APU Programming Model

Presenters: Bob Robey
AMD @ Tsukuba University

AMD ¢

together we advance_

Porting code from CPU to GPU

It is easier than ever to port to GPUs

Accelerated Processing Units (APUs) simplify porting

APU architecture and APU Programming model — what are these?

Pragma-based language makes porting quicker and more portable to run on CPU and GPU
Optimized libraries for the GPU can help
Interoperability of different programming models

New tools and improved functionality

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

What AMD offers

MI300A is an APU Architecture — in the actual hardware

< Same memory space for CPU and GPU
< APU is an AMD term; others may call it an integrated GPU

Commitment to APU programming model for GPU products
APU programming model applies to discrete GPUs as well

AMD values customer friendly policies
< Open-source

< No vendor lock-in

< Portability

Industry leading CPU performance

Commitment to HPC customers
< Leading FP64 (IEEE-754) performance
< MI300A and MI300X FP64 performance increased over the MI250X products
< No special tricks to get FP64 for general applications
Oct 21-23, 2025 AMD @ Tsukuba University

AMDZU

together we advance_

AMD L\

APU and discrete
GPU architectures

Oct 21-23, 2025

AMD @ Tsukuba University

/4

[Public]

Taxonomy of compute architectures

Compute Design

Oct 21-23, 2025

Memory Design
Single Multiple

e ooy

~Compute Compute |

Single

| G

_ Compute | Compute | o il Compute

Multiple

Taxonomy categorizes architecture by dominance of hardware components
s Memory Dominant — architecture revolves around a single memory space
% Compute Dominant — architecture centered around a single compute resource
% APU is primarily characterized by compute units being able to address all memory

AMD @ Tsukuba University nggﬂ advance

[Public]

Breakthrough in compute capability -- Conceptual

- Integrated GPUs have traditionally been limited by how much GPU compute capability can be included
< Silicon Chip only has so much space
< Chiplets allow us to expand that space

- Let’s try adding more capability into an APU

Mlemory

More compute capability
for design with chiplets

AMS socket 40x40mm —
limited silicon space

Chiplets

Lots more silicon space to work with

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ
6 together we advance_

Advanced Heterogeneous Integration Packaging

Carrier Silicon

____CarrierSilicon |
AM'|‘§I| _CCD | CCD | CCD |strc|
E— 10D LoD I

~assive Silicon Interposer

W W U U U U U U U VU U VU U VU VU VU VU VU VU VU VU U U VU VUV VUV VU VUV VUV VU VUV VUV VDV WDV VWS

8 stacks of HBM < 3D hybrid bonding

* 6 XCDs » 2.5D silicon interposer
« 3 CCDs > |OD-1OD links
e 4 |ODs o 10OD-HBM links

* |OD - I/O Die

Oct 21-23, 2025 AMD @ Tsukuba University QE:‘EE advance

Bringing it to AMD Instinct™ Accelerator Products

MI200 Series

Extreme
Compute
Architecture with
leading memory
capacity and
bandwidth

- Technology in first Exascale systems
* High compute to power ratio
Tight integration with memory
Infinity Fabric™ for data transfers

MI300A

First True
APU
Architecture
for HPC and
Al

* Memory Bandwidth Workloads
* Hybrid CPU + GPU Capability
* GPUs can drive full bandwidth

MI300X

Leadership
generative Al
accelerator

+ Extreme Compute Workloads
+ Suitable for typical Al work
+ Other work entirely on GPU

AMDZU

together we advance_

AMD L\

The APU
programming model

Oct 21-23, 2025

AMD @ Tsukuba University

/8

A tale of Host and Device

Source code for CPU-GPU systems has two flavors: Host code and Device code

The Host is the CPU
MI300A: 3 “Zen 4” based chiplets

Host code runs here

Usual C++ or Fortran syntax and features .

Entry point is the main function / PROGRAM

HIP APl or OpenMP® can be used to create
device buffers, move between host and device,

Oct 21-23, 2025

The Device is the GPU
- MI300A: 6 XCDs with 38 compute units each (228 CUs total)

Device code runs here
C-like syntax (HIP) or OpenMP directives
Device codes are launched via kernels

Instructions from the Host are enqueued into
NICEIUS

AMD @ Tsukuba University AMD ¢\

together we advance_

Memory model

Definition
A memory model defines the rules for the synchronization of memory
modifications between threads, compute hardware and cache.

A memory model is critical for parallel computing to help both system developers
and application programmers avoid data hazard or race conditions where
memory is modified by one entity, but another compute unit fails to get the
updated value.

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

AMD discrete GPUs and memory addressing

In discrete GPU systems, CPU and GPU memory spaces are
separate and data needs to be moved between the two spaces.
This data movement can be performed in two ways:

s CPU GPU
By the programmer, explicitly

By the Operating System (OS), who helps move pages on
access and subsequent page fault —

We call this managed memory — short for "memory is managed by the
operating system”

If no corresponding address is found, the program will fail with a u ‘tt”‘
segmentation fault
CPU
Memory
DDR
AMD MI200 GPUs (MI210, MI250, MI250X) and MI300X are oo -

discrete GPUs

Implement managed memory
To enable managed memory, export HSA XNACK=1

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

12 together we advance_

XNACK -- what is it and how to use it

Definition
XNACK refers to the AMD GPU's ability to retry memory accesses that fail due to a page fault.

xnack environment variable
On MI200 and MI300 series GPUs, it can be enabled on a per-process basis using the environment variable

HSA XNACK=1 and disabled using HSA XNACK=0. Default decided at boot time.

xnack compiler flag

Run rocminfo | grep xnack to check if xnack is enabled
Compilation mode that can assume three possible values: xnack+, xnack-, xnack any.
To change the xnack compilation mode of a program, xnack+ or xnack- may be appended to the architecture flags:

--offload-arch=gfx90a:xnack+

Supplying multiple xnack options will yield a "fat-binary" with both modes enabled.
When not specified, the default xnack any mode will be used.
Code compiled with xnack any will run in any case.

AMDZU

together we advance_

Oct 21-23, 2025 AMD @ Tsukuba University

APU ARCHITECTURE BENEFITS FOR CPU TO GPU PORTING

CPU

GPU

"

CPU
Memory
(DDR)

AMDZ1

1114

DISCRETE GPUS

Oct 21-23, 2025

AMD CDNA™ 3 Unified Memory APU Architecture

Eliminate Redundant Memory
Copies

No programming distinction
between CPU and GPU memory
spaces

High performance, fine-grained
sharing between CPU and GPU
processing elements

Single process can address all

memory, compute elements on AM D n

a socket

Allows incremental porting

AMD @ Tsukuba University

AMD Instinct™ APU

i 333328

MI300A

AMDZU

together we advance_

Fortran example,
analogous for C++

APU PROGRAMMING MODEL WITH OPENMP®

CPU CODE

lallocation on host
ALLOCATE(var(1:N))

Icompute on host
I$omp parallel do &
l$omp private(i), shared(var)
DO i=1,N
var(i) = ..
END DO
I$omp end parallel do
Isync barrier at omp end ..

ldeallocation
DEALLOCATE (var)

e Compute kernel

GPU CODE

lallocation on host
ALLOCATE(var(1:N))

Costly to switch
CPU -> GPU!

Icompute on device, expl. mem movement!
I$omp target teams distribute parallel do &
I$omp map(tofrom:var) private(i),shared(var)
DO i=1,N

var(i) = ..
END DO
I$omp end target teams distribute parallel do
lhost-device sync barrier at omp end ..

ldeallocation
DEALLOCATE (var)

e Special directive to enable unified memory
e Explicit memory management between CPU & GPU -> not needed for APU!

e Synchronization Barrier

Oct 21-23, 2025

AMD @ Tsukuba University

APU CODE

I$omp requires unified shared_memory
lallocation of unified memory
ALLOCATE(var(1:N))

Cheap CPU ->
GPU with APU

Icompute on device, no expl. mem movement!
I$omp target teams distribute parallel do &
I$omp private(i),shared(var)
DO i=1,N

var(i) = ..
END DO
I$omp end target teams distribute parallel do
lhost-device sync barrier at omp end ..

!deallocation of unified memory
DEALLOCATE (var)

C++ example,
Fortran only possible

APU PROGRAMMING MODEL WITH HIP eroce 10 C o GPU

kernels
CPU CODE GPU CODE APU CODE
double* in_h = (double*)malloc(Msize); double* in_h = (double*)malloc(Msize); double* in_h = (double*)malloc(Msize);
double* out_h = double* out_h = (double*)malloc(Msize); double* out_h = (double*)malloc(Msize);
(double*)malloc(Msize);
for (int i=@; i<M; i++) // initialize for (int i=@; i<M; i++) // initialize
for (int i=0; i<M; i++) // initialize in_h[i] = ..; in_h[i] = ..
in_h[i] = ..; hipMemcpy(in_d,in_h,Msize, hipMemcpyHostToDevice) ;
gpu_func<<< >>>(in_d, out_d, M); gpu_func<<< >>>(in_h, out_h, M);
cpu_func(in_h, out_h, M); Synchronization implied, hipMemcpy blocks hipDeviceSynchronize();
hipMemcpy(out_h,out_d,Msize, hipMemcpyDeviceToHost) ;
for (int i=@; i<M; i++) // CPU-process for (int i=@; i<M; i++) // CPU-process
for (int i=@; i<M; i++) // CPU-process .. = out_h[i]; .. = out_h[i];
. = out_h[i];
* Compute kernel
e Explicit memory management between CPU & GPU -> not needed for APU!
 Synchronization Barrier
Oct 21-23, 2025 AMD @ Tsukuba University AMDZ

16 together we advance_

PROGRAMMING ACROSS FRAMEWORKS/COMPILERS

OpenMP® CODE

#pragma omp requires unified_shared_memory
double* in_h, *out_h;

in_h = new (std::align_val t(128)) double[N];
out_h = new (std::align_val t(128)) double[N];

for (int i=@; i<N; i++) // initialize
in_h[i] = ..

#pragma omp target
{ ..}

for (int i=@; i<N; i++) // CPU-process
. = out_h[i];

delete[] in_h; delete[] out_h;

e Compute kernel

RAJA CODE

double* in_h, *out_h;
in_h = new (std::align_val t(128)) double[N];
out_h = new (std::align_val t(128)) double[N];

for (int i=0; i<N; i++) // initialize
in h[i] = .;

RAJA: :forall< exec_policy >(arange, [=]
(int 1) { .. });

for (int i=@; i<N; i++) // CPU-process
. = out_h[i];

delete[] in_h; delete[] out_h;

Explicid - bo oy g epy

Oct 21-23, 2025

AMD @ Tsukuba University

KOKKOS CODE

double* in_h, *out_h;
in_h = new (std::align_val t(128)) double[N];
out_h = new (std::align_val t(128)) double[N];

for (int i=0; i<N; i++) // initialize
in h[i] = .;

for (int i=@; i<N; i++) // CPU-process
. = out_h[i];

delete[] in_h; delete[] out_h;

AMDZU

together we advance_

AMD L\

Choices in
programming languages

Oct 21-23, 2025 AMD @ Tsukuba University

/4

[Public]

Multiple language paths for AMD GPUs -- all offer portability

Oct 21-23, 2025 AMD @ Tsukuba University AMDA

together we advance_

20

Pragma-based languages

OpenMP® — primary supported option for AMD GPUs
Implemented through LLVM™
Implemented in the cray compilers
Recommendation: Best support for portability, easy to get started with

OpenACC — Supported through Cray, LLVM™ (CLACC) and GCC compilers
Not as well supported as other options
Recommendation: Try if your code already has OpenACC implemented
Also available: source-to-source translation tools from OpenACC to OpenMP (Intel® and CLACC)

do concurrent (Fortran only)
requires rewriting the “do”
Not supported by all compilers yet, but expected very soon
Recommendation: Good option to offload very simple loops, can be considered

AMDZU

together we advance_

Oct 21-23, 2025 AMD @ Tsukuba University

-g Native or low-level languages

Heterogeneous Interface for Portability (HIP)

A portable layer on top of ROCm and CUDA Portable HIP C++ (Host & Device Code)
Requires a different source on CPU and GPU
Larger effort for porting and overhead l
#include

No equivalent of CUDA Fortran available: Fortran requires
C interfaces, thus even larger overhead and two

programming languages for same app “hip_runtime.h”
I

Reccomendation: HIP for hottest loops and complex
kernels, if not already CUDA ported

If already CUDA ported: Converting CUDA to HIP is
straightforward
Hipify scripts do majority of the work

Still requires optimization effort to get best performance

e.g. a wavefront has 64 threads executing the same instruction
(different compared to 32 threads per warp on NVIDIA hardware)

hipcc
I
AMD GPU

CUDA equivalents available make
this portable to NVIDIA hardware

There are other low-level languages such as
OpenCL™

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

21 together we advance_

A Higher level performance portability frameworks

Kokkos — Sandia National Lab (SNL) C++ performance portable programming model
< The Kokkos team has aggressively developed support for AMD GPUs via a HIP backend
< Kokkos handles many of the unique attributes of the AMD GPUs for you
< Parts being integrated into the C++ standard

RAJA — Lawrence Livermore National Lab (LLNL) C++ performance portability layer
< Modular in structure with separation of compute and data management
< Supports AMD GPUs
< Key kernel patterns have been optimized by AMD

Advantages of Performance Portability Frameworks
< True single-source application code (at least if you restrict yourself to C++)
< Many of these framework support both CPUs and GPUs

Oct 21-23, 2025 AMD @ Tsukuba University

22

AMDZU

together we advance_

23

C++ standard based languages

With the C++ 17 standard, support for parallelism was introduced. The application developer specifies
parallelism as the first parameter to a C++ algorithm

*std: :execution: :seq— Sequential execution
All operations on the thread that invoked the algorithm

*std: :execution: :unseq — Vectorized execution (C++20)

Indicate that a parallel algorithm's execution may be vectorized, e.g., executed on a single thread using instructions that
operate on multiple data items

*std: :execution: :par — Parallel multithreaded execution
Parallel execution allowed. Operations are indeterminately sequenced within a thread

*std: :execution: :par_unseq — Parallel multithreaded and vectorized execution

The various operations can be interleaved with each other on the same thread. Any given operation may start on a thread and
end on a different thread

With the release of ROCm 6.1, C++ standard parallelism is available for AMD GPUs.

% To enable, use the --hipstdpar compile flag

% The ROCm 6.1 release only supports the par_unseq execution policy

%+ Recommendation: Consider this option only for experimental use and with experienced C++
developers, not best performance at the moment

Oct 21-23, 2025 AMD @ Tsukuba University

AMDZU

together we advance_

24

Other languages

Many other languages also work on AMD GPUs to some level and are continually improving
<+ SYCL
< Julia: instructions on how to add Julia as a module.
< Python™

ML/AI -- Support for these languages is excellent and portable
< PyTorch — AMD is a founding member of the PyTorch Foundation
% JAX
< Cupy
% TensorFlow

< And many other ML/Al packages
» See https://github.com/ROCm

Oct 21-23, 2025 AMD @ Tsukuba University

AMDZU

together we advance_

https://github.com/amd/HPCTrainingDock?tab=readme-ov-file#4-adding-your-own-modules
https://github.com/ROCm

25

Hands-on exercises

Located in our HPC Training Examples repo:
https://github.com/amd/HPCTrainingExamples

A table of contents for the READMEs if available at the top-level README in the repo

Relevant exercises for this presentation located in ManagedMemory directory.

Link to instructions on how to run the tests: ManagedMemory/README.md

Log into the AAC node and clone the repo:

ssh <username>@aac6.amd.com -p <port number>
git clone https://github.com/amd/HPCTrainingExamples.git

Oct 21-23, 2025 AMD @ Tsukuba University

AMDZU

together we advance_

https://github.com/amd/HPCTrainingExamples
https://github.com/amd/HPCTrainingExamples/blob/main/README.md
https://github.com/amd/HPCTrainingExamples/tree/main/ManagedMemory
https://github.com/amd/HPCTrainingExamples/blob/main/ManagedMemory/README.md

26

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The
information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes,
component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS
flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes
no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to
time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF

AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD
SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE.
IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES
ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY CONTENT IS
PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR SOLE DISCRETION AND UNDER
NO CIRCUMSTANCES WILLAMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR
ANY DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD CDNA, AMD ROCm, AMD Instinct, and combinations thereof are
trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be
trademarks of their respective owners.

LLVM is a trademark of LLVM Foundation

Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git Project, in the United States
and/or other countries

OpenCL is a trademark of Apple Inc. used by permission by Khronos Group, Inc.

Intel® is a trademark of Intel Corporation or its subsidiaries

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board

Oct 21-23, 2025 AMD @ Tsukuba University AMDAQ

together we advance_

	Slide 1: APU Programming Model Presenters: Bob Robey AMD @ Tsukuba University
	Slide 2: Porting code from CPU to GPU
	Slide 3: What AMD offers
	Slide 4: APU and discrete GPU architectures
	Slide 5: Taxonomy of compute architectures
	Slide 6: Breakthrough in compute capability -- Conceptual
	Slide 7: Advanced Heterogeneous Integration Packaging
	Slide 8: Bringing it to AMD Instinct™ Accelerator Products
	Slide 9: The APU programming model
	Slide 10: A tale of Host and Device
	Slide 11: Memory model
	Slide 12: AMD discrete GPUs and memory addressing
	Slide 13: XNACK -- what is it and how to use it
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Choices in programming languages
	Slide 19: Multiple language paths for AMD GPUs -- all offer portability
	Slide 20: Pragma-based languages
	Slide 21: Native or low-level languages
	Slide 22: Higher level performance portability frameworks
	Slide 23: C++ standard based languages
	Slide 24: Other languages
	Slide 25: Hands-on exercises
	Slide 26: Disclaimer
	Slide 27

