Al Optimization and Profiling Overview

From 20ms to 4ms: Al Workload Profiling and Optimization

Presenter: Samuel Antao Oct 13-16, 2025 AMD @ CASTIEL AI Workshop

AMD together we advance_

Advanced Al Programming

- Al Applications can challenge even the most extreme computing hardware
- Optimizing the applications can save both application run time and the hardware resources needed
- Due to high-level nature of Al apps, it can be difficult to determine the bottlenecks for performance
- Profiling tools are needed for different levels of analysis

Al Model Optimization

- We will be focusing on Pytorch optimizations, though similar approaches are used in other frameworks
- Tunning that can be applied are:
 - System-specific
 - Affinity
 - Communication fabric selection
 - Environment:
 - Communication
 - Libraries
 - Framework:
 - Kernel fusion techniques
 - Triton kernel usage
 - Memory optimization
 - Model-specific
 - Batch size optimization
 - Model parallelism data/tensor/pipeline

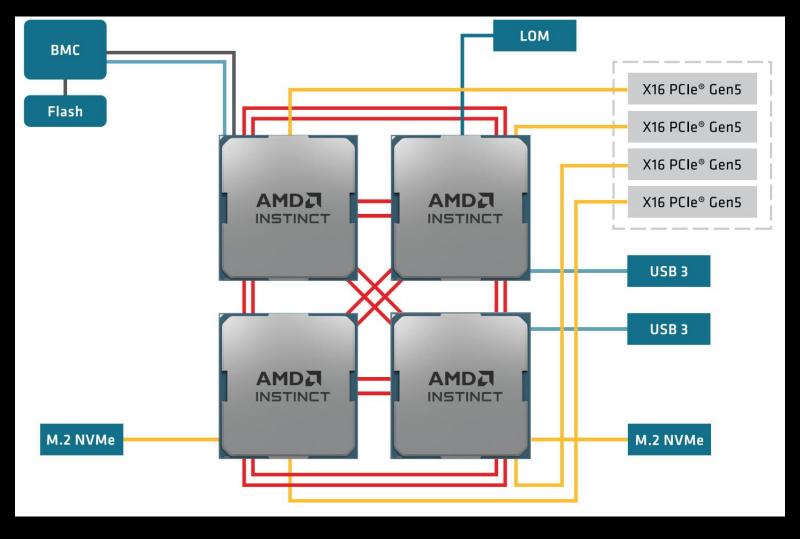
Controlling device visibility

- Many GPUs can exist in a single node: which one to use?
- Controlling visibility
 - HIP_VISIBLE_DEVICES=0,1,2,3 python -c 'import torch; print(torch.cuda.device_count())'
 - ROCR_VISIBLE_DEVICES=0,1,2,3 python -c 'import torch; print(torch.cuda.device_count())'
- Considerations:
 - Does my app expects GPU visibility to be set in the environment?
 - Does my app expects arguments to define target GPUs
 - Does my app make any assumption on the device based on other information:
 - MPI rank
 - CPU-range
 - Auto-determined

Most Pytorch applications and driver scripts assume the GPU to be used corresponds to the local rank!!!

Testing affinity – MI300A example

Each chip contains both CPU and GPU capabilities



Testing affinity – MI300A

- What CPUs I have available and their NUMA domain?
 - Iscpu
- What GPUs I have
 - rocm-smi –showtopo

NUMA node0 CPU(s):0-23,96-119NUMA node1 CPU(s):24-47,120-143NUMA node2 CPU(s):48-71,144-167NUMA node3 CPU(s):72-95,168-191

GPU[0]
GPU[0]
GPU[1]
GPU[1]
GPU[2]
GPU[2]
GPU[2]
GPU[3]
GPU[3]

Other chips GPU[0] : (Topology) Numa Node: 0 : (Topology) Numa Affinity: 0 : (Topology) Numa Node: 1 : (Topology) Numa Affinity: 1 : (Topology) Numa Node: 2 : (Topology) Numa Affinity: 2 : (Topology) Numa Node: 3

Local

communication

- How to control which CPU
 - Numactl: e.g --physcpubind=0-23
 - MPI: mpirun binding arguments
 - Scheduler: srun ... --gpu-bind=closest

: (Topology) Numa Affinity: 3

Comms are important! - RCCL CXI plugin

- LUMI, Frontier (and others) directly attaches AMD Instinct™ Accelerators to the Slingshot Network
 - Enable collectives computation on devices
 - Minimize the role of the CPU in the control path expose more asynchronous computation opportunities
 - Lowest latency for network message passing is from GPU HBM memory

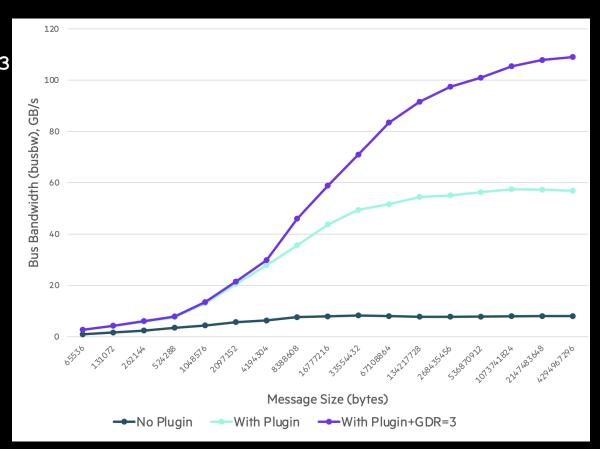
- CXI plugin is a runtime dependency. Requires: HPE Cray libfabric implementation
 - https://github.com/ROCm/aws-ofi-rccl
 - 3-4x faster collectives
- Make sure your containerized worflows use this plugin!
- export NCCL DEBUG=INFO

```
export NCCL_DEBUG_SUBSYS=INIT
# and search the logs for:
[0] NCCL INFO NET/OFI Using aws-ofi-rccl 1.4.0
```

Check your site's recommendations. Don't assume the generic setups will work well. And pay special attention to container configurations!

Configuring RCCL environment

- Select high-speed interfaces:
 - export NCCL_SOCKET_IFNAME=hsn0,hsn1,hsn2,hsn3
- RCCL should be set configured to use GPU RDMA:
 - export NCCL_NET_GDR_LEVEL=PHB
- On ROCm versions 6.2+ this is not needed it is default.
- Why should I spend time with all this?
 - 3-4x better bandwidth utilization with plugin
 - 2x better bandwidth utilization with RDMA
 - Can scale further!
- Careful using external containers! You may need to be setting plugin yourself!



Environment settings

- These are the easiest ways to get a performance speedup.
 - Each Al Framework has their own environment tuning parameters. See https://rocm.docs.amd.com for suggestions or check your Al package documentation.

Pytorch

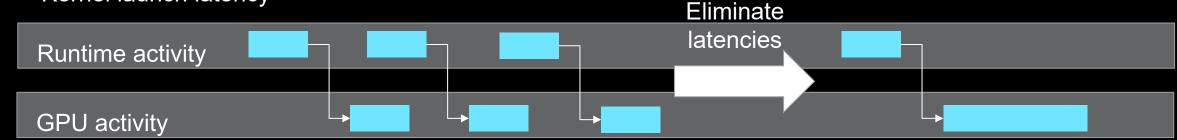
- Will run a suite of GEMMs and pick the fastest. If running the same size GEMM many times, this can dramatically speed up your application
- export PYTORCH_TUNABLEOP_ENABLED=1

MIOpen

- Using the default MIOpen database in a shared location may not be writeable and the locks may slow your application. The following puts the database in a fast filesystem and can be user specific.
- o export MIOPEN_USER_DB_PATH="/tmp/my-miopen-cache"
- o export MIOPEN_CUSTOM_CACHE_DIR="/tmp/my-miopen-cache"
- For larger numbers of nodes, file system doesn't deal well with SQLite locks when many processes are trying to access it. Solution?
 Setup individual caches for groups of ranks we recommend per node:
- o export MIOPEN_USER_DB_PATH="/tmp/\$(whoami)-miopen-cache-\$SLURM NODEID"
- export MIOPEN_CUSTOM_CACHE_DIR=\$MIOPEN_USER_DB_PATH

Kernel fusion and composability

- Training and other AI workloads are composed of different passes each composed of different operations.
- Issuing many small operations is problematic for GPUs
- Kernel launch latency



- Kernel fusion in Pytorch
 - Automatic fusion torch.compile()
 - Detects fusion opportunities
 - Decorators available for costumization

```
@torch.compile
def my_function(x):
    return x * 0.25 * (1.0 + torch.erf(x / 1.42))
```

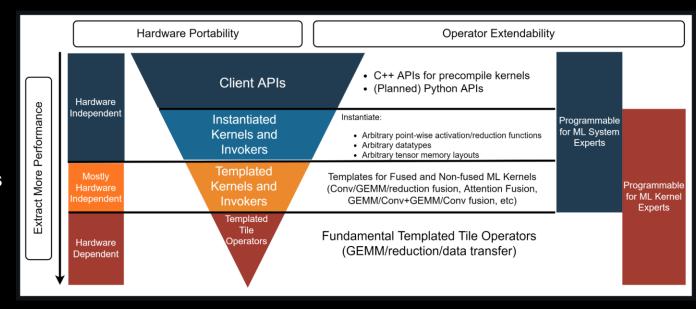
Kernel fusion and composability

- Triton backend
 - "Python code that you can compile"
 - Domain specific language and decorators.
- Ahead-of-time Triton AOTriton
 - Pre-built triton kernels
 - Flash Attention implementation
 - https://github.com/ROCm/aotriton
- Composable kernel (CK)
 - Performance critical ML primitives
 - Tile base programming model
 - Tend to perform better than Triton-based operands
 - https://github.com/ROCm/composable_kernel
- Good news: all these libraries should be available in you Pytorch installation for ROCm

```
import triton
import triton.language as tl
```

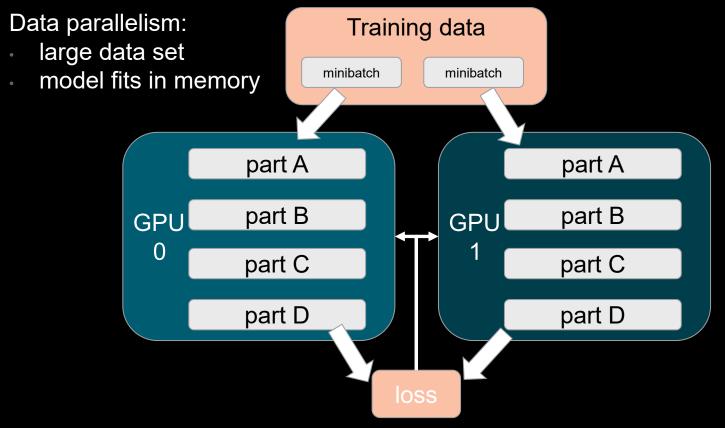
```
# Define a simple element-wise addition kernel
@triton.jit
def add_kernel(x_ptr, y_ptr, out_ptr, n_elem, BLOCK_SIZE: tl.constexpr):
    pid = tl.program_id(axis=0)
    block_start = pid * BLOCK_SIZE
    offsets = block_start + tl.arange(0, BLOCK_SIZE)
    mask = offsets < n_elem

x = tl.load(x_ptr + offsets, mask=mask)
    y = tl.load(y_ptr + offsets, mask=mask)
    output = x + y
    tl.store(out_ptr + offsets, output, mask=mask)</pre>
```



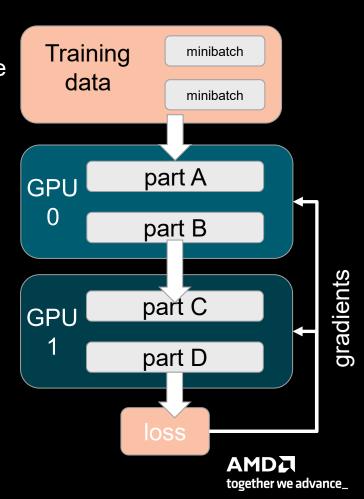
Exploring parallelism

- Great, I have 8 GPUs in my system!
- Depending on your model and data your parallelization strategy needs to be decided



Model parallelism

- model too large
- faster training iteration



Other ways to express parallelism - FSDP

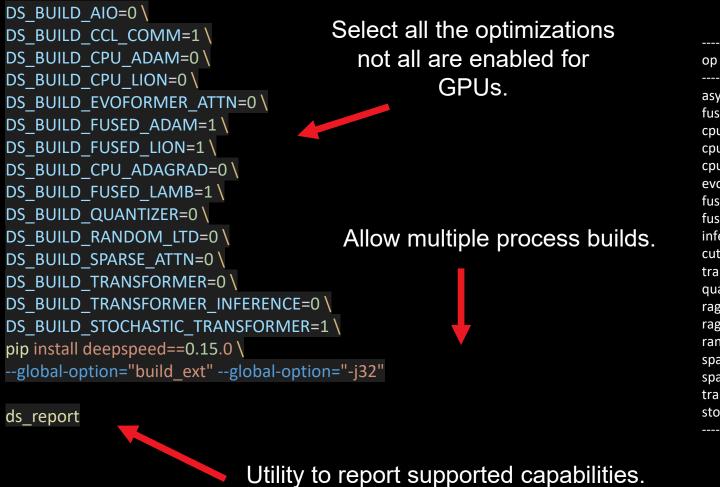
- Fully Sharded Data Parallel is another option.
 - Create shards out of the neural net model more likely to be activated together
 - Try keep less state in the GPU could support larger models with less GPUs
 - More complexities in configuring the different knobs. Depending on the tunning may require more or less changes to your code.
 - https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
- Using FSDP requires wrapping your model into the relevant FSDP object.

```
wrapper_kwargs = Dict(cpu_offload=CPUOffload(offload_params=True))
with enable_wrap(wrapper_cls=FullyShardedDataParallel, **wrapper_kwargs):
    fsdp_model = wrap(model())
Your original model
```

- Some tools to control the wrapping in less intrusive ways have been created accelerate.
 - Enabling FSDP on transformers: https://huggingface.co/docs/transformers

Other ways to express parallelism - DeepSpeed

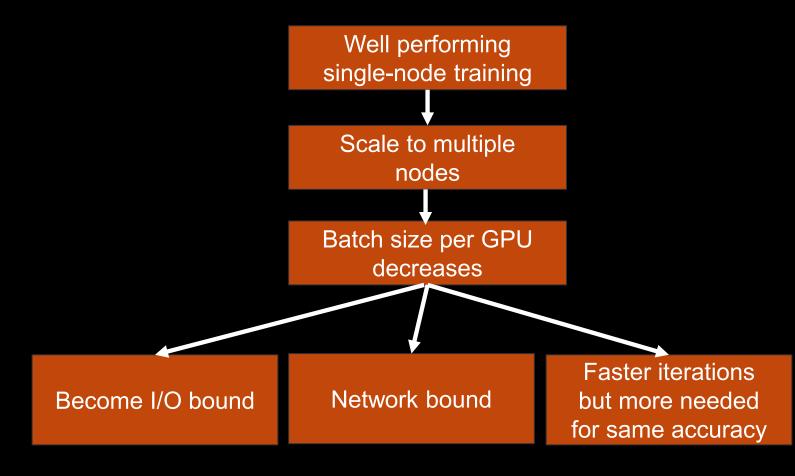
DeepSpeed is a framework to optimize distributed deep-learning training and inference



op name installed compatible
async_io
stochastic_transformer . [YES] [OKAY]

Scaling implications

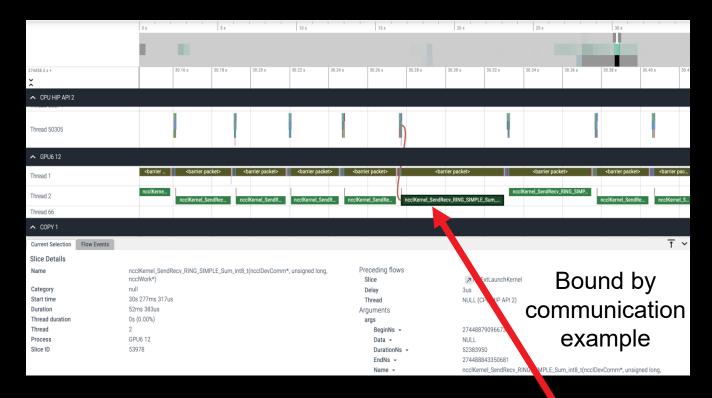
- Why would I want to scale my model?
 - Train faster strong-scaling
 - Train bigger weak-scaling
 - My model doesn't fit in just a few GPUs
- How far can I go?
 - Depends on your model
 - Scaling can change the bottlenecks
 - Scaling can change convergence
- Monitor the regime in which you are operating the GPUs at all times!
- The goal is to learn faster not run faster
 - Faster iterations can be offset by slower convergence



✓ You'll always be bound by some type of communication at some point!!!

The goal is for a model to learn faster!

- Your bottleneck might not be the GPU
- Check your accuracies are as expected
- Loss-curves
- Adopt an holistic approach to performance analysis
 - Communication
 - I/O



Collectives kernels dominate profile

Data fetching dominate profile

Minimal GPU activity

Pytorch Profiling Tools Progression

Start with simple high-level profiling tools - progress to detailed ones as needed

Framework-level tools

- PyTorch Profiler: Framework-level performance analysis
- DeepSpeed FLOPS Profiler: Computational efficiency metrics
- Triton Profiler (Proton): Analyze kernel performance

System-level tools

- ROCsmi (AMDsmi):
- ROCprofv3 /ROCprof-sys: System-level performance analysis

Kernel-level tools

- ROCprofv3: Basic ROCm profiling of GPU activity
- ROCprof-compute: Advanced GPU kernel-level analysis and optimization

Framework-Level Tools

PyTorch Profiler Purpose: Operator-level performance analysis Output: Execution time, memory, call counts, tensor shapes Usage: torch.profiler.profile() context manager Export: Chrome trace, table summaries, TensorBoard DeepSpeed FLOPSProfiler Purpose: Computational efficiency metrics Output: FLOPS per layer, multiply-accumulate operations (MACs), parameters, efficiency % Usage: FlopsProfiler(model) wrapper: https://www.deepspeed.ai/tutorials/flops-profiler/ · Analysis: Theoretical vs achieved compute, bottleneck identification **Triton Profiler (Proton)** Purpose: Kernel performance Output: Timings, plots Usage: triton.testing.do bench wrapper Analysis: Comparisons with different approaches

System-Level Tools

- ROCm SMI (System Management Interface)
 - —— Purpose: GPU health and utilization monitoring
 - Output: Temperature, power, memory usage, GPU utilization
 - —— Usage: rocm-smi (real-time monitoring)
 - L—— Analysis: Thermal throttling, memory saturation, multi-GPU balance
- rocprof-sys (System Profiler)
 - —— Purpose: System-wide performance monitoring
 - —— Output: Multi-process coordination, resource utilization, CPU/GPU interaction
 - Usage: rocprof-sys record -o trace.otf2 -- python script.py
 - —— Analysis: Timeline visualization, process synchronization, I/O bottlenecks

Kernel-Level Tools

- rocprofv3 (Basic Hardware Counter Profiler)
 - —— Purpose: Basic GPU kernel profiling and metrics
 - Output: Kernel execution times, memory transfers, GPU utilization
 - Usage: rocprofv3 --stats python script.py
 - —— Analysis: Kernel-level timing, backward compatibility
- rocprof-compute (Advanced Profiler)
 - Purpose: Detailed compute kernel analysis and optimization
 - Output: Hardware counters, roofline analysis, optimization hints
 - Usage: rocprof-compute profile --kernel-names --roofline -- python script.py
 - Analysis: Memory hierarchy utilization, arithmetic intensity, bottleneck classification

Tool Selection Decision Tree

Start Here: What do you want to optimize? Question 1: Do you know which operation is slow? No → Use PyTorch Profiler + ROCprof-sys (identify hot operators) Yes → Continue to Question 2 Question 2: Is it compute-bound or memory-bound? Unknown → Use ROCprof-compute (roofline analysis) Compute → Focus on algorithm/fusion optimization Memory → Focus on memory access patterns Question 3: Are you writing custom kernels? No → Use PyTorch Profiler + ROCprof-sys Yes → Use ROCprof-compute + Triton profiler Question 4: Production deployment? No → Focus on performance iteration Yes → Add monitoring (performance regression tests)

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED 'AS IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY CONTENT IS PROVIDED "AS IS" WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR SOLE DISCRETION AND UNDER NO CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR ANY DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD CDNA, AMD ROCm, AMD Instinct, and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of their respective owners.

Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git Project, in the United States and/or other countries

HPE is a registered trademark of Hewlett Packard Enterprise Company and/or its affiliates.

#