMD @ CASTIEL AI Workshop
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rocprofv3: Profiling Parallel Runs

• Use ./mpi_kernels.sh or ./slurm_kernels.sh

• RCCL/NCCL communication takes majority of the time in the parallel run (unlike single process execution)

Oct 13-16, 2025 AMD @ CASTIEL AI Workshop
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rocprofv3: Generating Timeline Trace

• rocprofv3 --runtime-trace --output-format pftrace -- python3 <app with arguments>

• For profiling examples, either write your own rocprofv3 command or use existing helper scripts:

• ./traces.sh or ./mpi_traces.sh or ./slurm_traces.sh

• Similar to PyTorch Profiler, download traces (with .pftrace extension) and open with Perfetto

• Advanced: if the trace is too large to open in Perfetto use the trace_processor tool

• curl -LO https://get.perfetto.dev/trace_processor

• chmod +x ./trace_processor

• trace_processor --httpd /path/to/trace.pftrace

• # Reload the browser user interface. It will prompt to use the HTTP+RPC interface

Oct 13-16, 2025 AMD @ CASTIEL AI Workshop
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rocprofv3: Visualizing Application Timeline

• Check for compute kernels running on GPUs, their durations and CPU threads that started them

Oct 13-16, 2025 AMD @ CASTIEL AI Workshop
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AMD Tools for Profiling PyTorch Apps

librocprofiler-sdk library - tracing and profiling infrastructure for developing tools

rocprofv3 
GPU tracing and counter collection

rocprof-sys
GPU and CPU tracing

rocprof-compute
GPU kernel performance analysis
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ROCm Systems Profiler (rocprof-sys)​

• Profiling and comprehensive tracing of applications on CPU and GPU​

• Several data collection modes: sampling, dynamic instrumentation, binary rewrite, causal profiling, etc.​

• Collect CPU and GPU metrics​

• Visualization format: protobuf files (.proto) viewed in Perfetto​

• ROCm Systems Profiler for Python support not fully mature but constantly improving

• module load rocm pytorch

• module load rocprofiler-systems

• rocprof-sys-run --profile --trace -- python3 <app with arguments>

• rocprof-sys-sample -c rocprofsys.cfg -- python3 <app with arguments>

Oct 13-16, 2025 AMD @ CASTIEL AI Workshop



23 |

[Public]

rocprof-sys: Typical Workflow

• rocprof-sys documentation: https://rocm.docs.amd.com/projects/rocprofiler-systems/en/latest/index.html

• Python: https://rocm.docs.amd.com/projects/rocprofiler-systems/en/latest/how-to/profiling-python-scripts.html 

• Configuration can be performed in different ways: config file, env variables, command line arguments

• Run-time configuration parameters: https://rocm.docs.amd.com/projects/rocprofiler-systems/en/latest/how-

to/configuring-runtime-options.html

Oct 13-16, 2025 AMD @ CASTIEL AI Workshop

Create run-time config 
(optional, one-time only)

rocprof-sys-avail -G

Instrument binary 
(optional)

rocprof-sys-instrument 
-o app.inst -- <app>

Collect trace

rocprof-sys-run -- 
./app.inst

(or)

mpirun -np 4 rocprof-
sys-run -- ./app.inst
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rocprof-sys: Serial Perfetto Trace

• rocprof-sys-run --profile --trace -- python3 <app with arguments>

• Similar output to rocprofv3, just with potentially more information

Oct 13-16, 2025 AMD @ CASTIEL AI Workshop
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rocprof-sys: Sampling

• rocprof-sys-sample -c rocprofsys.cfg -- python3 <app with arguments>

• By using sample profiling, one can explore call stack

Oct 13-16, 2025 AMD @ CASTIEL AI Workshop
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AMD Tools for Profiling PyTorch Apps

librocprofiler-sdk library - tracing and profiling infrastructure for developing tools

rocprofv3 
GPU tracing and counter collection

rocprof-sys
GPU and CPU tracing

rocprof-compute
GPU kernel performance analysis
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ROCm Compute Profiler (rocprof-compute)

• rocprof-compute: a GPU kernel performance analysis tool added to ROCm with version 6.3​

• Originally (before ROCm 6.3) an AMD Research tool called Omniperf that needed separate install​

• Most notable features:​

• Roofline analysis to quantify performance of GPU kernels based on hardware limits​

• Kernel comparison to quantify improvements and visualize their impact on hardware memory​

• Executes code many times for automatic hardware counter collection providing many derived metrics

• Support for speed of light and memory chart (memory chart available only in GUI)

• ROCm Systems Profiler for Python support not fully mature but constantly improving

• module load rocm pytorch

• module load rocprofiler-compute

• rocprof-compute may have challenges with some non-deterministic AI programs

• Example shown in the slides and exercises should work

• More robust solution under development

Oct 13-16, 2025 AMD @ CASTIEL AI Workshop
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rocprof-compute: Visualize Roofline Models

Oct 13-16, 2025

• rocprof-compute profile --name roofline --roof-only --kernel-names --device 0 -- <app>
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• Profile single process application (runs ~10 times to collect all the counters):

• rocprof-compute profile --no-roof --name cifar_100_single_proc -- <app>

• Analyzed profiled data, focusing on speed-of-light:

• rocprof-compute analyze -p workloads/cifar_100_single_proc/MI* -b 2.1.2 2.1.3 2.1.4 2.1.5

• Compare two rocprof-compute profiles to assess optimization effects

• rocprof-compute analyze -p workloads/exp1/MI300A_A1 -p workloads/exp2/MI300A_A1 -b 7.1.0

How to run rocprof-compute?

Oct 13-16, 2025 AMD @ CASTIEL AI Workshop

Collect profile

rocprof-compute profile 
--name name -- <app>

Analyze profile

rocprof-compute analyze 

-p workloads/name/MI*
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rocprof-compute: Top Kernels Stats

Oct 13-16, 2025 AMD @ CASTIEL AI Workshop

• Top ten kernels stats always shown

• Initialization and copying buffers on top

• Not surprising for this small problem

• Three igemm (integer matrix multiplies) 

operations, two transposes

• Output consistent with rocprofv3
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rocprof-compute: Speed-of-Light Table

• rocprof-compute shows many tables that can help with the performance analysis of an application. 

• Majority of the matrix operations work in BF16/F16, no single/double floating point operations

• FLOPs amount very small indicating that a much bigger problem can be used to occupy GPU

Oct 13-16, 2025 AMD @ CASTIEL AI Workshop
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rocprof-compute: Analyzing Particular Kernel Dispatch

• During analysis phase, get list of hotspots and dispatches:

• rocprof-compute analyze -p workloads/cifar_100_single_proc/MI* --list-stats >& stats.txt

• Find dispatch of kernel you want to analyze, and then analyze only that dispatch:

• rocprof-compute analyze -p workloads/cifar_100_single_proc/MI* --dispatch <N> >& dispatchN.txt

• When specific dispatch is not provided, values shown are averaged over all dispatches of that kernel

Oct 13-16, 2025 AMD @ CASTIEL AI Workshop
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rocprof-compute: Tips

• Filtering by kernel name and metrics during rocprof-compute profile will cut down on profiling time​

• rocprof-compute profile -k “<kernel1>” “<kernel2>” filters two kernel names​

• Surrounding kernel name in quotes allows spaces to appear in your kernel search string​

• rocprof-compute applies wildcard automatically, so only unique kernel names substring required​

• Use a subset of metrics for rocprof-compute profile to reduce the number of profiler runs​

• rocprof-compute profile --block SQ SQC -n <workload name> -- <app>

• rocprof-compute profile --help displays all block strings you can filter by​

• Performance model doc goes over some of the meaning behind lower-level hardware units and metrics​

• MPI/srun support still brittle, safest way is to use node interactively and run only with 1 MPI rank​

• Don’t know where to start? → There are few easy things to check​

• Are all the CUs being used? ​ → If not, more parallelism is required (for most of the cases)​​

• Are all the VGPRs being spilled?​ → Try smaller workgroup sizes​​

• Is the code Integer limited?​ → Try reducing the integer ops, usually in the index calculation

Oct 13-16, 2025 AMD @ CASTIEL AI Workshop
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Conclusion

• Each of the presented tools has a role in understanding AI application performance and how to optimize it

• PyTorch Profiler is a operator-level profiler built into PyTorch 

• rocprofv3 is a CLI based tool for device and runtime API tracing, and raw hardware counter collection​

• rocprof-sys is the comprehensive CPU + GPU tracing tool​

• rocprof-compute is used to study kernel performance via automated counter collection and analysis

Oct 13-16, 2025 AMD @ CASTIEL AI Workshop
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Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The 

information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, 

component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS 

flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated.  AMD assumes no 

obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time 

to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF 

AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD 

SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN 

NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING 

FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD.  ALL LINKED THIRD-PARTY CONTENT IS 

PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND.  USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR SOLE DISCRETION AND UNDER NO 

CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT.  YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR ANY 

DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD CDNA, AMD ROCm, AMD Instinct, and combinations thereof are 

trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of 

their respective owners.
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