
APU Programming Model
Presenters: Bob Robey

AMD @ Tsukuba University

2 |

[Public]

Porting code from CPU to GPU

It is easier than ever to port to GPUs

❖ Accelerated Processing Units (APUs) simplify porting
▪ APU architecture and APU Programming model – what are these?

❖ Pragma-based language makes porting quicker and more portable to run on CPU and GPU

❖ Optimized libraries for the GPU can help

❖ Interoperability of different programming models

❖ New tools and improved functionality

Oct 21-23, 2025 AMD @ Tsukuba University

3 |

[Public]

What AMD offers

• MI300A is an APU Architecture – in the actual hardware

❖ Same memory space for CPU and GPU

❖ APU is an AMD term; others may call it an integrated GPU

• Commitment to APU programming model for GPU products

❖ APU programming model applies to discrete GPUs as well

• AMD values customer friendly policies

❖ Open-source

❖ No vendor lock-in

❖ Portability

• Industry leading CPU performance

• Commitment to HPC customers

❖ Leading FP64 (IEEE-754) performance

❖ MI300A and MI300X FP64 performance increased over the MI250X products

❖ No special tricks to get FP64 for general applications

Oct 21-23, 2025 AMD @ Tsukuba University

APU and discrete

GPU architectures

Oct 21-23, 2025 AMD @ Tsukuba University

5 |

[Public]

Taxonomy of compute architectures

Single Multiple

S
in

g
le

M
u
lt
ip

le

Memory Design

C
o
m

p
u
te

 D
e
s
ig

n

Memory

Memory

Compute

GPU Compute CPU Compute

Compute

High Bandwidth

Memory
Capacity

 Memory

High Bandwidth

Memory
Capacity

 Memory

GPU Compute CPU Compute

Discrete GPU

Taxonomy categorizes architecture by dominance of hardware components

❖ Memory Dominant – architecture revolves around a single memory space

❖ Compute Dominant – architecture centered around a single compute resource

❖ APU is primarily characterized by compute units being able to address all memory

Basic System Multi-Level Memory System

APU Architecture

Oct 21-23, 2025 AMD @ Tsukuba University

6 |

[Public]

Breakthrough in compute capability -- Conceptual

• Integrated GPUs have traditionally been limited by how much GPU compute capability can be included

❖ Silicon Chip only has so much space

❖ Chiplets allow us to expand that space

• Let’s try adding more capability into an APU

Memory
Previous APU

Designs

Memory

Hypothetical Chiplet Design

GPU

CPUs

or

GPUs

More compute capability

for design with chipletsGPU

Compute

CPU

Compute

AM5 socket 40x40mm –

limited silicon space

Single CPU

socket
GPU

GPU

GPU

GPU

GPU

Chiplets

Oct 21-23, 2025 AMD @ Tsukuba University

Lots more silicon space to work with

7 |

[Public]

Advanced Heterogeneous Integration Packaging

XCD XCD

IOD

Strc.

Carrier Silicon

IOD

Strc.

Carrier Silicon

HBM HBM

Passive Silicon Interposer

Package Substrate

Cooling Solution

C4

Bump

TSV

bump

• 8 stacks of HBM

• 6 XCDs

• 3 CCDs

• 4 IODs

• IOD – I/O Die

• 3D hybrid bonding

• 2.5D silicon interposer
o IOD-IOD links

o IOD-HBM links

TSV

Hybrid

Bond
CCD CCD CCD

Oct 21-23, 2025 AMD @ Tsukuba University

8 |

[Public]

MI200 Series

• Technology in first Exascale systems

• High compute to power ratio

• Tight integration with memory

• Infinity Fabric for data transfers

• Memory Bandwidth Workloads

• Hybrid CPU + GPU Capability

• GPUs can drive full bandwidth

• Extreme Compute Workloads

• Suitable for typical AI work

• Other work entirely on GPU

MI300A MI300X

Bringing it to AMD Instinct Accelerator Products

Leadership

generative AI

accelerator

Extreme

Compute

Architecture with

leading memory

capacity and

bandwidth

First True

APU

Architecture

for HPC and

AI

The APU

programming model

Oct 21-23, 2025 AMD @ Tsukuba University

10 |

[Public]

A tale of Host and Device

Oct 21-23, 2025 AMD @ Tsukuba University

▪ The Host is the CPU

⁃ MI300A: 3 “Zen 4” based chiplets

▪ Host code runs here

▪ Usual C++ or Fortran syntax and features

▪ Entry point is the main function / PROGRAM

▪ HIP API or OpenMP® can be used to create
device buffers, move between host and device,
and launch device code.

▪ The Device is the GPU
⁃ MI300A: 6 XCDs with 38 compute units each (228 CUs total)

▪ Device code runs here

▪ C-like syntax (HIP) or OpenMP directives

▪ Device codes are launched via kernels

▪ Instructions from the Host are enqueued into
streams

Source code for CPU-GPU systems has two flavors: Host code and Device code

11 |

[Public]

Memory model

Definition

A memory model defines the rules for the synchronization of memory

modifications between threads, compute hardware and cache.

A memory model is critical for parallel computing to help both system developers

and application programmers avoid data hazard or race conditions where

memory is modified by one entity, but another compute unit fails to get the

updated value.

Oct 21-23, 2025 AMD @ Tsukuba University

12 |

[Public]

AMD discrete GPUs and memory addressing

In discrete GPU systems, CPU and GPU memory spaces are

separate and data needs to be moved between the two spaces.

This data movement can be performed in two ways:

1. By the programmer, explicitly

2. By the Operating System (OS), who helps move pages on

access and subsequent page fault

• We call this managed memory – short for "memory is managed by the

operating system”

• If no corresponding address is found, the program will fail with a

segmentation fault

AMD MI200 GPUs (MI210, MI250, MI250X) and MI300X are

discrete GPUs

• Implement managed memory

• To enable managed memory, export HSA_XNACK=1

Oct 21-23, 2025 AMD @ Tsukuba University

GPUCPU

GPU
Memory

(HBM)

CPU
Memory

(DDR)

13 |

[Public]

XNACK -- what is it and how to use it

Definition

XNACK refers to the AMD GPU's ability to retry memory accesses that fail due to a page fault.

xnack environment variable

On MI200 and MI300 series GPUs, it can be enabled on a per-process basis using the environment variable

 HSA_XNACK=1 and disabled using HSA_XNACK=0. Default decided at boot time.

xnack compiler flag

Run rocminfo | grep xnack to check if xnack is enabled

Compilation mode that can assume three possible values: xnack+, xnack-, xnack any.

To change the xnack compilation mode of a program, xnack+ or xnack- may be appended to the architecture flags:

 --offload-arch=gfx90a:xnack+

Supplying multiple xnack options will yield a "fat-binary" with both modes enabled.

When not specified, the default xnack any mode will be used.

Code compiled with xnack any will run in any case.

Oct 21-23, 2025 AMD @ Tsukuba University

14 |

[Public]

AMD CDNA 3 Unified Memory APU Architecture

▪ Eliminate Redundant Memory
Copies

▪ No programming distinction
between CPU and GPU memory
spaces

▪ High performance, fine-grained
sharing between CPU and GPU
processing elements

▪ Single process can address all
memory, compute elements on
a socket

▪ Allows incremental porting

AMD Instinct APU

Unified Memory
(HBM)

APU ARCHITECTURE BENEFITS FOR CPU TO GPU PORTING

MI300A

GPUCPU

GPU
Memory

(HBM)

CPU
Memory

(DDR)

Oct 21-23, 2025 AMD @ Tsukuba University

DISCRETE GPUS

15 |

[Public]

CPU CODE GPU CODE APU CODE

!allocation on host
ALLOCATE(var(1:N))

!compute on host
!$omp parallel do &
!$omp private(i), shared(var)
DO i=1,N
 var(i) = …
END DO
!$omp end parallel do
!sync barrier at omp end …
…
!deallocation
DEALLOCATE(var)

!allocation on host
ALLOCATE(var(1:N))

!compute on device, expl. mem movement!
!$omp target teams distribute parallel do &
!$omp map(tofrom:var) private(i),shared(var)
 DO i=1,N
 var(i) = …
 END DO
!$omp end target teams distribute parallel do
!host-device sync barrier at omp end …
…
!deallocation
DEALLOCATE(var)

!$omp requires unified_shared_memory
!allocation of unified memory
ALLOCATE(var(1:N))

!compute on device, no expl. mem movement!
!$omp target teams distribute parallel do &
!$omp private(i),shared(var)
 DO i=1,N
 var(i) = …
 END DO
!$omp end target teams distribute parallel do
!host-device sync barrier at omp end …

!deallocation of unified memory
DEALLOCATE(var)

APU PROGRAMMING MODEL WITH OPENMP®

AMD @ Tsukuba UniversityOct 21-23, 2025

Fortran example,

analogous for C++

Costly to switch

CPU -> GPU!
Cheap CPU ->

GPU with APU

• Compute kernel
• Special directive to enable unified memory
• Explicit memory management between CPU & GPU -> not needed for APU!
• Synchronization Barrier

16 |

[Public]

CPU CODE GPU CODE APU CODE

double* in_h = (double*)malloc(Msize);
double* out_h =
(double*)malloc(Msize);

for (int i=0; i<M; i++) // initialize
 in_h[i] = …;

cpu_func(in_h, out_h, M);

for (int i=0; i<M; i++) // CPU-process
 … = out_h[i];

double* in_h = (double*)malloc(Msize);
double* out_h = (double*)malloc(Msize);
hipMalloc(&in_d, Msize);
hipMalloc(&out_d, Msize);

for (int i=0; i<M; i++) // initialize
 in_h[i] = …;

hipMemcpy(in_d,in_h,Msize,hipMemcpyHostToDevice);
gpu_func<<< >>>(in_d, out_d, M);
Synchronization implied, hipMemcpy blocks
hipMemcpy(out_h,out_d,Msize,hipMemcpyDeviceToHost);

for (int i=0; i<M; i++) // CPU-process
 … = out_h[i];

double* in_h = (double*)malloc(Msize);
double* out_h = (double*)malloc(Msize);

for (int i=0; i<M; i++) // initialize
 in_h[i] = …;

gpu_func<<< >>>(in_h, out_h, M);
hipDeviceSynchronize();

for (int i=0; i<M; i++) // CPU-process
 … = out_h[i];

• Compute kernel
• GPU memory allocation on Device -> no copies for host and device on APU!
• Explicit memory management between CPU & GPU -> not needed for APU!
• Synchronization Barrier

APU PROGRAMMING MODEL WITH HIP

Oct 21-23, 2025 AMD @ Tsukuba University

C++ example,

Fortran only possible

with C bindings and

Interface to C for GPU

kernels

17 |

[Public]

OpenMP® CODE RAJA CODE KOKKOS CODE

#pragma omp requires unified_shared_memory

double* in_h, *out_h;
in_h = new (std::align_val_t(128)) double[N];
out_h = new (std::align_val_t(128)) double[N];

for (int i=0; i<N; i++) // initialize
 in_h[i] = …;

#pragma omp target
{ … }

for (int i=0; i<N; i++) // CPU-process
 … = out_h[i];

delete[] in_h; delete[] out_h;

double* in_h, *out_h;
in_h = new (std::align_val_t(128)) double[N];
out_h = new (std::align_val_t(128)) double[N];

for (int i=0; i<N; i++) // initialize
 in_h[i] = …;

RAJA::forall< exec_policy >(arange, [=]
(int i) { … });

for (int i=0; i<N; i++) // CPU-process
 … = out_h[i];

delete[] in_h; delete[] out_h;

double* in_h, *out_h;
in_h = new (std::align_val_t(128)) double[N];
out_h = new (std::align_val_t(128)) double[N];

for (int i=0; i<N; i++) // initialize
 in_h[i] = …;

Kokkos::parallel_for(N, [=] (const int
i){ … };
Kokkos::fence();

for (int i=0; i<N; i++) // CPU-process
 … = out_h[i];

delete[] in_h; delete[] out_h;

• Compute kernel
• Device specific memory allocator
• Explicit memory management between CPU & GPU
• Synchronization Barrier

PROGRAMMING ACROSS FRAMEWORKS/COMPILERS

Oct 21-23, 2025 AMD @ Tsukuba University

Choices in

programming languages

Oct 21-23, 2025 AMD @ Tsukuba University

19 |

[Public]

Native or Low-level languages ROCm , HIP, OpenCL

Pragma-based languages OpenMP, OpenACC (HPE)

Higher Level Performance Portability
languages – Frameworks

Kokkos, RAJA

Standard Based Languages C++ (HIP) Standard Parallelism

Multiple language paths for AMD GPUs -- all offer portability

Oct 21-23, 2025 AMD @ Tsukuba University

20 |

[Public]

Pragma-based languages

OpenMP® – primary supported option for AMD GPUs

• Implemented through LLVM

• Implemented in the cray compilers

➢ Recommendation: Best support for portability, easy to get started with

OpenACC – Supported through Cray, LLVM (CLACC) and GCC compilers

• Not as well supported as other options

➢ Recommendation: Try if your code already has OpenACC implemented

➢ Also available: source-to-source translation tools from OpenACC to OpenMP (Intel® and CLACC)

do concurrent (Fortran only)

• requires rewriting the “do”

• Not supported by all compilers yet, but expected very soon

➢ Recommendation: Good option to offload very simple loops, can be considered

Oct 21-23, 2025 AMD @ Tsukuba University

21 |

[Public]

Native or low-level languages

Heterogeneous Interface for Portability (HIP)

• A portable layer on top of ROCm and CUDA

Requires a different source on CPU and GPU

• Larger effort for porting and overhead

• No equivalent of CUDA Fortran available: Fortran requires

C interfaces, thus even larger overhead and two

programming languages for same app

➢ Reccomendation: HIP for hottest loops and complex

kernels, if not already CUDA ported

➢ If already CUDA ported: Converting CUDA to HIP is

straightforward

• Hipify scripts do majority of the work

• Still requires optimization effort to get best performance

• e.g. a wavefront has 64 threads executing the same instruction

(different compared to 32 threads per warp on NVIDIA hardware)

• There are other low-level languages such as

OpenCL

Oct 21-23, 2025 AMD @ Tsukuba University

Portable HIP C++ (Host & Device Code)

#include

“hip_runtime.h”

hipcc

AMD GPU

C
U

D
A

 e
q
u
iv

a
le

n
ts

 a
v
a

ila
b
le

 m
a
k
e

th
is

 p
o
rt

a
b
le

 t
o
 N

V
ID

IA
 h

a
rd

w
a
re

22 |

[Public]

Higher level performance portability frameworks

Kokkos – Sandia National Lab (SNL) C++ performance portable programming model​

❖ The Kokkos team has aggressively developed support for AMD GPUs via a HIP backend

❖ Kokkos handles many of the unique attributes of the AMD GPUs for you

❖ Parts being integrated into the C++ standard

RAJA – Lawrence Livermore National Lab (LLNL) C++ performance portability layer​

❖ Modular in structure with separation of compute and data management​

❖ Supports AMD GPUs

❖ Key kernel patterns have been optimized by AMD

Advantages of Performance Portability Frameworks

❖ True single-source application code (at least if you restrict yourself to C++)

❖ Many of these framework support both CPUs and GPUs​

Oct 21-23, 2025 AMD @ Tsukuba University

23 |

[Public]

C++ standard based languages

Oct 21-23, 2025 AMD @ Tsukuba University

With the C++ 17 standard, support for parallelism was introduced. The application developer specifies

parallelism as the first parameter to a C++ algorithm

•std::execution::seq – Sequential execution
 All operations on the thread that invoked the algorithm

•std::execution::unseq – Vectorized execution (C++20)
 Indicate that a parallel algorithm's execution may be vectorized, e.g., executed on a single thread using instructions that

operate on multiple data items

•std::execution::par – Parallel multithreaded execution
 Parallel execution allowed. Operations are indeterminately sequenced within a thread

•std::execution::par_unseq – Parallel multithreaded and vectorized execution
 The various operations can be interleaved with each other on the same thread. Any given operation may start on a thread and

end on a different thread

➢ With the release of ROCm 6.1, C++ standard parallelism is available for AMD GPUs.

❖ To enable, use the --hipstdpar compile flag

❖ The ROCm 6.1 release only supports the par_unseq execution policy

❖ Recommendation: Consider this option only for experimental use and with experienced C++

developers, not best performance at the moment

24 |

[Public]

Other languages

Many other languages also work on AMD GPUs to some level and are continually improving

❖ SYCL

❖ Julia: instructions on how to add Julia as a module.

❖ Python

ML/AI -- Support for these languages is excellent and portable

❖ PyTorch – AMD is a founding member of the PyTorch Foundation

❖ JAX

❖ Cupy

❖ TensorFlow

❖ And many other ML/AI packages
➢ See https://github.com/ROCm

Oct 21-23, 2025 AMD @ Tsukuba University

https://github.com/amd/HPCTrainingDock?tab=readme-ov-file#4-adding-your-own-modules
https://github.com/ROCm

25 |

[Public]

Hands-on exercises

Located in our HPC Training Examples repo:

 https://github.com/amd/HPCTrainingExamples

A table of contents for the READMEs if available at the top-level README in the repo

Relevant exercises for this presentation located in ManagedMemory directory.

Link to instructions on how to run the tests: ManagedMemory/README.md

Log into the AAC node and clone the repo:

 ssh <username>@aac6.amd.com –p <port number>

 git clone https://github.com/amd/HPCTrainingExamples.git

Oct 21-23, 2025 AMD @ Tsukuba University

https://github.com/amd/HPCTrainingExamples
https://github.com/amd/HPCTrainingExamples/blob/main/README.md
https://github.com/amd/HPCTrainingExamples/tree/main/ManagedMemory
https://github.com/amd/HPCTrainingExamples/blob/main/ManagedMemory/README.md

26 |

[Public]

Disclaimer

Oct 21-23, 2025 AMD @ Tsukuba University

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The

information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes,

component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS

flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes

no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to

time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF

AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD

SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE.

IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES

ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY CONTENT IS

PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR SOLE DISCRETION AND UNDER

NO CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR

ANY DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD CDNA, AMD ROCm, AMD Instinct, and combinations thereof are

trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be

trademarks of their respective owners.

LLVM is a trademark of LLVM Foundation

Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git Project, in the United States

and/or other countries

OpenCL is a trademark of Apple Inc. used by permission by Khronos Group, Inc.

Intel® is a trademark of Intel Corporation or its subsidiaries

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board

	Slide 1: APU Programming Model Presenters: Bob Robey AMD @ Tsukuba University
	Slide 2: Porting code from CPU to GPU
	Slide 3: What AMD offers
	Slide 4: APU and discrete GPU architectures
	Slide 5: Taxonomy of compute architectures
	Slide 6: Breakthrough in compute capability -- Conceptual
	Slide 7: Advanced Heterogeneous Integration Packaging
	Slide 8: Bringing it to AMD Instinct™ Accelerator Products
	Slide 9: The APU programming model
	Slide 10: A tale of Host and Device
	Slide 11: Memory model
	Slide 12: AMD discrete GPUs and memory addressing
	Slide 13: XNACK -- what is it and how to use it
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Choices in programming languages
	Slide 19: Multiple language paths for AMD GPUs -- all offer portability
	Slide 20: Pragma-based languages
	Slide 21: Native or low-level languages
	Slide 22: Higher level performance portability frameworks
	Slide 23: C++ standard based languages
	Slide 24: Other languages
	Slide 25: Hands-on exercises
	Slide 26: Disclaimer
	Slide 27

