
AI Optimization and

Profiling Overview
From 20ms to 4ms: AI Workload Profiling and Optimization

Presenter: Samuel Antao

Oct 13-16, 2025

AMD @ CASTIEL AI Workshop

2 |

Advanced AI Programming

• AI Applications can challenge even the most extreme computing hardware

• Optimizing the applications can save both application run time and the hardware resources needed

• Due to high-level nature of AI apps, it can be difficult to determine the bottlenecks for performance

• Profiling tools are needed for different levels of analysis

AMD @ CASTIEL AI WorkshopOct 13-16, 2025

3 |

AI Model Optimization

• We will be focusing on Pytorch optimizations, though similar approaches are used in other frameworks

• Tunning that can be applied are:

• System-specific
• Affinity

• Communication fabric selection

• Environment:
• Communication

• Libraries

• Framework:
• Kernel fusion techniques

• Triton kernel usage

• Memory optimization

• Model-specific
• Batch size optimization

• Model parallelism – data/tensor/pipeline

AMD @ CASTIEL AI WorkshopOct 13-16, 2025

4 |

Controlling device visibility

• Many GPUs can exist in a single node: which one to use?

• Controlling visibility

• HIP_VISIBLE_DEVICES=0,1,2,3 python -c 'import torch; print(torch.cuda.device_count())'

• ROCR_VISIBLE_DEVICES=0,1,2,3 python -c 'import torch; print(torch.cuda.device_count())’

• Considerations:

• Does my app expects GPU visibility to be set in the environment?

• Does my app expects arguments to define target GPUs

• Does my app make any assumption on the device based on other information:
• MPI rank

• CPU-range

• Auto-determined

Most Pytorch applications and driver scripts assume the GPU to be used corresponds to the local rank!!!

AMD @ CASTIEL AI WorkshopOct 13-16, 2025

6 |

Testing affinity – MI300A example

AMD @ CASTIEL AI WorkshopOct 13-16, 2025

Each chip

contains both

CPU and GPU

capabilities

7 |

Testing affinity – MI300A

• What CPUs I have available and their NUMA domain?
• lscpu

• What GPUs I have
• rocm-smi –showtopo

• How to control which CPU
• Numactl: e.g --physcpubind=0-23

• MPI: mpirun binding arguments

• Scheduler: srun … --gpu-bind=closest

NUMA node0 CPU(s): 0-23,96-119

NUMA node1 CPU(s): 24-47,120-143

NUMA node2 CPU(s): 48-71,144-167

NUMA node3 CPU(s): 72-95,168-191

GPU[0] : (Topology) Numa Node: 0

GPU[0] : (Topology) Numa Affinity: 0

GPU[1] : (Topology) Numa Node: 1

GPU[1] : (Topology) Numa Affinity: 1

GPU[2] : (Topology) Numa Node: 2

GPU[2] : (Topology) Numa Affinity: 2

GPU[3] : (Topology) Numa Node: 3

GPU[3] : (Topology) Numa Affinity: 3

AMD @ CASTIEL AI WorkshopOct 13-16, 2025

4x

Local

communication

Other chips

8 |

▪ LUMI, Frontier (and others) directly attaches AMD Instinct Accelerators to the Slingshot Network

▪ Enable collectives computation on devices

▪ Minimize the role of the CPU in the control path – expose more asynchronous computation opportunities

▪ Lowest latency for network message passing is from GPU HBM memory

▪ CXI plugin is a runtime dependency. Requires: HPE Cray libfabric implementation

▪ https://github.com/ROCm/aws-ofi-rccl

▪ 3-4x faster collectives

▪ Make sure your containerized worflows use this plugin!

▪ export NCCL_DEBUG=INFO

export NCCL_DEBUG_SUBSYS=INIT

and search the logs for:

[0] NCCL INFO NET/OFI Using aws-ofi-rccl 1.4.0

To Slingshot Network
CXI

plugin

Comms are important! - RCCL CXI plugin

Check your site's recommendations. Don't assume the

generic setups will work well. And pay special attention to

container configurations!

AMD @ CASTIEL AI WorkshopOct 13-16, 2025

10 |

Configuring RCCL environment

• Select high-speed interfaces:

• export NCCL_SOCKET_IFNAME=hsn0,hsn1,hsn2,hsn3

• RCCL should be set configured to use GPU RDMA:

• export NCCL_NET_GDR_LEVEL=PHB

• On ROCm versions 6.2+ this is not needed – it is

default.

• Why should I spend time with all this?

• 3-4x better bandwidth utilization with plugin

• 2x better bandwidth utilization with RDMA

• Can scale further!

• Careful using external containers! You may

need to be setting plugin yourself!

AMD @ CASTIEL AI WorkshopOct 13-16, 2025

11 |

Environment settings

• These are the easiest ways to get a performance speedup.

• Each AI Framework has their own environment tuning parameters. See https://rocm.docs.amd.com for suggestions or

check your AI package documentation.

• Pytorch
o Will run a suite of GEMMs and pick the fastest. If running the same size GEMM many times, this can dramatically speed up your

application

o export PYTORCH_TUNABLEOP_ENABLED=1

• MIOpen

o Using the default MIOpen database in a shared location may not be writeable and the locks may slow your

application. The following puts the database in a fast filesystem and can be user specific.

o export MIOPEN_USER_DB_PATH="/tmp/my-miopen-cache"

o export MIOPEN_CUSTOM_CACHE_DIR="/tmp/my-miopen-cache"

o For larger numbers of nodes, file system doesn’t deal well with SQLite locks when many processes are trying to access it. Solution?

Setup individual caches for groups of ranks – we recommend per node:

o export MIOPEN_USER_DB_PATH="/tmp/$(whoami)-miopen-cache-$SLURM_NODEID"

o export MIOPEN_CUSTOM_CACHE_DIR=$MIOPEN_USER_DB_PATH

AMD @ CASTIEL AI WorkshopOct 13-16, 2025

https://rocm.docs.amd.com

12 |

Kernel fusion and composability

• Training and other AI workloads are composed of different passes each composed of different operations.

• Issuing many small operations is problematic for GPUs

• Kernel launch latency

• Kernel fusion in Pytorch

• Automatic fusion – torch.compile()

• Detects fusion opportunities

• Decorators available for costumization

Runtime activity

@torch.compile
def my_function(x):
 return x * 0.25 * (1.0 + torch.erf(x / 1.42))

GPU activity

Eliminate

latencies

AMD @ CASTIEL AI WorkshopOct 13-16, 2025

13 |

Kernel fusion and composability

• Triton backend

• “Python code that you can compile”

• Domain specific language and decorators.

• Ahead-of-time Triton – AOTriton

• Pre-built triton kernels

• Flash Attention implementation

• https://github.com/ROCm/aotriton

• Composable kernel (CK)

• Performance critical ML primitives

• Tile base programming model

• Tend to perform better than Triton-based operands

• https://github.com/ROCm/composable_kernel

• Good news: all these libraries should be

available in you Pytorch installation for ROCm

import triton
import triton.language as tl

Define a simple element-wise addition kernel
@triton.jit
def add_kernel(x_ptr, y_ptr, out_ptr, n_elem, BLOCK_SIZE: tl.constexpr):
 pid = tl.program_id(axis=0)
 block_start = pid * BLOCK_SIZE
 offsets = block_start + tl.arange(0, BLOCK_SIZE)
 mask = offsets < n_elem

 x = tl.load(x_ptr + offsets, mask=mask)
 y = tl.load(y_ptr + offsets, mask=mask)
 output = x + y
 tl.store(out_ptr + offsets, output, mask=mask)

AMD @ CASTIEL AI WorkshopOct 13-16, 2025

https://github.com/ROCm/composable_kernel
https://github.com/ROCm/composable_kernel

14 |

Exploring parallelism

• Great, I have 8 GPUs in my system!

• Depending on your model and data your parallelization strategy needs to be decided

Training data

GPU

0

loss

part A

part B

part C

part D

GPU

1

part A

part B

part C

part D

minibatch minibatch

Training

 data
minibatch

minibatch

GPU

0

part A

part B

GPU

1

part C

part D

loss

g
ra

d
ie

n
ts

Data parallelism:

• large data set

• model fits in memory

Model parallelism

• model too large

• faster training

iteration

AMD @ CASTIEL AI WorkshopOct 13-16, 2025

15

[Public]

Other ways to express parallelism - FSDP

• Fully Sharded Data Parallel is another option.

• Create shards out of the neural net model more likely to be activated together

• Try keep less state in the GPU – could support larger models with less GPUs

• More complexities in configuring the different knobs. Depending on the tunning may require more or less changes

to your code.

• https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/

• Using FSDP requires wrapping your model into the relevant FSDP object.

wrapper_kwargs = Dict(cpu_offload=CPUOffload(offload_params=True))

with enable_wrap(wrapper_cls=FullyShardedDataParallel, **wrapper_kwargs):

fsdp_model = wrap(model())

• Some tools to control the wrapping in less intrusive ways have been created - accelerate.

• Enabling FSDP on transformers: https://huggingface.co/docs/transformers

Your original model

Oct 13-16, 2025 AMD @ CASTIEL AI Workshop

AMD @ CASTIEL AI WorkshopOct 13-16, 2025

https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://huggingface.co/docs/transformers

17

[Public]

• DeepSpeed is a framework to optimize distributed deep-learning training and inference

Other ways to express parallelism - DeepSpeed

DS_BUILD_AIO=0 \
DS_BUILD_CCL_COMM=1 \
DS_BUILD_CPU_ADAM=0 \
DS_BUILD_CPU_LION=0 \
DS_BUILD_EVOFORMER_ATTN=0 \
DS_BUILD_FUSED_ADAM=1 \
DS_BUILD_FUSED_LION=1 \
DS_BUILD_CPU_ADAGRAD=0 \
DS_BUILD_FUSED_LAMB=1 \
DS_BUILD_QUANTIZER=0 \
DS_BUILD_RANDOM_LTD=0 \
DS_BUILD_SPARSE_ATTN=0 \
DS_BUILD_TRANSFORMER=0 \
DS_BUILD_TRANSFORMER_INFERENCE=0 \
DS_BUILD_STOCHASTIC_TRANSFORMER=1 \
pip install deepspeed==0.15.0 \
--global-option="build_ext" --global-option="-j32"

ds_report

Select all the optimizations

not all are enabled for

GPUs.

Allow multiple process builds.

Utility to report supported capabilities.

--
op name installed .. compatible
--
async_io [NO] [NO]
fused_adam [YES] [OKAY]
cpu_adam [NO] [OKAY]
cpu_adagrad [NO] [OKAY]
cpu_lion [NO] [OKAY]
evoformer_attn [NO] [NO]
fused_lamb [YES] [OKAY]
fused_lion [YES] [OKAY]
inference_core_ops [NO] [OKAY]
cutlass_ops [NO] [OKAY]
transformer_inference .. [NO] [OKAY]
quantizer [NO] [OKAY]
ragged_device_ops [NO] [OKAY]
ragged_ops [NO] [OKAY]
random_ltd [NO] [OKAY]
sparse_attn [NO] [NO]
spatial_inference [NO] [OKAY]
transformer [NO] [OKAY]
stochastic_transformer . [YES] [OKAY]
--

Oct 13-16, 2025 AMD @ CASTIEL AI Workshop

19

[Public]

Scaling implications

• Why would I want to scale my model?

• Train faster – strong-scaling

• Train bigger – weak-scaling

• My model doesn’t fit in just a few GPUs

• How far can I go?

• Depends on your model

• Scaling can change the bottlenecks

• Scaling can change convergence

• Monitor the regime in which you are

operating the GPUs at all times!

• The goal is to learn faster not run faster

• Faster iterations can be offset by slower

convergence

Well performing

single-node training

Scale to multiple

nodes

Batch size per GPU

decreases

Become I/O bound

Faster iterations

but more needed

for same accuracy

Network bound

◢ You’ll always be bound by some type of communication at

some point!!!

AMD @ CASTIEL AI WorkshopOct 13-16, 2025

20 |

The goal is for a model to

learn faster!
• Your bottleneck might not be the GPU

• Check your accuracies are as expected

• Loss-curves

• Adopt an holistic approach to performance

analysis

• Communication

• I/O

AMD @ CASTIEL AI WorkshopOct 13-16, 2025

Collectives

kernels dominate

profile

Data fetching

dominate profile

Minimal GPU

activity

Bound by

communication

example

Bound by I/O

example

21 |

Pytorch Profiling Tools Progression

• Start with simple high-level profiling tools - progress to detailed ones as needed

Framework-level tools

• PyTorch Profiler: Framework-level performance analysis

• DeepSpeed FLOPS Profiler: Computational efficiency metrics

• Triton Profiler (Proton): Analyze kernel performance

System-level tools

• ROCsmi (AMDsmi):

• ROCprofv3 /ROCprof-sys: System-level performance analysis

Kernel-level tools

• ROCprofv3: Basic ROCm profiling of GPU activity

• ROCprof-compute: Advanced GPU kernel-level analysis and optimization

AMD @ CASTIEL AI WorkshopOct 13-16, 2025

22 |

Framework-Level Tools

• PyTorch Profiler

├── Purpose: Operator-level performance analysis

├── Output: Execution time, memory, call counts, tensor shapes

├── Usage: torch.profiler.profile() context manager

└── Export: Chrome trace, table summaries, TensorBoard

• DeepSpeed FLOPSProfiler

├── Purpose: Computational efficiency metrics

├── Output: FLOPS per layer, multiply-accumulate operations (MACs), parameters, efficiency %

├── Usage: FlopsProfiler(model) wrapper: https://www.deepspeed.ai/tutorials/flops-profiler/

└── Analysis: Theoretical vs achieved compute, bottleneck identification

• Triton Profiler (Proton)

• ├── Purpose: Kernel performance

├── Output: Timings, plots

├── Usage: triton.testing.do_bench wrapper

└── Analysis: Comparisons with different approaches

AMD @ CASTIEL AI WorkshopOct 13-16, 2025

23 |

System-Level Tools

• ROCm SMI (System Management Interface)

├── Purpose: GPU health and utilization monitoring

├── Output: Temperature, power, memory usage, GPU utilization

├── Usage: rocm-smi (real-time monitoring)

└── Analysis: Thermal throttling, memory saturation, multi-GPU balance

• rocprof-sys (System Profiler)

├── Purpose: System-wide performance monitoring

├── Output: Multi-process coordination, resource utilization, CPU/GPU interaction

├── Usage: rocprof-sys record -o trace.otf2 -- python script.py

└── Analysis: Timeline visualization, process synchronization, I/O bottlenecks

AMD @ CASTIEL AI WorkshopOct 13-16, 2025

24 |

Kernel-Level Tools

• rocprofv3 (Basic Hardware Counter Profiler)

├── Purpose: Basic GPU kernel profiling and metrics

├── Output: Kernel execution times, memory transfers, GPU utilization

├── Usage: rocprofv3 --stats python script.py

└── Analysis: Kernel-level timing, backward compatibility

• rocprof-compute (Advanced Profiler)

├── Purpose: Detailed compute kernel analysis and optimization

├── Output: Hardware counters, roofline analysis, optimization hints

├── Usage: rocprof-compute profile --kernel-names --roofline -- python script.py

└── Analysis: Memory hierarchy utilization, arithmetic intensity, bottleneck classification

AMD @ CASTIEL AI WorkshopOct 13-16, 2025

25 |

Tool Selection Decision Tree

Start Here: What do you want to optimize?

Question 1: Do you know which operation is slow?

No → Use PyTorch Profiler + ROCprof-sys (identify hot operators)

Yes → Continue to Question 2

Question 2: Is it compute-bound or memory-bound?

Unknown → Use ROCprof-compute (roofline analysis)

Compute → Focus on algorithm/fusion optimization

Memory → Focus on memory access patterns

Question 3: Are you writing custom kernels?

No → Use PyTorch Profiler + ROCprof-sys

Yes → Use ROCprof-compute + Triton profiler

Question 4: Production deployment?

No → Focus on performance iteration

Yes → Add monitoring (performance regression tests)

AMD @ CASTIEL AI WorkshopOct 13-16, 2025

27 |

Disclaimer
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The

information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes,

component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS

flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes

no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to

time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF

AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD

SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE.

IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES

ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY CONTENT IS

PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR SOLE DISCRETION AND UNDER

NO CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR

ANY DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD CDNA, AMD ROCm, AMD Instinct, and combinations thereof are

trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be

trademarks of their respective owners.

Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git Project, in the United States

and/or other countries

HPE is a registered trademark of Hewlett Packard Enterprise Company and/or its affiliates.

AMD @ CASTIEL AI WorkshopOct 13-16, 2025

	Slide 1: AI Optimization and Profiling Overview From 20ms to 4ms: AI Workload Profiling and Optimization
	Slide 2: Advanced AI Programming
	Slide 3: AI Model Optimization
	Slide 4: Controlling device visibility
	Slide 6: Testing affinity – MI300A example
	Slide 7: Testing affinity – MI300A
	Slide 8: Comms are important! - RCCL CXI plugin
	Slide 10: Configuring RCCL environment
	Slide 11: Environment settings
	Slide 12: Kernel fusion and composability
	Slide 13: Kernel fusion and composability
	Slide 14: Exploring parallelism
	Slide 15: Other ways to express parallelism - FSDP
	Slide 17
	Slide 19: Scaling implications
	Slide 20: The goal is for a model to learn faster!
	Slide 21: Pytorch Profiling Tools Progression
	Slide 22: Framework-Level Tools
	Slide 23: System-Level Tools
	Slide 24: Kernel-Level Tools
	Slide 25: Tool Selection Decision Tree
	Slide 27: Disclaimer
	Slide 28

