

Unique reaction mechanism of copper amine oxidase revealed by theoretical QM/MM and experimental approaches

Mitsuo Shoji^{1,2}

¹Biological Function and Information Group, Division of Life Science, CCS, U.Tsukuba、 ²JST-PRESTO *mshoji@ccs.tsukuba.ac.jp*

Acknowledgement

Kenji Mishima (U.Tsukuba) Yasuteru Shigeta (U.Tsukuba) Shigenori Nagatomo (U.Tsukuba) Mauro Boero (Strasbourg U.) Hideyuki Hayashi (OMPU) Toshihide Okajima (Osaka U.) Takashi Ueno (Tokyo Tech) Eriko Nango (Tohoku U.)

Funds

KAKENHI: 20H05453(representative:Osamu Miyashiya) 16KT0055(representative:Hidetoshi Okajima) JST-PRESTO:JPMJPR19G6 MEXT Q-LEAP: JPMXS0120330644 20H05088(I4LEC)

Computational resources

MCRP in CCS, Univ. Tsukuba HPCI system research project (project ID: hp210115)

• CAOs catalyze the oxidative deamination of primary amines into their aldehydes.

 $RCH_2NH_3 + O_2 + H_2O \rightarrow RCHO + H_2O_2 + NH_3$

- CAOs exert fundamental functions in aerobic organisms from bacteria to ye mammals.
- CAOs contain Cu ion and topaquinone (TPQ) cofactor

• Catalytic cycle of CAO is composed of reductive half-reaction and oxidative half-reaction

Features

- X-ray structures of all the intermediate states are determined.
- Positions of proton in TPQ_{ox} were determined.
- Spectroscopy can trace the intermediate states.
- Isotope effect of proton transfer (H/D) is observed. (Target for quantum biology)
- Large conformational change during the TPQ_{amr} -> TPQ_{sq} transition (Target for SFX study)

Large conformational change of TPQ

TPQ_{amr}: 3X3Z TPQ_{sq}: 3X3X

- Asn381 is a conserved residue
- Reaction mechanism is unsolved (impossible ?)

Quite different from a classical picture of enzyme reaction

Structural changes are quite small \rightarrow substrate specificity : classical enzyme

- Key and keyhole model: E.Fischer(1890) substrate-binding site is rigid
- Induced fit model: Koshland(1995) substrate-binding site is more flexible (active site is rigid)

Purpose of this study

- Elucidate the most difficult reaction step in $TPQ_{amr} \rightarrow TPQ_{sq}$
- Solve the role of Asn381
 - Theoretical approach:

Reaction mechanism of WT by using QM/MM^{*}

Reaction mechanism of N381A mutant

Structural change of N381A mutant in TPQ_{ox}

Experimental approach :

X-ray crystal structures of N381A and kinetic spectroscopy

^{*}QM/MM: hybrid quantum mechanics and molecular mechanics

(This study took 2-3 years to find appropriate reaction pathways, because it is a significantly difficult problem)

Off-Cu \rightarrow On-Cu transition

• steps of the TPQ movement

2 x 2 = 4 candidate pathways

Rotation of TPQ is quit difficult for steric repulsion from surrounding residues

1. Turnover + Slide

2. Slide + Turnover

▲ 1A. clockwise turnover: ⊢Asn381, Tyr384

1B. counterclockwise turnover: ⊢ main chain of TPQ382, Val282

- Content Content Action Act
- Second Straight S

Inevitable reaction step: counterclockwise turnover of TPQ (1B,2B)

1B. Counterclockwise rotation @ Off-Cu

2B. Counterclockwise rotation @ On-Cu

⊢ main chain of TPQ382

Two candidate pathways: clockwise-turnover of TPQ (1A, 2A)

1A. Turnover (clockwise) + Slide

2A. Slide + Turnover (clockwise)

Computational details

Initial settings

- Crystal structure; PDBID: 3X3Z (copper amine oxidase from Arthrobacter globiformis (AGAO) in the TPQ_{amr} state)
- Homodimer model
- Protonation state is referred to the neutron structure (PDBID: 6L9C)
- Added 36 Na⁺ to charge neutral
- A spherical water droplet of 60 Å radius
- Proton positions are relaxed by 10ps MD (amber99fprce field, 0->250K, 250K->0K).
- Heavy atoms are fixed to the X-ray structure

3X3Z

+ 22,000 Waters

Computational details

\mathbf{QM}/\mathbf{MM}

- Program Package: NWChem version 6.8
- Method: UB3LYP/(LANL-2DZ, 6-31G*)| amber 99
- Optimization for 10 Å around the QM center
- #QM=84, #Basis=789

Thick Tube: QM region

QM atoms (side view)

Calculated results

kcal mol⁻¹ is simplified as kcal

Intermediate states (IMS) determined by QM/MM

Map of IMS

1A: 1h \rightarrow 2h \rightarrow 2 \rightarrow 4 \rightarrow 5

TPQ conformational changes

Map of IMS

$2A: 1h \rightarrow 1 \rightarrow 6 \rightarrow 5$

TPQ conformational changes

turnover ΔE^{\ddagger} =23.3 kcal (**TS(1h,2h)**)

Energy profile of 2A (1h \rightarrow 1 \rightarrow 6 \rightarrow 5)

Energy profile of N381A mutant (NA)

turnover ΔE^{\ddagger} =14.9 kcal

slide $\Delta E^{\ddagger}=11.1$ kcal

Map of IMS Energy profile of N381A ($1h^{NA} \rightarrow 2h^{NA} (\rightleftharpoons 3h^{NA}) \rightarrow 2^{NA} \rightarrow 4^{NA} \rightarrow 5^{NA}$)

Possibilities of turnover of TPQ_{ox} in WT and N381A

- In WT, turnover of TPQ_{ox} becomes unstable ($\Delta E = 1.7$ kcal)
- In N381A, turnover of TPQ_{ox} becomes stabilized ($\Delta E = -2.6$ kcal).
- In N381A, ΔE^{\ddagger} also becomes low

Kinetics measurements by UV-vis spectroscopy

- TPQ formation decreased in N381A (1/180)
- k_{cat} is reduced in N381A (1/160)

UV-vis spectra changes by Stopped-flow spectrometer (A) the N381A mutant and (B) the WT AGAO with 2-PEA.

- Reaction stoped at TPQ_{amr} in N381A
- TPQ_{sq} formed in WT

X-ray crystal structures in N381A

N381A_{holo} (TPQox^{N381A}) 1.50 Å resolution

TPQ flipped form can be observed (52%) => Ox_{rot}^{NA}

N381Aholo/PEA (TPQamr^{N381A}/TPQamr)

1.90 Å resolution

N381A TPQ_{amr} take a TPQ flipped form => **3h**^{NA}

Conclusion

Theoretical study

- In WT, 1A:turnover(clockwise)& slide pathway is possible for $TPQ_{amr} \rightarrow TPQ_{sq}$
- In N381A, reaction barriers of turnover and slide steps become low, and TPQ flipped form, TPQ_{amr}(3h^{NA}), is most stabilized even to TPQ_{sq}.
- In N381A, a flipped form of TPQ_{ox} is stabilized. This conformation is inactive for the reductive half reactions.
- N381 controls the conformation of TPQ in TPQ_{ox} and TPQ_{amr}. In the formation of TPQ_{sq}, the conformational change of TPQ contributes to stabilize TPQ_{sq}.

Experimental study

- Detection of intermediate states by Spectroscopy
- X-ray crystal structures of N381A in TPQ_{ox} and TPQ_{amr}

Proposed reaction mechanism for $TPQ_{amr} \rightarrow TPQ_{sq}$

<u>M. Shoji</u>* *et al.*, Molecular mechanism of a large conformational change of the quinone cofactor in the semiquinone intermediate of bacterial copper amine oxidase, *Chem. Sci.* **13**, 10923 (2022).

CAO is a nonclassical enzyme (nonstatic、 dynamical、 quantum ?)

- Reaction really possible ? There is a pathway
- Why the conformation takes place ?

stabilization of TPQ_{sq}

- Multistep reaction (reaction 1 and 2)
- State specific reaction
- important for highly efficient catalysis

Collaborative researches in a research area, Grant-in-Aid for Scientific Research on Innovative Area, of "Molecular Movies"

1. Light-harvesting protein, C-Phycocyanin

A01: Y. Umena

2. Copper Amine Oxidase (CAO)

A01: T. Murakawa

4. Lysozyme • Mn(CO₃) complex

3. Hemoglobin M Iwate (Hb M Iwate)

S.Nagatomo, A01: S.-Y. Park, C01: M.Kubo

S.Nagatomo*, M.Shoji, et al., Heme-bound tyrosine vibrations in hemoglobin M: Resonance Raman, crystallography, and DFT calculation, Biophysical Journal, 121(14), 2767-2780, 2022

Collaborative researches in the research area of "Molecular Movies"

5. Heliorhodopsin (HeR)

A01: K. Katayama, H. Kandori

M.Hashimoto, K.Miyagawa, M.Singh, <u>K.Katayama</u>, <u>M.Shoji</u>, Y.Furutani, Y. Shigeta, H.Kandori, "Specific zinc binding to heliorhodospin", PCCP, 25, 3535 (2023). 6. 2-oxoglutarate-dependent dioxygenase(20GD)

A01: S. Nagano