
Overview of AI and ML

on AMD GPUs

Presenter: Giacomo Capodaglio

Date: October 13th, 2025

AMD @ CASTIEL

2

[Public]

ML ECOSYSTEM FOR AMD GPUS
SOURCE & BINARY implementations available upstream!

MIOPEN| RCCL | MIVisionX | MIGraphX
 DEEPSPEED | AITemplate | openAI Triton|CuPy | XGBoost | hip-Python

flash-attention | vLLM | bitsandbytes|MPI4Py

AMD @ CASTIELOct 13-16, 2025

3 |

[Public]

What is PyTorch

• PyTorch is a Python package that

provides two high-level features:

➢ Tensor computation (like NumPy)

with strong GPU acceleration

➢ Deep neural networks built on a

tape-based autograd system

• You can reuse your favorite

Python packages such as

NumPy, SciPy, and Cython to

extend PyTorch when needed

AMD @ CASTIEL

source: pytorch github repo

Oct 13-16, 2025

https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch

4 |

[Public]

What is JAX
• JAX is a Python library for

accelerator-oriented array computation

and program transformation, designed

for HPC and large-scale ML

• It can automatically differentiate

native Python and NumPy functions

• It uses the Accelerated Linear Algebra

(XLA) compiler to compile and scale

your NumPy programs on TPUs,

GPUs, and other hardware

accelerators

• It is a research project, not an official

Google product. Expect sharp edges

AMD @ CASTIEL

source: jax github repo source: thinking_in_jax

Oct 13-16, 2025

https://openxla.org/xla
https://github.com/jax-ml/jax
https://github.com/jax-ml/jax
https://github.com/jax-ml/jax

5 |

[Public]

What is TensorFlow
• TensorFlow is an end-to-end open-source

platform for machine learning

• It has a comprehensive, flexible

ecosystem of tools, libraries, and

community resources to easily build

and deploy ML-powered applications

• TensorFlow was originally developed by

researchers and engineers working within

the Machine Intelligence team at Google

Brain

• It provides stable Python and C++ APIs,

as well as a non-guaranteed backward

compatible API for other languages.

AMD @ CASTIEL

source: tensorflow github repo source: tensorflow_tutorials

Oct 13-16, 2025

https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/tensorflow
https://www.tensorflow.org/tutorials/

6 |

[Public]

What is ONNX
• Open Neural Network Exchange (ONNX)

provides an open source format for AI

models, both for deep learning and

traditional ML.

• It defines an extensible computation

graph model, as well as definitions of

built-in operators and standard data

types.

AMD @ CASTIEL

source: onnx github repo source: onnx_documentation

Oct 13-16, 2025

https://github.com/onnx/onnx
https://github.com/onnx/onnx
https://github.com/onnx/onnx
https://onnx.ai/onnx/intro/concepts.html

7 |

[Public]

What is CuPy

AMD @ CASTIEL

• NumPy is a python interface to optimized routines written in C that provide arrays, multi-dimensional

arrays and common numerical operations on them. These are much faster than operating on Python

lists

• SciPy provides fundamental algorithms common in scientific and numerical computing. The

underlying code is a mixture of Fortran, C and C++

• CuPy is a NumPy/SciPy-compatible array library for GPU-accelerated computing with Python

• CuPy acts as a drop-in replacement to run existing NumPy/SciPy code on NVIDIA CUDA or AMD

ROCm platforms

• CuPy provides the ndarray, sparse matrices, and the associated routines for GPU devices, most

having the same API as NumPy and SciPy.

• CuPy provides interfaces to GPU optimized libraries such as rocBLAS, rocSPARSE, rocFFT, and

RCCL
source: cupy documentation

Oct 13-16, 2025

Yes, also

CuPy not

rocPy

https://docs.cupy.dev/en/stable/

8 |

[Public]

CuPy functions

AMD @ CASTIEL

full list here: cupy_documentation full list here: cupy_documentation

CuPy vs NumPy API CuPy-specific functions

click here for differences between CuPy and NumPy

Oct 13-16, 2025

https://docs.cupy.dev/en/stable/reference/comparison.html#numpy-cupy-apis
https://docs.cupy.dev/en/stable/reference/ext.html
https://docs.cupy.dev/en/stable/user_guide/difference.html

9 |

[Public]

CuPy-Xarray: Xarray on GPUs

• Xarray: Python library to work with labelled multi-dimensional arrays

• Popular for applications where multi-dimensional data needs to be handled (such as climate modeling)

• Built on top of NumPy

• Has built-in support for NetCDF

• Can wrap custom duck array objects (i.e. NumPy-like arrays) that follow specific protocols.

• When used together, Xarray and CuPy can provide an easy way to take advantage of GPU acceleration for

scientific computing tasks.

• CuPy-Xarray provides an interface for using CuPy in Xarray, providing accessors on the Xarray objects.

• CuPy-Xarray relies on an existing CuPy installation, install CuPy first

• Cupy-Xarray github repo: https://github.com/xarray-contrib/cupy-xarray

• Install with pip install cupy-xarray --no-deps after installing CuPy

• Issue with dask: https://github.com/xarray-contrib/cupy-xarray/pull/62

• Did not make it into the latest release

• Make sure to install dask with pip install dask

AMD @ CASTIEL
source: cupy-xarray documentation

Oct 13-16, 2025

https://docs.xarray.dev/en/stable/
https://docs.xarray.dev/en/stable/
https://github.com/xarray-contrib/cupy-xarray
https://github.com/xarray-contrib/cupy-xarray
https://github.com/xarray-contrib/cupy-xarray
https://github.com/xarray-contrib/cupy-xarray
https://github.com/xarray-contrib/cupy-xarray
https://github.com/xarray-contrib/cupy-xarray/pull/62
https://github.com/xarray-contrib/cupy-xarray/pull/62
https://github.com/xarray-contrib/cupy-xarray/pull/62
https://github.com/xarray-contrib/cupy-xarray/pull/62
https://github.com/xarray-contrib/cupy-xarray/pull/62
https://cupy-xarray.readthedocs.io/latest/examples/02_introduction.html
https://cupy-xarray.readthedocs.io/latest/examples/02_introduction.html
https://cupy-xarray.readthedocs.io/latest/examples/02_introduction.html
https://cupy-xarray.readthedocs.io/latest/examples/02_introduction.html

10

[Public]

Frameworks Libraries & Tools LLM Runtimes & Serving Platform & Deployment

Tensorflow MIOpen (primitives) Ollama, LM Studio (local LLM
hosting & UI)

ROCm – open-source driver & runtime

PyTorch RCCL (collectives) LangChain (orchestration) AMD Instinct – MI200, MI250(X),
MI300(X)

JAX rocBLAS, rocFFT, rocSOLVER, rocPRIM, rocRAND Triton Inference Server, KServe AMD Radeon – RDNA2/RDNA3 (Navi-
based) desktop & edge GPUs

ONNX Runtime HIP & hipify (CUDA→HIP porting) Docker/Singularity containers

MXNet MIVisionX & MIGraphX (CV) Slurm, MPI, Kubernetes scheduling

Horovod (distributed training) DeepSpeed & AI Template

Hugging Face Transformers & Diffusers OpenAI Triton & CuPy

XGBoost & HIP-Python

FlashAttention, vLLM & BitsAndBytes

rocprofiler, roctracer (profiling / tracing)
or rocprofiler-sdk, rocprofiler-systems, rocprofiler-
compute

AMD uProf (system-level profiling)

AMD @ CASTIELOct 13-16, 2025

ML ecosystem for AMD GPUs

11 |

[Public]

What is MPI4Py

AMD @ CASTIEL

• The Message Passing Interface (MPI) is a standardized and portable message-passing system

designed to function on a wide variety of parallel computers

• The MPI standard defines the syntax and semantics of library routines and allows users to write

portable programs in the main scientific programming languages (Fortran, C, or C++).

• MPI for Python provides (MPI4Py) MPI bindings for the Python programming language, allowing

any Python program to exploit multiple processors across multiple nodes.

• MPI4Py can send data directly from one GPU to another GPU by using GPU-aware MPI.

• MPI4Py can be configured to use any MPI implementation

source: mpi4py documentation

Oct 13-16, 2025

https://mpi4py.readthedocs.io/en/stable/mpi4py.html

12

[Public]

NVIDIA AMD

Porting your ML application
NO CHANGES REQUIRED IN MOST CASES

ML Frameworks
Python

ML Kernel
Development
C++, Triton IR

ML Libraries
C++

DROP IN
Out-of-the-box

Support

PORT/OPTIMIZE
→ NVCC → → HIPIFY → HIPCC →

→ CUDA Triton Backend
→

→ ROCM Triton Backend →

MIRROR
Equivalent

Libraries

DROP-IN

CUDA CUSTOM
KERNELS

CUDA CUSTOM
KERNELS

TRITON
KERNELS

TRITON
KERNELS

AMD @ CASTIELOct 13-16, 2025

13

[Public]

CUDA Library ROCm Library Description
cuBLAS rocBLAS Basic Linear Algebra Subroutines
cuFFT rocFFT Fast Fourier Transform Library
cuSPARSE rocSPARSE Sparse BLAS + SPMV
cuSolver rocSolver LAPACK Library
AmgX rocALUTION Algebraic Multi-Grid Accelerated Linear Solvers
Thrust hipThrust C++ parallel algorithms library
CUB rocPRIM Low Level Optimized Parallel Primitives
cuDNN MIOpen Deep learning Solver Library
cuRAND rocRAND Random Number Generator Library
NCCL RCCL Communications Primitives Library based on the MPI equivalents
cuTensor hipTensor Library to accelerate tensor primitives

Linear Algebra Libraries supporting both AMD and NVIDIA GPUs
Eigen C++ template library for linear algebra
MAGMA Dense linear algebra library on GPU and Multicore Architectures
SuperLU_DIST Direct solution of large, sparse, nonsymmetric systems of linear equation
HYPRE Scalable Linear Solvers and Multigrid Methods

ELPA Highly efficient and highly scalable direct eigensolvers for symmetric (Hermitian) matrices.
…

Porting your ML application
API COMPATIBLE LIBRARIES

AMD @ CASTIELOct 13-16, 2025

14

[Public]

Source Container PIP wheel

PyTorch GitHub Docker Hub pytorch.org

JAX JAX GitHub Docker Hub ROCm GitHub

TensorFlow GitHub Docker Hub pypi.org

ONNX-RT GitHub Docker Hub onnxruntime.ai

DeepSpeed DeepSpeed GitHub Docker Hub deepspeed.ai

CuPy CuPy Github Docker Hub cupy.dev

Where can I get AI frameworks from?
BINARY AND SOURCE DISTRIBUTIONS AVAILABLE

◢ Source builds can sometimes be……tricky

◢ Leveraging containers or pre-built wheel files for Python installs is recommended if possible

AMD @ CASTIEL

Not an

NVIDIA

product

Oct 13-16, 2025

https://github.com/pytorch/pytorch
https://hub.docker.com/r/rocm/pytorch
https://pytorch.org/
https://github.com/jax-ml/jax
https://hub.docker.com/r/rocm/jax
https://github.com/ROCm/jax/releases
https://github.com/tensorflow/tensorflow
https://hub.docker.com/r/rocm/tensorflow
https://hub.docker.com/r/rocm/tensorflow
https://pypi.org/project/tensorflow-rocm/#history
https://github.com/microsoft/onnxruntime
https://github.com/microsoft/onnxruntime
https://github.com/microsoft/onnxruntime
https://hub.docker.com/r/rocm/onnxruntime
https://onnxruntime.ai/
https://github.com/deepspeedai/DeepSpeed
https://github.com/deepspeedai/DeepSpeed
https://hub.docker.com/r/rocm/deepspeed
https://www.deepspeed.ai/getting-started/#installation
https://github.com/cupy/cupy
https://github.com/cupy/cupy
https://hub.docker.com/r/cupy/cupy-rocm
https://docs.cupy.dev/en/stable/install.html#installing-binary-packages

15

[Public]

◢ https://github.com/ROCm

◢ https://github.com/ROCm/pytorch

◢ https://github.com/ROCm/jax

◢ https://github.com/ROCm/tensorflow-upstream

◢ https://github.com/ROCm/cupy
◢ https://github.com/cupy/cupy

Not all of the above branches are updated with the

same frequency, please make sure you use the

release of branch tag that is most appropriate to

your needs and ROCm version

Where can I get AI frameworks from?
ROCm GITHUB HOSTS MOST AMD GPU PORTS

AMD @ CASTIELOct 13-16, 2025

https://github.com/ROCm
https://github.com/ROCm
https://github.com/ROCm/pytorch
https://github.com/ROCm/pytorch
https://github.com/ROCm/pytorch
https://github.com/ROCm/jax
https://github.com/ROCm/jax
https://github.com/ROCm/jax
https://github.com/ROCm/tensorflow-upstream
https://github.com/ROCm/tensorflow-upstream
https://github.com/ROCm/tensorflow-upstream
https://github.com/ROCm/tensorflow-upstream
https://github.com/ROCm/tensorflow-upstream
https://github.com/ROCm/cupy
https://github.com/ROCm/cupy
https://github.com/ROCm/cupy
https://github.com/ROCm/cupy
https://github.com/ROCm/cupy
https://github.com/ROCm/cupy
https://github.com/ROCm/cupy
https://github.com/ROCm/cupy

16

[Public]

• There are instructions on DockerHub on what commands to use

• Docker command:

sudo docker run -it \
--network=host \
--device=/dev/kfd \
--device=/dev/dri \
--group-add=video \
--ipc=host \
--cap-add=SYS_PTRACE \
--security-opt seccomp=unconfined \
rocm/<FRAMEWORK>:<TAG>

• Docker images with different tags/versions are available on ROCm DockerHub

CONTAINER -ROCm ML FRAMEWORK IMAGES
ROCm DOCKERHUB PROVIDES SEVERAL IMAGES READY TO USE

Allow container to access network (dist. learning)

Allow access to the GPU drivers

Security options - may need

to be expanded depending

on the host system

configuration

Replace <FRAMEWORK>:<TAG> with your choice—e.g.

rocm/pytorch:latest or rocm/tensorflow:5.4.0.

AMD @ CASTIELOct 13-16, 2025

17

[Public]

• System dependencies need to be met:

• GPU drivers

• ROCm libraries, RCCL, and MIOpen

should be installed:

• rocm-dev

• hiplibsdk

• mlsdk

• ROCm and Python versions must match

the wheel file

Prerequisites

AMD @ CASTIEL

Wheel – pre-built with ROCm support
ROCm DOCKERHUB PROVIDES SEVERAL IMAGES READY TO USE

• Use ROCm for AI

• AI Tutorials

• ROCm Libraries

• ROCm for AI Training

• ROCm for AI Inference

• ROCm for AI Inference Optimization

• Deep Learning Frameworks

ROCm Docs for AI

Oct 13-16, 2025

https://rocm.docs.amd.com/en/develop/how-to/rocm-for-ai/index.html
https://rocm.docs.amd.com/en/develop/how-to/rocm-for-ai/index.html
https://rocm.docs.amd.com/en/develop/how-to/rocm-for-ai/index.html
https://rocm.docs.amd.com/en/develop/how-to/rocm-for-ai/index.html
https://rocm.docs.amd.com/projects/ai-developer-hub/en/latest/
https://rocm.docs.amd.com/projects/ai-developer-hub/en/latest/
https://rocm.docs.amd.com/en/develop/reference/api-libraries.html
https://rocm.docs.amd.com/en/develop/reference/api-libraries.html
https://rocm.docs.amd.com/en/develop/reference/api-libraries.html
https://rocm.docs.amd.com/en/develop/how-to/rocm-for-ai/training/index.html
https://rocm.docs.amd.com/en/develop/how-to/rocm-for-ai/training/index.html
https://rocm.docs.amd.com/en/develop/how-to/rocm-for-ai/training/index.html
https://rocm.docs.amd.com/en/develop/how-to/rocm-for-ai/inference/index.html
https://rocm.docs.amd.com/en/develop/how-to/rocm-for-ai/inference/index.html
https://rocm.docs.amd.com/en/develop/how-to/rocm-for-ai/inference/index.html
https://rocm.docs.amd.com/en/develop/how-to/rocm-for-ai/inference-optimization/index.html
https://rocm.docs.amd.com/en/develop/how-to/rocm-for-ai/inference-optimization/index.html
https://rocm.docs.amd.com/en/develop/how-to/rocm-for-ai/inference-optimization/index.html
https://rocm.docs.amd.com/en/develop/how-to/deep-learning-rocm.html
https://rocm.docs.amd.com/en/develop/how-to/deep-learning-rocm.html

18

[Public]

Example for PyTorch install with wheel
Choice for a stable or a preview build

Supporting ROCm version

Suggested install command

• PyTorch official docs: https://pytorch.org/ in Get Started

• More combinations available! Check here https://download.pytorch.org/whl/torch/

• E.g. PyTorch 2.7.0 with ROCm 6.3

• Older versions

• Even more combinations available in https://repo.radeon.com/rocm/manylinux.

AMD @ CASTIELOct 13-16, 2025

https://pytorch.org/
https://download.pytorch.org/whl/torch/
https://repo.radeon.com/rocm/manylinux

19 |

[Public]

PyTorch wheel install – sys Python

• Native install from PyTorch Python wheels

pip3 install -t $wd/pip-installs --pre torch==2.7.0+rocm6.3 --index-url https://download.pytorch.org/whl/

PYTHONPATH=$wd/pip-installs \

srun -n1 --gpus=4 \

python3 -c 'import torch; print("I have this many devices:", torch.cuda.device_count())'

> I have this many devices: 4

Package install version can mix the

PyTorch version as well as the ROCm

it was built against.
Where do we want to install things -

don’t use your home folder!

This is where the wheel will

 be pulled from

Make the freshly installed PyTorch available to

your Python runs

NOTE: better to setup a module file

Should yield the number of GCDs requested from the node.

AMD @ CASTIELOct 13-16, 2025

20 |

[Public]

PyTorch wheel install – virtual environments

• Virtual environments are convenient to manage Python package installation in your user-space

python3 -m venv --system-site-packages python-virtualenv

source python-virtualenv/bin/activate

pip3 install --pre torch==2.7.0+rocm6.3 --index-url https://download.pytorch.org/whl/
srun -n1 –gpus=4 \

python3 -c 'import torch; print("I have this many devices:", torch.cuda.device_count())'

Leverage the venv module to create the

virtual environment

We are happy to leverage system’s already installed

packages. We could also leave this off for a completely

self-contained installation in the virtual environment.

Activate the environment. It will be leveraged by the

install and run.

Install and run as before. No need to specify install location – the

environment is doing it for you.

AMD @ CASTIELOct 13-16, 2025

https://download.pytorch.org/whl/

21 |

[Public]

PyTorch wheel install – conda environment

• Conda environment adds the package-manager functionality to a virtual environment

• One can tune the Python version to use as we won’t be leveraging the system one anymore.

curl -LO https://repo.anaconda.com/miniconda/Miniconda3-py310_24.1.2-0-Linux-x86_64.sh

curl -LO https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86.sh

bash ./Miniconda3-* -b -p miniconda3 -s

source $wd/miniconda3/bin/activate base

conda create -y -n pytorch python=3.10

source $wd/miniconda3/bin/activate pytorch

pip3 install --pre torch==2.7.0+rocm6.3 --index-url https://download.pytorch.org/whl/
srun --jobid=$jobid -n1 --gpus 8 \

python3 -c 'import torch; print("I have this many devices:", torch.cuda.device_count())'

Download and install a minimal conda

(miniconda) latest version.

Activate the conda environment

Create and activate a conda environment to install

PyTorch based on Python 3.10

Install and run as before - Conda package manager doesn’t have ROCm-

enabled PyTorch installs

Download and install a minimal conda

(miniconda) specific version.

AMD @ CASTIELOct 13-16, 2025

https://repo.anaconda.com/miniconda/Miniconda3-py310_24.1.2-0-Linux-x86_64.sh
https://repo.anaconda.com/miniconda/Miniconda3-py310_24.1.2-0-Linux-x86_64.sh
https://repo.anaconda.com/miniconda/Miniconda3-py310_24.1.2-0-Linux-x86_64.sh
https://repo.anaconda.com/miniconda/Miniconda3-py310_24.1.2-0-Linux-x86_64.sh
https://repo.anaconda.com/miniconda/Miniconda3-py310_24.1.2-0-Linux-x86_64.sh
https://repo.anaconda.com/miniconda/Miniconda3-py310_24.1.2-0-Linux-x86_64.sh
https://repo.anaconda.com/miniconda/Miniconda3-py310_24.1.2-0-Linux-x86_64.sh
https://repo.anaconda.com/miniconda/Miniconda3-py310_24.1.2-0-Linux-x86_64.sh
https://repo.anaconda.com/miniconda/Miniconda3-py310_24.1.2-0-Linux-x86_64.sh

22

[Public]

• Requirements similar to PyTorch install.

• Unlike PyTorch, TensorFlow packages for ROCm have a specific name:

• tensorflow-rocm

TensorFlow wheel install

Check the available versions from

https://pypi.org/project/tensorflow-

rocm/#history

Package version example:

• TensorFlow version 2.14.0

• Built on top of ROCm 6.0.0

AMD @ CASTIELOct 13-16, 2025

https://pypi.org/project/tensorflow-rocm/#history
https://pypi.org/project/tensorflow-rocm/#history
https://pypi.org/project/tensorflow-rocm/#history

23

[Public]

• Installing TensorFlow 2.14.0 for ROCm 6.0.0:
pip3 install tensorflow-rocm==2.14.0.600

• One can leverage pip command to get the available versions
pip3 install tensorflow-rocm==

• Checking number of GPUs:
python3 -c 'from tensorflow.python.client import device_lib ; device_lib.list_local_devices()'

TensorFlow wheel install

Created device /device:GPU:0 with 63922 MB memory: -> device: 0, name: AMD Instinct MI210, pci bus id: 0000:63:00.0
Created device /device:GPU:1 with 63922 MB memory: -> device: 1, name: AMD Instinct MI210, pci bus id: 0000:43:00.0
Created device /device:GPU:2 with 63922 MB memory: -> device: 2, name: AMD Instinct MI210, pci bus id: 0000:03:00.0
Created device /device:GPU:3 with 63922 MB memory: -> device: 3, name: AMD Instinct MI210, pci bus id: 0000:26:00.0

AMD @ CASTIELOct 13-16, 2025

24

[Public]

• JAX GPU support comes from the
package jaxlib

• jaxlib requires building from

source upstream

• You can leverage the wheel files

from ROCm Github:
• https://github.com/ROCm/jax/releases

JAX wheel install

AMD @ CASTIELOct 13-16, 2025

https://github.com/ROCm/jax/releases
https://github.com/ROCm/jax/releases

25

[Public]

• Example installing commands for JAX version 0.5.0 :
• jaxlib

python3 -m pip install \
https://github.com/ROCm/jax/releases/download/rocm-jax-v0.5.0/jaxlib-0.5.0-cp310-cp310-manylinux_2_28_x86_64.whl

• JAX ROCm Plugin

python3 -m pip install \

https://github.com/ROCm/jax/releases/download/rocm-jax-v0.5.0/jax_rocm60_plugin-0.5.0-cp310-cp310-manylinux_2_28_x86_64.whl

• JAX
python3 -m pip install \
https://github.com/ROCm/jax/archive/refs/tags/rocm-jax-v0.5.0.tar.gz

• Checking number of GPUs:
python -c 'import jax ; print("I have this many GPUs:", jax.local_device_count())'

• Should yield depending on the system:
 I have this many GPUs: 8

JAX wheel install for Python 3.10

JAX package doesn’t have any GPU

software dependency

AMD @ CASTIELOct 13-16, 2025

26

[Public]

AMD @ CASTIEL

Build from source
CHECK OUR HPCTRAININGDOCK REPO

HPCTrainingDock repo: https://github.com/amd/HPCTrainingDock

Builds from source for:

• PyTorch:

https://github.com/amd/HPCTrainingDock/blob/main/extras/scripts/pytorch_setup.sh

• JAX:

https://github.com/amd/HPCTrainingDock/blob/main/extras/scripts/jax_setup.sh

• CuPy:

https://github.com/amd/HPCTrainingDock/blob/main/extras/scripts/cupy_setup.sh

• MPI4Py:

https://github.com/amd/HPCTrainingDock/blob/main/comm/scripts/mpi4py_setup.sh

• Tensorflow:

https://github.com/amd/HPCTrainingDock/blob/main/comm/scripts/tensorflow_setup.sh

Oct 13-16, 2025

https://github.com/amd/HPCTrainingDock
https://github.com/amd/HPCTrainingDock/blob/main/extras/scripts/pytorch_setup.sh
https://github.com/amd/HPCTrainingDock/blob/main/extras/scripts/pytorch_setup.sh
https://github.com/amd/HPCTrainingDock/blob/main/extras/scripts/jax_setup.sh
https://github.com/amd/HPCTrainingDock/blob/main/extras/scripts/jax_setup.sh
https://github.com/amd/HPCTrainingDock/blob/main/extras/scripts/cupy_setup.sh
https://github.com/amd/HPCTrainingDock/blob/main/extras/scripts/cupy_setup.sh
https://github.com/amd/HPCTrainingDock/blob/main/comm/scripts/mpi4py_setup.sh
https://github.com/amd/HPCTrainingDock/blob/main/comm/scripts/mpi4py_setup.sh
https://github.com/amd/HPCTrainingDock/blob/main/comm/scripts/mpi4py_setup.sh
https://github.com/amd/HPCTrainingDock/blob/main/comm/scripts/tensorflow_setup.sh
https://github.com/amd/HPCTrainingDock/blob/main/comm/scripts/tensorflow_setup.sh
https://github.com/amd/HPCTrainingDock/blob/main/comm/scripts/tensorflow_setup.sh
https://github.com/amd/HPCTrainingDock/blob/main/comm/scripts/tensorflow_setup.sh
https://github.com/amd/HPCTrainingDock/blob/main/comm/scripts/tensorflow_setup.sh
https://github.com/amd/HPCTrainingDock/blob/main/comm/scripts/tensorflow_setup.sh

27

[Public]

Clone desired version of TensorFLow
git clone --recursive -b merge-250318 https://github.com/ROCm/tensorflow-upstream

Install system and Python requirements
apt-get install python3-dev python3-pip openjdk-8-jdk openjdk-8-jre unzip wget git python-is-python3 patchelf
pip3 install numpy wheel mock future pyyaml setuptools requests keras_preprocessing keras_applications jupyter

Download Bazelisk: https://github.com/bazelbuild/bazelisk/blob/master/README.md and put it in your PATH:
curl -Lo bazelisk https://github.com/bazelbuild/bazelisk/releases/latest/download/bazelisk-$(uname -s | tr '[:upper:]' '[:lower:]')-amd64
chmod +x bazelisk && sudo mv bazelisk /usr/local/bin/bazel

Set USE_BAZEL_VERSION env variable to what is needed by TensorFlow
export USE_BAZEL_VERSION=`cat tensorflow-upstream/.bazelversion | head -n 1`

Load necessary modules and set env variables
module load rocm amdclang

Configure TensorFlow
cd tensorflow-upstream
yes "" | TF_NEED_CLANG=1 ROCM_PATH=$ROCM_PATH TF_NEED_ROCM=1 PYTHON_BIN_PATH=/usr/bin/python3 ./configure

Install TensorFlow
bazel build --config=opt --config=rocm --repo_env=WHEEL_NAME=tensorflow_rocm --action_env=project_name=tensorflow_rocm/
//tensorflow/tools/pip_package:wheel --verbose_failures --repo_env=CC=`which clang` --repo_env=BAZEL_COMPILER=`which clang`
--repo_env=CLANG_COMPILER_PATH=`which clang` && pip3 install --upgrade bazel-bin/tensorflow/tools/pip_package/wheel_house/tensorflow*.whl

TensorFlow source install (tested with ROCm 6.4.0)

AMD @ CASTIEL

Might need sudo

Module definitions at:

https://github.com/amd/HPCTrainingDock/blob/

main/rocm/scripts/rocm_setup.sh

If this command fails, you might

need to manually edit the clang

path in the .bazelrc file

located in the tensorflow-upstream

repo dir

Can also move it to a different dir as long as it is in your PATH

Oct 13-16, 2025

https://github.com/bazelbuild/bazelisk/blob/master/README.md
https://github.com/amd/HPCTrainingDock/blob/main/rocm/scripts/rocm_setup.sh
https://github.com/amd/HPCTrainingDock/blob/main/rocm/scripts/rocm_setup.sh

28

[Public]

• Horovod is a framework to enable distributed deep-learning training with TensorFlow, Keras,

PyTorch, and Apache MXNet. The goal of Horovod is to make distributed deep learning fast

and easy to use.

Horovod install

Configure for ROCm
export HOROVOD_WITHOUT_MXNET=1
export HOROVOD_WITHOUT_GLOO=1
export HOROVOD_GPU=ROCM
export HOROVOD_ROCM_HOME=$ROCM_PATH
export HOROVOD_GPU_OPERATIONS=NCCL
export HOROVOD_CPU_OPERATIONS=MPI
export HOROVOD_WITH_MPI=1
export HOROVOD_ROCM_PATH=$ROCM_PATH
export HOROVOD_RCCL_HOME=$ROCM_PATH/rccl
export RCCL_INCLUDE_DIRS=$ROCM_PATH/rccl/include
export HOROVOD_RCCL_LIB=$ROCM_PATH/rccl/lib
export HCC_AMDGPU_TARGET=gfx90a
export CMAKE_PREFIX_PATH=$MPICH_PATH

Configure for TensorFlow
export HOROVOD_WITH_TENSORFLOW=1
export HOROVOD_WITHOUT_PYTORCH=1

Configure for PyTorch
export HOROVOD_WITHOUT_TENSORFLOW=1
export HOROVOD_WITH_PYTORCH=1

Install
pip install --no-cache-dir --force-reinstall --verbose horovod==$HOROVOD_VERSION

Step 1: configure ROCm details

Horovod needs MPI at launch

Step 2: configure for your favorite

framework details

Step 3: install

AMD @ CASTIELOct 13-16, 2025

29

[Public]

• DeepSpeed is a framework to optimize distributed deep-learning training and inference

DeepSpeed install

DS_BUILD_AIO=0 \
DS_BUILD_CCL_COMM=1 \
DS_BUILD_CPU_ADAM=0 \
DS_BUILD_CPU_LION=0 \
DS_BUILD_EVOFORMER_ATTN=0 \
DS_BUILD_FUSED_ADAM=1 \
DS_BUILD_FUSED_LION=1 \
DS_BUILD_CPU_ADAGRAD=0 \
DS_BUILD_FUSED_LAMB=1 \
DS_BUILD_QUANTIZER=0 \
DS_BUILD_RANDOM_LTD=0 \
DS_BUILD_SPARSE_ATTN=0 \
DS_BUILD_TRANSFORMER=0 \
DS_BUILD_TRANSFORMER_INFERENCE=0 \
DS_BUILD_STOCHASTIC_TRANSFORMER=1 \
pip install deepspeed==0.14.0 \
--global-option="build_ext" --global-option="-j32"

ds_report

Select all the optimizations

not all are enabled for GPUs

Allow multiple process builds

Utility to report supported capabilities

--
op name installed .. compatible
--
async_io [NO] [NO]
fused_adam [YES] [OKAY]
cpu_adam [NO] [OKAY]
cpu_adagrad [NO] [OKAY]
cpu_lion [NO] [OKAY]
evoformer_attn [NO] [NO]
fused_lamb [YES] [OKAY]
fused_lion [YES] [OKAY]
inference_core_ops [NO] [OKAY]
cutlass_ops [NO] [OKAY]
transformer_inference .. [NO] [OKAY]
quantizer [NO] [OKAY]
ragged_device_ops [NO] [OKAY]
ragged_ops [NO] [OKAY]
random_ltd [NO] [OKAY]
sparse_attn [NO] [NO]
spatial_inference [NO] [OKAY]
transformer [NO] [OKAY]
stochastic_transformer . [YES] [OKAY]
--

AMD @ CASTIELOct 13-16, 2025

30

[Public]

Exercises

◢ Two sets of exercises on your own

o HPCTrainingExamples/MLExamples/README_AAC6.md
o -- Overview of ML and AI on AMD GPUs in Exercises Doc

o HPCTrainingExamples/MLExamples/README_OnInstinctNode.md
o -- AI and ML exercises in Exercises Doc

◢ Please be considerate and free up resources when you are done with an exercise

Oct 13-16, 2025 AMD @ CASTIEL

31 |

[Public]

DISCLAIMERS AND ATTRIBUTIONS
The information contained herein is for informational purposes only and is subject to change without notice. While every precaution has been taken
in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to
update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or
completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement,
merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described
herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations
applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and
Conditions of Sale. GD-18​

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY
APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR
ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY
INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© 2025 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo, Radeon , Instinct , EPYC, Infinity Fabric, ROCm , and combinations thereof are trademarks of Advanced
Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.
The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board
Windows is a registered trademark of Microsoft Corporation in the US and/or other countries.
Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git
Project, in the United States and/or other countries
Intel is a trademark of Intel Corporation or its subsidiaries

	Slide 1: Overview of AI and ML on AMD GPUs
	Slide 2
	Slide 3: What is PyTorch
	Slide 4: What is JAX
	Slide 5: What is TensorFlow
	Slide 6: What is ONNX
	Slide 7: What is CuPy
	Slide 8: CuPy functions
	Slide 9: CuPy-Xarray: Xarray on GPUs
	Slide 10
	Slide 11: What is MPI4Py
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Prerequisites
	Slide 18: Example for PyTorch install with wheel
	Slide 19: PyTorch wheel install – sys Python™
	Slide 20: PyTorch wheel install – virtual environments
	Slide 21: PyTorch wheel install – conda environment
	Slide 22: TensorFlow wheel install
	Slide 23: TensorFlow wheel install
	Slide 24: JAX wheel install
	Slide 25: JAX wheel install for Python™ 3.10
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Exercises
	Slide 31: DISCLAIMERS AND ATTRIBUTIONS
	Slide 32

