Al Optimization and
Profiling Overview

From 20ms to 4ms: Al Workload Profiling and Optimization

Presenter: Samuel Antao
Oct 13-16, 2025
AMD @ CASTIEL Al Workshop

AMD 1

together we advance_

Advanced Al Programming

Al Applications can challenge even the most extreme computing hardware
Optimizing the applications can save both application run time and the hardware resources needed

Due to high-level nature of Al apps, it can be difficult to determine the bottlenecks for performance
Profiling tools are needed for different levels of analysis

Oct 13-16, 2025 AMD @ CASTIEL Al Workshop AMDA

together we advance_

Al Model Optimization

We will be focusing on Pytorch optimizations, though similar approaches are used in other frameworks

Tunning that can be applied are:
System-specific
Affinity
Communication fabric selection

Environment:
Communication
Libraries

Framework:
Kernel fusion techniques
Triton kernel usage
Memory optimization

Model-specific
Batch size optimization
Model parallelism — data/tensor/pipeline

Oct 13-16, 2025 AMD @ CASTIEL Al Workshop AMDA

together we advance_

Controlling device visibility

Many GPUs can exist in a single node: which one to use?

Controlling visibility
HIP_VISIBLE DEVICES=0,1,2,3 python -c 'import torch; print(torch.cuda.device count())'
ROCR_VISIBLE _DEVICES=0,1,2,3 python -c 'import torch; print(torch.cuda.device_count())’

Considerations:
Does my app expects GPU visibility to be set in the environment?
Does my app expects arguments to define target GPUs

Does my app make any assumption on the device based on other information:
MPI rank
CPU-range
Auto-determined

Most Pytorch applications and driver scripts assume the GPU to be used corresponds to the local rank!!!

Oct 13-16, 2025 AMD @ CASTIEL Al Workshop AMDA

together we advance_

Testing affinity — MI300A example

Each chip
contains both

CPU and GPU
capabilities

Oct 13-16, 2025

AMDA AMDA
INSTINCT INSTINCT

AMDA AMDZ
INSTINCT INSTINCT

AMD @ CASTIEL Al Workshop

X16 PCle® Gen5

X16 PCle® Gen5

X16 PCle® Gen5

X16 PCle® Gen5

AMDZU

together we advance_

Testing affinity — MI300A

 What CPUs | have available and their NUMA domain?

* lIscpu

* What GPUs | have
* rocm-smi —showtopo

NUMA node0 CPU(s):
NUMA node1 CPU(s):
NUMA node2 CPU(s):
NUMA node3 CPU(s):

* How to control which CPU

Oct 13-16, 2025

0-23,96-119

24-47,120-143

—

[GPU[0]
| GPUI0]
~ GPU[1]

48-71,144-167

e
72-95,168-191 \

* Numactl: e.g --physcpubind=0-23
* MPI: mpirun binding arguments
« Scheduler: srun ... --gpu-bind=closest

AMD @ CASTIEL Al Workshop

GPU[1]
GPU[2]
GPU[2]
GPU[3]
GPU[3]

Local
munication

Other chips

: (Topology) Numa Node: 0
: (Topology) Numa Affinity: 0
: (Topology) Numa Node: 1
: (Topology) Numa Affinity: 1
: (Topology) Numa Node: 2
: (Topology) Numa Affinity: 2
: (Topology) Numa Node: 3
: (Topology) Numa Affinity: 3

AMDZU

together we advance_

Comms are important! - RCCL CXI plugin

LUMI, Frontier (and others) directly attaches AMD Instinct™ Accelerators to the Slingshot Network
Enable collectives computation on devices
Minimize the role of the CPU in the control path — expose more asynchronous computation opportunities
Lowest Iatengy for network message passing is from GPU HBM memory

CXI plugin is a runtime dependency. Requires: HPE Cray libfabric implementation
https://github.com/ROCm/aws-ofi-rccl
3-4x faster collectives

Make sure your containerized worflows use this plugin!

export NCCL DEBUG=INFO
export NCCL DEBUG_SUBSYS=INIT
and search the logs for:
[0] NCCL INFO NET/OFI Using aws-ofi-rccl 1.4.0

Check your site's recommendations. Don't assume the
generic setups will work well. And pay special attention to
container configurations!

Oct 13-16, 2025 AMD @ CASTIEL Al Workshop AMDA

8 together we advance_

Configuring RCCL environment

Select high-speed interfaces:

export NCCL SOCKET IFNAME=hsnO,hsnl,hsn2,hsn3
RCCL should be set configured to use GPU RDMA:

export NCCL NET GDR LEVEL=PHB

On ROCm versions 6.2+ this is not needed — it is

default.
Why should | spend time with all this?

3-4x better bandwidth utilization with plugin
2x better bandwidth utilization with RDMA

Can scale further!

Careful using external containers! You may

need to be setting plugin yourself!

Oct 13-16, 2025

8

n
S~
m
O
~

£
Q

%)

3
0
v/
L

=
©

3
©

c

5]
(1]

%)

=}
m

AMD @ CASTIEL Al Workshop

=e—No Plugin

Message Size (bytes)

With Plugin

—e—\Vith Plugin+GDR=3

AMDZU

together we advance_

Environment settings

These are the easiest ways to get a performance speedup.

Each Al Framework has their own environment tuning parameters. See https://rocm.docs.amd.com for suggestions or
check your Al package documentation.

Pytorch

Will run a suite of GEMMSs and pick the fastest. If running the same size GEMM many times, this can dramatically speed up your
application
export PYTORCH_TUNABLEOP_ENABLED=1

MIOpen

Using the default MIOpen database in a shared location may not be writeable and the locks may slow your
application. The following puts the database in a fast filesystem and can be user specific.

export MIOPEN_USER_DB_PATH="/tmp/my-miopen-cache"

export MIOPEN_CUSTOM_CACHE_DIR="/tmp/my-miopen-cache"

For larger numbers of nodes, file system doesn’t deal well with SQLite locks when many processes are trying to access it. Solution?
Setup individual caches for groups of ranks — we recommend per node:

export MIOPEN USER_DB_PATH="/tmp/$(whoami)-miopen-cache-$SLURM NODEID"
export MIOPEN_CUSTOM_CACHE_DIR=$MIOPEN_USER_DB_PATH

Oct 13-16, 2025 AMD @ CASTIEL Al Workshop AMDA

11 together we advance_

https://rocm.docs.amd.com

Kernel fusion and composability

Training and other Al workloads are composed of different passes each composed of different operations.

Issuing many small operations is problematic for GPUs
Kernel launch latency

Eliminate

- Kernel fusion in Pytorch @torch.compile
- Automatic fusion — torch.compile() def my -function(x)'
Detects fusion opportunities return x * 0.25 * (1.0 + torch.erf(x / 1.42))

Decorators available for costumization

Oct 13-16, 2025 AMD @ CASTIEL Al Workshop ﬁgm?rvil advance

import triton
import triton.language as tl

Kernel fusion and composability

Define a simple element-wise addition kernel

; @triton.jit
Trlton baCkend def add_kernel(x_ptr, y_ptr, out_ptr, n_elem, BLOCK_SIZE: tl.constexpr):
“Python code that you can compile” pid = tl.program_id(axis=0)
. - block_start = pid * BLOCK_SIZE
Domain SpeCIfIC Ianguage and decorators. offsets = block_start + tl.arange(0, BLOCK_SIZE)

mask = offsets < n_elem

x =tl.load(x_ptr + offsets, mask=mask)

Ahead-of-time Triton — AOTriton y = thioad(y_ptr + offsets, maskemask)
Pre-built triton kernels output =x +y
.]] tl.store(out_ptr + offsets, output, mask=mask)
Flash Attention implementation

hiips:/igithub.com/ROCm/aotriton

» C++ APIs for precompile kernels

Composable kernel (CK) o Client APIS + (Planned) Python APIs
Performance critical ML primitives espendent
Tile base programming model
Tend to perform better than Triton-based operands
https://github.com/ROCm/composable kernel

Instantiated Instantiate: Programmable

Kernels and « Arbitrary point-wise activation/reduction functions for ML System

« Arbitrary datatypes Experts
Invokers « Arbitrary tensor memory layouts

Templates for Fused and Non-fused ML Kernels
(Conv/GEMM/reduction fusion, Attention Fusion, Programmable

GEMM/Conv+GEMM/Conv fusion, etc) forEAxIE)L(:smel

Templated

Hardware Opﬂ:tms Fundamental Templated Tile Operators

Dependent (GEMM/reduction/data transfer)

@
O
c
@
=
S
b
@
o
o
—
o
=
b
@
=
3
L

Good news: all these libraries should be
available in you Pytorch installation for ROCm

Oct 13-16, 2025 AMD @ CASTIEL Al Workshop AMDA

together we advance_

https://github.com/ROCm/composable_kernel
https://github.com/ROCm/composable_kernel

Exploring parallelism

Great, | have 8 GPUs in my system!
Depending on your model and data your parallelization strategy needs to be decided

Data parallelism: Training data Model parallelism
large data set model too large
model fits in memory faster training

iteration

Training
data

minibatch minibatch

minibatch

minibatch

’ EETTem
oo

! part C

\?/

gradients

Oct 13-16, 2025 AMD @ CASTIEL Al Workshop

AMDZU

together we advance_

P ublic]

Other ways to express parallelism - FSDP

Fully Sharded Data Parallel is another option.
Create shards out of the neural net model more likely to be activated together
Try keep less state in the GPU — could support larger models with less GPUs

More complexities in configuring the different knobs. Depending on the tunning may require more or less changes
to your code.

https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
Using FSDP requires wrapping your model into the relevant FSDP object.

wrapper_kwargs = Dict(cpu_offload=CPUOffload(offload_params=True))
with enable_wrap(wrapper_cls=FullyShardedDataParallel, **wrapper_kwargs):

fsdp_model = wrap(model()) Your original model

Some tools to control the wrapping in less intrusive ways have been created - accelerate.
Enabling FSDP on transformers: htips://huggingface.co/docs/transformers

Oct 13-16, 2025 AMD @ CASTIEL Al Workshop Qgtt"hle)rviladvance

https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://huggingface.co/docs/transformers

Other ways to express parallelism - DeepSpeed /g deepspeed

 DeepSpeed is a framework to optimize distributed deep-learning training and inference

DS_BUILD_AIO=0\

DS_BUILD_CCL_COMM=1\ Select all the optimizations

DS _BUILD_CPU_ADAM=0\ not all are enabled for op hame installed .. compatible

DS BUILD CPU LION=0\ GPU

L — — S. [

DS_BUILD_EVOFORMER_ATTN=0\ BSYnEtO [N?Y]Eg]"" [N[OO]K A

DS_BUILD_FUSED_ADAM=1 \ cpu_a_dam [NO] [OKAY]

DS BUILD_FUSED_LION=1\ cpu_adagrad [NOJ [OKAY]

DS_BUILD_CPU_ADAGRAD=0 \ cquIion tt [NO[]NO] [OK,F'\T]O]

_ evoformer_attn [NO]J

DS_BUILD_FUSED_LAMB=1\ fused_lamb [YES] [OKAY]

DS _BUILD_QUANTIZER=0\ fused_lion [YES] [OKAY]

DS _BUILD_RANDOM _LTD=0\ A”OW mu|t|p|e process bU|IdS inference_core_ops [NO] [OKAY]

DS_BUILD_SPARSE_ATTN=O \ f[:utlas%s_ops f [NO] [NO] [OKA[YéKAY]
ransformer_inference .. [NO]J

DS_BUILD_TRANSFORMER=O\ quantizer _ [NO]....... [OKAY]

DS _BUILD_TRANSFORMER_INFERENCE=0\ ragged_device_ops [NO] [OKAY]

DS_BUILD_STOCHASTIC_TRANSFORMER=1\ ragged_ops [NO] [OKAY]

pip install deepspeed==0.15.0 o stn ol O]

--global-option="build_ext" --global-option="-j32" spatial:inference [NO]....... [OKAY]
transformer [NO] [OKAY]

ds_report stochastic_transformer . [YES] [OKAY]

Utility to report supported capabilities.
AMDZ1

Oct 13-16, 2025 AMD @ CASTIEL Al Workshop together we advance

P Tublic]

Scaling implications

}
e

Why would | want to scale my model?
+ Train faster — strong-scaling
< Train bigger — weak-scaling
* My model doesn’t fit in just a few GPUs

How far can | go?

« Depends on your model

+ Scaling can change the bottlenecks
« Scaling can change convergence

Monitor the regime in which you are
operating the GPUs at all times!

The goal is to learn faster not run faster
- Faster iterations can be offset by slower 4 You'll always be bound by some type of communication at

convergence some point!!!

AMDZ1

19 together we advance_

The goal is for a model to
learn faster!

Your bottleneck might not be the GPU
Check your accuracies are as expected

Adopt an holistic approach to performance o | Bounq by_
analysis : . communication
Communication o example
_ '— i Collectives

MMI r MIIMMI S H P 'r g kernels dominate
‘HIH‘HIIIIII ‘ ‘HI M IIH\I‘H“HIHH\I‘HIIII’HI’I|\,HHII\I’IIIIIII’IIIHIIII\I‘II‘ H‘IIII\ I’\I II\IIH!HI‘I\IIIIIH ,H‘IIIIHH \III\I\‘I I‘HHHII\I II‘III‘ HH”IIII’IIIH‘II\I\IIHII‘IIIIIIH ‘II HHIIHIIIIIHIIIH\II\HH’IIIIIIIIHUI\“I‘ IRHIHIHIIIH’IHIWH”IIIHI‘HHI\HHIHI] | prOﬂle
HIH ‘ W ‘H I‘IHHFIIH HHI ‘ |||||||IH‘1 ‘H | ‘ I\I IIII‘H IHL IH ‘IMI Uil HI IHI‘ I‘Ill H‘II \IIIIIIII‘ I‘I ‘
Data fetching
Bound by I/O dominate profile
example
Minimal GPU
activity
Oct 13-16, 2025 AMD @ CASTIEL Al Workshop AMDA

20 together we advance_

21

Pytorch Profiling Tools Progression

Start with simple high-level profiling tools - progress to detailed ones as needed

Framework-level tools
PyTorch Profiler: Framework-level performance analysis
DeepSpeed FLOPS Profiler: Computational efficiency metrics
Triton Profiler (Proton): Analyze kernel performance

System-level tools
ROCsmi (AMDsmi):
ROCprofv3 /ROCprof-sys: System-level performance analysis

Kernel-level tools
ROCprofv3: Basic ROCm profiling of GPU activity
ROCprof-compute: Advanced GPU kernel-level analysis and optimization

Oct 13-16, 2025 AMD @ CASTIEL Al Workshop

AMDZU

together we advance_

22

Framework-Level Tools

PyTorch Profiler

—— Purpose: Operator-level performance analysis

Output: Execution time, memory, call counts, tensor shapes
—— Usage: torch.profiler.profile() context manager

—— Export: Chrome trace, table summaries, TensorBoard

DeepSpeed FLOPSProfiler

—— Purpose: Computational efficiency metrics

—— Output: FLOPS per layer, multiply-accumulate operations (MACs), parameters, efficiency %
—— Usage: FlopsProfiler(model) wrapper: https://www.deepspeed.ai/tutorials/flops-profiler/

—— Analysis: Theoretical vs achieved compute, bottleneck identification

Triton Profiler (Proton)

—— Purpose: Kernel performance

—— Output: Timings, plots

—— Usage: triton.testing.do_bench wrapper

—— Analysis: Comparisons with different approaches

Oct 13-16, 2025 AMD @ CASTIEL Al Workshop

AMDZU

together we advance_

System-Level Tools

ROCm SMI (System Management Interface)

—— Purpose: GPU health and utilization monitoring

Output: Temperature, power, memory usage, GPU utilization

—— Usage: rocm-smi (real-time monitoring)

—— Analysis: Thermal throttling, memory saturation, multi-GPU balance

rocprof-sys (System Profiler)

Purpose: System-wide performance monitoring

— Output: Multi-process coordination, resource utilization, CPU/GPU interaction
—— Usage: rocprof-sys record -o trace.otf2 -- python script.py

—— Analysis: Timeline visualization, process synchronization, I/O bottlenecks

Oct 13-16, 2025 AMD @ CASTIEL Al Workshop

23

AMDZU

together we advance_

Kernel-Level Tools

rocprofv3 (Basic Hardware Counter Profiler)

—— Purpose: Basic GPU kernel profiling and metrics

Output: Kernel execution times, memory transfers, GPU utilization
—— Usage: rocprofv3 --stats python script.py

—— Analysis: Kernel-level timing, backward compatibility

rocprof-compute (Advanced Profiler)

Purpose: Detailed compute kernel analysis and optimization

—— Output: Hardware counters, roofline analysis, optimization hints

—— Usage: rocprof-compute profile --kernel-names --roofline -- python script.py

—— Analysis: Memory hierarchy utilization, arithmetic intensity, bottleneck classification

Oct 13-16, 2025 AMD @ CASTIEL Al Workshop

24

AMDZU

together we advance_

25

Tool Selection Decision Tree

Start Here: What do you want to optimize?

Question 1: Do you know which operation is slow?
No — Use PyTorch Profiler + ROCprof-sys (identify hot operators)
Yes — Continue to Question 2

Question 2: Is it compute-bound or memory-bound?
Unknown — Use ROCprof-compute (roofline analysis)
Compute — Focus on algorithm/fusion optimization
Memory — Focus on memory access patterns

Question 3: Are you writing custom kernels?
No — Use PyTorch Profiler + ROCprof-sys
Yes — Use ROCprof-compute + Triton profiler

Question 4: Production deployment?
No — Focus on performance iteration
Yes — Add monitoring (performance regression tests)

Oct 13-16, 2025 AMD @ CASTIEL Al Workshop

AMDZU

together we advance_

27

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The
information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes,
component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS
flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes
no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to
time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF

AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD
SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE.
IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES
ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY CONTENT IS
PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR SOLE DISCRETION AND UNDER
NO CIRCUMSTANCES WILLAMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR
ANY DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD CDNA, AMD ROCm, AMD Instinct, and combinations thereof are
trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be
trademarks of their respective owners.

Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git Project, in the United States
and/or other countries
HPE is a registered trademark of Hewlett Packard Enterprise Company and/or its affiliates.

Oct 13-16, 2025 AMD @ CASTIEL Al Workshop AMDA

together we advance_

	Slide 1: AI Optimization and Profiling Overview From 20ms to 4ms: AI Workload Profiling and Optimization
	Slide 2: Advanced AI Programming
	Slide 3: AI Model Optimization
	Slide 4: Controlling device visibility
	Slide 6: Testing affinity – MI300A example
	Slide 7: Testing affinity – MI300A
	Slide 8: Comms are important! - RCCL CXI plugin
	Slide 10: Configuring RCCL environment
	Slide 11: Environment settings
	Slide 12: Kernel fusion and composability
	Slide 13: Kernel fusion and composability
	Slide 14: Exploring parallelism
	Slide 15: Other ways to express parallelism - FSDP
	Slide 17
	Slide 19: Scaling implications
	Slide 20: The goal is for a model to learn faster!
	Slide 21: Pytorch Profiling Tools Progression
	Slide 22: Framework-Level Tools
	Slide 23: System-Level Tools
	Slide 24: Kernel-Level Tools
	Slide 25: Tool Selection Decision Tree
	Slide 27: Disclaimer
	Slide 28

