Implementation of Parallel
Number-Theoretic Transform
on Manycore Clusters

Daisuke Takahashi

Center for Computational Sciences
University of Tsukuba, Japan

2023/2/22 2022 CCS-KISTI Workshop

Outline

Background

Objectives

Number-theoretic Transform (NTT)
Six-Step NTT Algorithm

Parallel Implementation of NTT
Performance Results

Conclusion

2023/2/22 2022 CCS-KISTI Workshop

Background

The fast Fourier transform (FFT) is an algorithm
that is widely used today in scientific and
engineering computing.

FFTs are often computed using complex or real

numbers, but it is known that these transforms

can also be computed in a ring and a finite field
[Pollard 1971].

Such a transform is called the number-theoretic
transform (NTT).

The NTT is used for homomorphic encryption,
polynomial multiplication, and multiple-precision
multiplication.

2023/2/22 2022 CCS-KISTI Workshop

Related Works (1/2)

* The number theory library (NTL) [Shoup et al.]
Is a C++ library for performing number-theoretic
computations and implements NTT.

— Although the NTL is thread-safe, the parallel NTT is not
supported.

« Spiral-generated modular FFTs have been
proposed [Meng et al. 2010 and 2013].

— Experiments were performed using 32-bit integers and
16-bit primes with Intel SSE4 instructions.

2023/2/22 2022 CCS-KISTI Workshop 4

Related Works (2/2)

* An implementation of NTT using the Intel
AVX-512IFMA (Integer Fused Multiply-Add)
Instructions has been proposed [Boemer et al. 2021].
— This implementation is available as the Intel Homomorphic

Encryption (HE) Acceleration Library.

— Intel HEXL targets the typical data size n = [219,217] of
NTTs used in homomorphic encryption and is not
parallelized.

* An Implementation of Parallel Number-Theoretic
Transform Using Intel AVX-512 Instructions has been
proposed [Takahashi 2022].

— NTT kernels are vectorized using the Intel AVX-512
Instructions.

— Six-step NTT is parallelized using OpenMP.

2023/2/22 2022 CCS-KISTI Workshop

Objectives

 We consider accelerating NTT for larger data
sizes by parallelization, targeting polynomial
multiplication and multiple-precision multiplication.

* We parallelize the six-step NTT using MPI| and
OpenMP.

2023/2/22 2022 CCS-KISTI Workshop 6

Number-Theoretic Transform (NTT)

* The number-theoretic transform (NTT) can be
expressed in a field F, = Z/pZ, where p is a prime
number:

n—1

y(k) = 2 xU)w,{Lkmod p, 0<k<n-—1,

]=0
iIn which w,, is the primitive n-th root of unity.

e The n-point NTT is directly computed by 0(n?)
arithmetic operations, but by applying an algorithm
similar to FFT, the number of arithmetic operations
can be reduced to O(nlogn).

2023/2/22 2022 CCS-KISTI Workshop 7

Stockham Radix-2 NTT Algorithm

Algorithm 1 Stockham radix-2 NTT algorithm
Input: n =29, Xo(j) = 2(j), 0 < 57 <n —1, and w, is the primitive n-th root of

unity.
Output: y(k) = X, (k) = Z?’;Ol z(f)wlF modp, 0<k<n-—1
I: L+ n/2
2:m <+ 1

3: for t from 1 to ¢q do

4 for j from Otol—1do

5 for k from 0 to m — 1 do

6: co < Xi—1(k + jm)

T c1 < Xi—1(k+jm +1m)

8 Xi(k+23m) < (co+ c1) mod p

9: X (k+2jm+m) + wl™(co — c1) mod p
10: end for

11: end for

12: 1+ 1/2

13: m <+ 2m

14: end for

2023/2/22 2022 CCS-KISTI Workshop

Modular Arithmetic in NTT

The butterfly operation of the NTT can be performed
using modular addition, subtraction, and multiplication.

The modular addition c = (a+ b) mod N for 0 < a,b <
N can be replaced by the addition ¢ = a + b and the
conditional subtraction ¢ — N when c > N.

Modular multiplication includes modulo operations,
which are slow due to the integer division process.

However, Montgomery multiplication

[Montgomery 1985] and Shoup’s modular
multiplication [Harvey 2014] are known to avoid this
problem.

2023/2/22 2022 CCS-KISTI Workshop 9

Shoup’s Modular Multiplication
Algorithm [Harvey 2014]

Algorithm 2 Shoup’s modular multiplication algorithm

Input: A, B, N such that 0 < A,B< N, N < [3/2
precomputed B’ = | B3/N |

Output: ¢ = AB mod N

1: g« |AB'/3 The upper half of AB’

2: C' < (AB —qN) mod 5 [Subtraction of the lower half of
3: if ¢ > N then gN from the lower half of AB

4 C«C-N

5: return C.

2023/2/22 2022 CCS-KISTI Workshop 10

Six-Step NTT Algorithm

If n has factors n, and n, (n = n; X n,), in the
same way as the six-step FFT algorithm

[Bailey 1990], the following six-step NTT algorithm
[Takahashi 2022] is derived:

Step 1: Transposition
Step 2: n, individual n,-point multicolumn NTTs

Step 3: Twiddle factor (w,ﬁlkz) multiplication
Step 4: Transposition

Step 5: n, individual ny-point multicolumn NTTs
Step 6: Transposition

2023/2/22 2022 CCS-KISTI Workshop 11

Parallel NTT Algorithm Based on

N Six-Step NTT
2 N1 Perform
Global twiddle factor

Transpose (w,{,le)
WAP,P,P, P N multiplication
Global
N Transpose

Global
Transpos

2023/2/22 2022 CCS-KISTI Wor 12

Parallelization of Six-Step NTT

[* Step 1: transpose nx*ny to ny*nx */
#pragma omp parallel for collapse(2) private(i, k)

for (j = 0; j < nny; j++)

for (k = 0; k < nproc; k++)
for (i=0;i<nnx; i++)
bli+j*nnx+K*(nnx *nny)]=ali + k* nnx +j* (hnx * nproc)];
MPI_Alltoall(b, nn / nproc, MPl_UNSIGNED LONG LONG, a, nn/ nproc,
MPI_UNSIGNED LONG_LONG, MPI_COMM_WORLD);

trans(a, b, nnx, ny);

[* Step 2: (nx / nproc) individual ny-point multicolumn NTTs */
#pragma omp parallel for
for (j = 0; j < nnx; j++)
nttsub(&b[j * ny], &a[j * ny], wy, wwy, ny, ipy, np);

2023/2/22 2022 CCS-KISTI Workshop 13

Performance Results

For performance evaluation, we measure the performance
of the proposed implementation of the six-step NTT with a
modulus of 63 bits.

The performance was measured on the Fujitsu
PRIMEHPC FX1000 at the University of Tokyo.
— 7680 nodes, Peak 25.9 PFlops
— CPU: A64FX (48 cores + assistant 2 or 4 cores, 2.2 GHz)
— Interconnect: Tofu interconnect D (Link bandwidth 6.8 GB/s)
— Compiler: Fujitsu C/C++ Compiler 4.8.1
— Compiler option: “~-Nclang -Kfast -Kopenmp”

Each MPI process has 12 cores and 12 threads,
l.e., 4 MPI processes per node.

The giga-operations per second (Gops) values are each
based on (3/2)N log, N for a transform of size N = 2™.

2023/2/22 2022 CCS-KISTI Workshop 14

10000

1000

100

Gops

10

2023/2/22

Performance of Parallel NTTs
(N = 2% x MPI processes)

2 4 8 16 32 64 128 256 512 1024 2048 4096
Number of MPI processes

——Proposed

2022 CCS-KISTI Workshop 15

Discussion

* The reason for the smaller performance growth when
the number of MPI processes is increased from 4 to 8
Is that up to 4 MPI processes are communicating
within the node.

« For 238-point NTT on 4096 MPI processes,
approximately 80% of the execution time is taken up
by all-to-all communication.

* The Fujitsu PRIMEHPC FX1000 uses Tofu
Interconnect D, a 6-dimensional torus network, but as
the number of nodes increases, the maximum
number of hops also increases, resulting in lower all-
to-all communication bandwidth.

2023/2/22 2022 CCS-KISTI Workshop 16

Performance of MPI_Alltoall
(Fujitsu PRIMEHPC FX1000,
1024 nodes, 4096 MPI processes)

0.7
0.6
0.5

0.4

GB/s

0.3
0.2

0.1

8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K
Message size (bytes)

——MPI_Alltoall

2023/2/22 2022 CCS-KISTI Workshop 17

Conclusion

We proposed an implementation of the parallel
NTT on manycore clusters.

The butterfly operation of the NTT can be
performed using modular addition, subtraction,
and multiplication.

We parallelized the six-step NTT using MPI and
OpenMP.

We successfully achieved a performance of over
4831 Gops on a Fujitsu Supercomputer
PRIMEHPC FX1000 (1024 nodes) for a 238-point
NTT with a modulus of 63 bits.

2023/2/22 2022 CCS-KISTI Workshop 18

	Implementation of Parallel�Number-Theoretic Transform�on Manycore Clusters
	Outline
	Background
	Related Works (1/2)
	Related Works (2/2)
	Objectives
	Number-Theoretic Transform (NTT)
	Stockham Radix-2 NTT Algorithm
	Modular Arithmetic in NTT
	Shoup’s Modular Multiplication Algorithm [Harvey 2014]
	Six-Step NTT Algorithm
	Parallel NTT Algorithm Based on�Six-Step NTT
	Parallelization of Six-Step NTT
	Performance Results
	Performance of Parallel NTTs�(𝑁= 2 26 × MPI processes)
	Discussion
	Performance of MPI_Alltoall�(Fujitsu PRIMEHPC FX1000,�1024 nodes, 4096 MPI processes)
	Conclusion

