
Implementation of Parallel
Number-Theoretic Transform

on Manycore Clusters 

Daisuke Takahashi
Center for Computational Sciences

University of Tsukuba, Japan

2023/2/22 2022 CCS-KISTI Workshop 1



Outline
• Background
• Objectives
• Number-theoretic Transform (NTT)
• Six-Step NTT Algorithm
• Parallel Implementation of NTT
• Performance Results
• Conclusion

22023/2/22 2022 CCS-KISTI Workshop



Background
• The fast Fourier transform (FFT) is an algorithm 

that is widely used today in scientific and 
engineering computing.

• FFTs are often computed using complex or real 
numbers, but it is known that these transforms 
can also be computed in a ring and a finite field 
[Pollard 1971].

• Such a transform is called the number-theoretic 
transform (NTT).

• The NTT is used for homomorphic encryption, 
polynomial multiplication, and multiple-precision 
multiplication.

32023/2/22 2022 CCS-KISTI Workshop



Related Works (1/2)
• The number theory library (NTL) [Shoup et al.]

is a C++ library for performing number-theoretic 
computations and implements NTT.
– Although the NTL is thread-safe, the parallel NTT is not 

supported.
• Spiral-generated modular FFTs have been 

proposed [Meng et al. 2010 and 2013].
– Experiments were performed using 32-bit integers and 

16-bit primes with Intel SSE4 instructions.

42023/2/22 2022 CCS-KISTI Workshop



Related Works (2/2)
• An implementation of NTT using the Intel

AVX-512IFMA (Integer Fused Multiply-Add) 
instructions has been proposed [Boemer et al. 2021].
– This implementation is available as the Intel Homomorphic 

Encryption (HE) Acceleration Library.
– Intel HEXL targets the typical data size 𝑛𝑛 = 210, 217 of 

NTTs used in homomorphic encryption and is not 
parallelized.

• An Implementation of Parallel Number-Theoretic 
Transform Using Intel AVX-512 Instructions has been 
proposed [Takahashi 2022].
– NTT kernels are vectorized using the Intel AVX-512 

instructions.
– Six-step NTT is parallelized using OpenMP.

52023/2/22 2022 CCS-KISTI Workshop



Objectives
• We consider accelerating NTT for larger data 

sizes by parallelization, targeting polynomial 
multiplication and multiple-precision multiplication.

• We parallelize the six-step NTT using MPI and 
OpenMP.

62023/2/22 2022 CCS-KISTI Workshop



Number-Theoretic Transform (NTT)
• The number-theoretic transform (NTT) can be 

expressed in a field 𝐅𝐅𝑝𝑝 = 𝐙𝐙/𝑝𝑝𝐙𝐙, where 𝑝𝑝 is a prime 
number:

𝑦𝑦 𝑘𝑘 = �
𝑗𝑗=0

𝑛𝑛−1

𝑥𝑥 𝑗𝑗 𝜔𝜔𝑛𝑛
𝑗𝑗𝑗𝑗mod 𝑝𝑝, 0 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 1,

in which 𝜔𝜔𝑛𝑛 is the primitive 𝑛𝑛-th root of unity.
• The 𝑛𝑛-point NTT is directly computed by 𝑂𝑂 𝑛𝑛2

arithmetic operations, but by applying an algorithm 
similar to FFT, the number of arithmetic operations 
can be reduced to 𝑂𝑂 𝑛𝑛 log𝑛𝑛 .

72023/2/22 2022 CCS-KISTI Workshop



Stockham Radix-2 NTT Algorithm

82023/2/22 2022 CCS-KISTI Workshop



Modular Arithmetic in NTT
• The butterfly operation of the NTT can be performed 

using modular addition, subtraction, and multiplication.
• The modular addition 𝑐𝑐 = 𝑎𝑎 + 𝑏𝑏 mod 𝑁𝑁 for 0 ≤ 𝑎𝑎, 𝑏𝑏 <
𝑁𝑁 can be replaced by the addition 𝑐𝑐 = 𝑎𝑎 + 𝑏𝑏 and the 
conditional subtraction 𝑐𝑐 − 𝑁𝑁 when 𝑐𝑐 ≥ 𝑁𝑁.

• Modular multiplication includes modulo operations, 
which are slow due to the integer division process.

• However, Montgomery multiplication
[Montgomery 1985] and Shoup’s modular 
multiplication [Harvey 2014] are known to avoid this 
problem.

92023/2/22 2022 CCS-KISTI Workshop



102023/2/22 2022 CCS-KISTI Workshop

Shoup’s Modular Multiplication 
Algorithm [Harvey 2014]

The upper half of 𝐴𝐴𝐴𝐴𝐴

Subtraction of the lower half of 
𝑞𝑞𝑁𝑁 from the lower half of 𝐴𝐴𝐴𝐴



Six-Step NTT Algorithm
• If 𝑛𝑛 has factors 𝑛𝑛1 and 𝑛𝑛2 (𝑛𝑛 = 𝑛𝑛1 × 𝑛𝑛2), in the 

same way as the six-step FFT algorithm
[Bailey 1990], the following six-step NTT algorithm 
[Takahashi 2022] is derived:

• Step 1: Transposition
• Step 2: 𝑛𝑛1 individual 𝑛𝑛2-point multicolumn NTTs
• Step 3: Twiddle factor (𝜔𝜔𝑛𝑛

𝑗𝑗1𝑗𝑗2) multiplication
• Step 4: Transposition
• Step 5: 𝑛𝑛2 individual 𝑛𝑛1-point multicolumn NTTs
• Step 6: Transposition

112023/2/22 2022 CCS-KISTI Workshop



12

Parallel NTT Algorithm Based on
Six-Step NTT

Global 
Transpose

Global 
Transpose

Global 
Transpose

𝑁𝑁1

𝑁𝑁2

𝑁𝑁2

𝑁𝑁1

𝑁𝑁1

𝑁𝑁2
𝑁𝑁1

𝑁𝑁2

𝑃𝑃0𝑃𝑃1𝑃𝑃2𝑃𝑃3

𝑃𝑃0 𝑃𝑃1 𝑃𝑃2 𝑃𝑃3

Perform 
twiddle factor 
(𝜔𝜔𝑁𝑁

𝐽𝐽1𝐾𝐾2) 
multiplication

2023/2/22 2022 CCS-KISTI Workshop



/* Step 1: transpose nx*ny to ny*nx */
#pragma omp parallel for collapse(2) private(i, k)

for (j = 0; j < nny; j++)
for (k = 0; k < nproc; k++)

for (i = 0; i < nnx; i++)
b[i + j * nnx + k * (nnx * nny)] = a[i + k * nnx + j * (nnx * nproc)];

MPI_Alltoall(b, nn / nproc, MPI_UNSIGNED_LONG_LONG, a, nn / nproc,
MPI_UNSIGNED_LONG_LONG, MPI_COMM_WORLD);

trans(a, b, nnx, ny);

/* Step 2: (nx / nproc) individual ny-point multicolumn NTTs */
#pragma omp parallel for
for (j = 0; j < nnx; j++)

nttsub(&b[j * ny], &a[j * ny], wy, wwy, ny, ipy, np);
…

Parallelization of Six-Step NTT

132023/2/22 2022 CCS-KISTI Workshop



Performance Results
• For performance evaluation, we measure the performance 

of the proposed implementation of the six-step NTT with a 
modulus of 63 bits.

• The performance was measured on the Fujitsu 
PRIMEHPC FX1000 at the University of Tokyo.
– 7680 nodes, Peak 25.9 PFlops
– CPU: A64FX (48 cores + assistant 2 or 4 cores, 2.2 GHz)
– Interconnect: Tofu interconnect D (Link bandwidth 6.8 GB/s)
– Compiler: Fujitsu C/C++ Compiler 4.8.1
– Compiler option: “-Nclang -Kfast -Kopenmp”

• Each MPI process has 12 cores and 12 threads,
i.e., 4 MPI processes per node.

• The giga-operations per second (Gops) values are each 
based on 3/2 𝑁𝑁 log2 𝑁𝑁 for a transform of size 𝑁𝑁 = 2𝑚𝑚.

142023/2/22 2022 CCS-KISTI Workshop



Performance of Parallel NTTs
(𝑁𝑁 = 226 × MPI processes)

1

10

100

1000

10000

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

G
op

s

Number of MPI processes

Proposed

152023/2/22 2022 CCS-KISTI Workshop



Discussion
• The reason for the smaller performance growth when 

the number of MPI processes is increased from 4 to 8 
is that up to 4 MPI processes are communicating 
within the node.

• For 238-point NTT on 4096 MPI processes, 
approximately 80% of the execution time is taken up 
by all-to-all communication.

• The Fujitsu PRIMEHPC FX1000 uses Tofu 
interconnect D, a 6-dimensional torus network, but as 
the number of nodes increases, the maximum 
number of hops also increases, resulting in lower all-
to-all communication bandwidth.

162023/2/22 2022 CCS-KISTI Workshop



Performance of MPI_Alltoall
(Fujitsu PRIMEHPC FX1000,

1024 nodes, 4096 MPI processes)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K

G
B/

s

Message size (bytes)

MPI_Alltoall

172023/2/22 2022 CCS-KISTI Workshop



Conclusion
• We proposed an implementation of the parallel 

NTT on manycore clusters.
• The butterfly operation of the NTT can be 

performed using modular addition, subtraction, 
and multiplication.

• We parallelized the six-step NTT using MPI and 
OpenMP.

• We successfully achieved a performance of over 
4831 Gops on a Fujitsu Supercomputer 
PRIMEHPC FX1000 (1024 nodes) for a 238-point 
NTT with a modulus of 63 bits.

182023/2/22 2022 CCS-KISTI Workshop


	Implementation of Parallel�Number-Theoretic Transform�on Manycore Clusters 
	Outline
	Background
	Related Works (1/2)
	Related Works (2/2)
	Objectives
	Number-Theoretic Transform (NTT)
	Stockham Radix-2 NTT Algorithm
	Modular Arithmetic in NTT
	Shoup’s Modular Multiplication Algorithm [Harvey 2014]
	Six-Step NTT Algorithm
	Parallel NTT Algorithm Based on�Six-Step NTT
	Parallelization of Six-Step NTT
	Performance Results
	Performance of Parallel NTTs�(𝑁= 2 26 × MPI processes)
	Discussion
	Performance of MPI_Alltoall�(Fujitsu PRIMEHPC FX1000,�1024 nodes, 4096 MPI processes)
	Conclusion

