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Highlights

• 15 years to go from Exascale ideation to deployment
– Reports and predictions

• Current status
– Systems (Frontier)
– Exascale Computing Project

• Exascale: What did we get right, get wrong, overlook?
• Post Exascale?

– Heterogeneous systems enabled by Heterogeneous integration and Chiplets
– Codesign becomes even more important

• Abikso: Microelectronics codesign project
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Exascale Reports (and predictions) from 2007 to 2014
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My first trip to Tsukuba!

• International Exascale
Software Project

• Meeting 3: 
Tsukuba, Japan
Oct. 18-20, 2009

• International Exascale Software Project
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DOE HPC Roadmap to Exascale Systems

LLNL
IBM/NVIDIA

ANL
IBM BG/Q

ORNL
Cray/AMD/NVIDIA

LBNL
HPE/AMD/NVIDIA

LANL/SNL
HPE/Intel

ANL
Intel/HPE

ORNL
HPE/AMD

LLNL
HPE/AMD

LANL/SNL
Cray/Intel  Xeon/KNL

FY 2012 FY 2016 FY 2018 FY 2021

ORNL
IBM/NVIDIA

LLNL
IBM BG/Q

Sequoia

Cori

Trinity

ThetaMira

Titan Summit

ANL
Cray/Intel KNL

LBNL
Cray/Intel  Xeon/KNL

Sierra

FY 2023FY 2022

Exascale 
Systems

Version 2.0
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ANL
HPE/AMD/NVIDIA

Polaris
To date, only 
NVIDIA GPUs

AMD, Intel and 
NVIDIA GPUs!
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Exascale Computing Project has three technical areas to meet 
national goals

Application Development (AD) Software
Technology (ST)

Hardware 
and Integration (HI)

Performant mission and science applications @ scale

Foster application 
development

Ease 
of use

Diverse
architectures

HPC
leadership

Integrated delivery of ECP 
products on targeted systems at 
leading DOE computing facilities

Produce expanded and vertically 
integrated software stack to achieve 
full potential of exascale computing

Develop and enhance the predictive 
capability of applications critical to 

the DOE

25 applications ranging from 
national security, to energy, earth 

systems, economic security, 
materials, and data

80+ unique software 
products spanning 

programming models 
and run times, math 
libraries, data and 

visualization

6 vendors supported 
by PathForward

focused on memory, 
node, connectivity 

advancements; 
deployment to facilities

https://www.exascaleproject.org/

https://www.exascaleproject.org/
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Application Development KPP-1 and KPP-2 Readiness Overview

ExaFel (Blocked ROCm) – The project team noticed during a recent work around to compiler bugs preventing compilation of Spinifel relies on an 
upstream compiler built locally by the OLCF team. Integration into a formal ROCm release is still pending, so we have chosen to mark this as formally 
blocked even though the team can currently make progress with the unofficial compiler build.
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Extreme-scale Scientific Software Stack 
(E4S)
• E4S: HPC software ecosystem – a curated software portfolio
• A Spack-based distribution of software tested for interoperability 

and portability to multiple architectures
• Available from source, containers, cloud, binary caches
• Leverages and enhances SDK interoperability thrust
• Not a commercial product – an open resource for all
• Growing functionality: May 2022: E4S 22.05 – 100+ full release products

https://e4s.io
E4S lead: Sameer Shende (U Oregon)

Also includes other products, e.g.,
AI: PyTorch, TensorFlow, Horovod
Co-Design: AMReX, Cabana, MFEM

https://spack.io
Spack lead: Todd Gamblin (LLNL)

Community policies
Commitment to SW quality

DocPortal
Single portal to all                 
E4S product info

Portfolio testing
Especially leadership 

platforms

Curated collection
The end of dependency hell

Quarterly releases 
Release 22.2 – February

Build caches
10X build time 
improvement

Turnkey stack
A new user experience https://e4s.io Post-ECP Strategy

Commercial E4S, SSO

https://e4s.io/
https://e4s.io/
https://spack.io/
https://spack.io/
https://e4s.io/
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ECP is Improving the LLVM Compiler Ecosystem

Active involvement with broad LLVM community: LLVM Dev, EuroLLVM
ECP personnel had 10+ presentations at the 2020 Dev Meeting

LLVM

•Very popular open-
source compiler 
infrastructure

•Permissive license
•Modular, well-
defined IR allows 
use by a lot of 
different languages, 
ML frameworks, etc.

•Backend 
infrastructure 
allowing the efficient 
creation of backends 
for new 
(heterogeneous) 
hardware.

•A state-of-the-art 
C++ frontend, 
CUDA support, 
scalable LTO, 
sanitizers and other 
debugging 
capabilities, and 
more.

+ SOLLVE

•Enhancing the 
implementation of 
OpenMP in LLVM

•Unified memory

•Prototype OMP 
features for LLVM

•OMP Optimizations

•OMP test suite

•Tracking OMP 
implementation 
quality

•Training

+ PROTEAS-TUNE

•Core optimization 
improvements to 
LLVM
•OpenMP offload

•OpenACC capability 
for LLVM
•Clacc
•Flacc

•Autotuning for 
OpenACC and 
OpenMP in LLVM

•Integration with Tau 
performance tools

•SYCL characterizing 
and benchmarking

•Leading LLVM-DOE 
fork

•Training

+ FLANG

•Developing an open-
source, production 
Fortran frontend 

•Upstream to LLVM 
public release

•Support for OpenMP 
and OpenACC

•Recently approved 
by LLVM

•Initial implementation 
of serial F77 
compiler for CPUs 
under review

+ HPCToolkit

•Improvements to 
OpenMP profiling 
interface OMPT

•OMPT specification 
improvements

•Refine HPCT for 
OMPT improvements

+ NNSA

•Enhancing LLVM to 
optimize template 
expansion for 
FlexCSI, Kokkos, 
RAJA, etc.

•Flang testing and 
evaluation

•Kitsune and Tapir

Vendors

•Increasing 
dependence on 
LLVM

•Many vendors import 
and redistribute 
LLVM

•Contributions and 
collaborations with 
many vendors 
through LLVM
•AMD
•ARM
•Cray
•HPE
•IBM
•Intel
•NVIDIA

Other ECP activities with LLVM emerging organically.



So how did we do?
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Reflections from ECP Panel at ECP AHM in May 2022
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15 years is an eternity in computing - How did our predictions do?

Hits
• System power came in at 

O(20MW) not O(1GW)
• Few major software rewrites / 

evolution
• So far, FORTRAN -> C++ is 

the main conversion
• ECP included applications, 

software, and hardware
• ~70 teams, ~1000 

researchers
• IESP

• Concurrency (1B-way 
parallelism)

• Open-source software

Misses
• Systems deployed 4 years 

later than expected (of  2018)
• Programming systems are 

multiplying and 
immature/incomplete

• Hardware diversity
• Demise of vendor interest in 

HPC
• Fault tolerance

Overlooked
• Productive programming 

models (ala AI/ML): Python, 
Jupyter, Julia

• Cost of ECP + NRE + 
Procurements approaches $3.6B 
USD

• AI/ML is not predicted (or 
even mentioned)

• Cloud deployment models
• Green/sustainable computing



Pondering Post-Exascale
Computing

• Thinking about the next 10 years
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Important Architectural 
Trends
• Heterogeneous integration
• Chiplets
• Ecosystems and Standards

– CXL, UCIe, BoW, …
• Open-source Tools and IP

– RISC-V, OpenLane, 
Silicon Compiler, etc

• Open foundries

• Codesign will be more 
important than ever

[DARPA ERI Summit 
2018]



Reimagining Codesign

• 2021 Workshop
• Four priority research 

directions
– Drive Breakthrough Computing 

Capabilities with Targeted Heterogeneity 
and Rapid Design 

– Software and Applications that Embrace 
Radical Architecture Diversity 

– Engineered Security and Integrity from 
Transistors to Applications

– Design with Data-Rich Processes 

• We must make codesign agile, more 
accurate, and use real workloads

https://www.osti.gov/biblio/1822198-reimagining-codesign-advanced-scientific-computing-unlocking-transformational-opportunities-future-computing-systems-science

7 Sep 2022 Abisko 138

https://www.osti.gov/biblio/1822198-reimagining-codesign-advanced-scientific-computing-unlocking-transformational-opportunities-future-computing-systems-science


Abisko: Microelectronics 
Codesign
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Abisko Microelectronics Codesign Overview

Algorithms

Software

Architecture

Devices and 
Circuits

Materials

Applications

ISA, IR

Compact models

API, Motifs

Motifs, Composition

Circuit scale up, 
Interconnects, PDK

Co
de

sig
n



Abisko Microelectronics Codesign Overview
Collaborator

1. Develop better techniques for codesign from algorithms to 
devices and materials

2. Design Spiking Neural Network chiplet that can be integrated 
with contemporary computer architectures

3. Explore new devices and materials for the SNN chiplet 
(neuron, synapse, plasticity, etc.)

4. Design language abstractions and runtime 
support for SNN chiplet



Abisko Microelectronics Codesign Overview
Applications

Motivation
• Transportation
• CMS Sensors

Collaborator

Motifs, Composition
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1. Develop better techniques for codesign from algorithms to 
devices and materials

2. Design Spiking Neural Network chiplet that can be integrated 
with contemporary computer architectures

3. Explore new devices and materials for the SNN chiplet 
(neuron, synapse, plasticity, etc.)

4. Design language abstractions and runtime 
support for SNN chiplet



Abisko Microelectronics Codesign Overview

Algorithms

Applications
Motivation
• Transportation
• CMS Sensors

Algorithms
• ML: SLAYER, Whetstone, EONS, 

eProp, STDP
• Non-ML: Graph algorithms, CSP
• Simulators: NEST, Brian2

Collaborator

API, Motifs

Motifs, Composition
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1. Develop better techniques for codesign from algorithms to 
devices and materials

2. Design Spiking Neural Network chiplet that can be integrated 
with contemporary computer architectures

3. Explore new devices and materials for the SNN chiplet 
(neuron, synapse, plasticity, etc.)

4. Design language abstractions and runtime 
support for SNN chiplet



Abisko Microelectronics Codesign Overview

Algorithms

Software

Applications

Software
• DSL and API for neuromorphic co-processing
• Built on LLVM and MLIR
• Portable across Abisko chiplet, GPUs, etc.

Motivation
• Transportation
• CMS Sensors

Algorithms
• ML: SLAYER, Whetstone, EONS, 

eProp, STDP
• Non-ML: Graph algorithms, CSP
• Simulators: NEST, Brian2

Collaborator

ISA, IR

API, Motifs

Motifs, Composition
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1. Develop better techniques for codesign from algorithms to 
devices and materials

2. Design Spiking Neural Network chiplet that can be integrated 
with contemporary computer architectures

3. Explore new devices and materials for the SNN chiplet 
(neuron, synapse, plasticity, etc.)

4. Design language abstractions and runtime 
support for SNN chiplet



Abisko Microelectronics Codesign Overview

Algorithms

Software

Architecture

Applications

Software
• DSL and API for neuromorphic co-processing
• Built on LLVM and MLIR
• Portable across Abisko chiplet, GPUs, etc.

Architecture
• Design neuromorphic chiplet
• RISC-V neuromorphic extensions
• Heterogeneous integration with 

contemporary technologies

Motivation
• Transportation
• CMS Sensors

Algorithms
• ML: SLAYER, Whetstone, EONS, 

eProp, STDP
• Non-ML: Graph algorithms, CSP
• Simulators: NEST, Brian2

Collaborator

2.5D and 3D integration
Simulation/EmulationISA, IR

API, Motifs

Motifs, Composition

Circuit scale up, 
Interconnects, PDK

F1
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C
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1. Develop better techniques for codesign from algorithms to 
devices and materials

2. Design Spiking Neural Network chiplet that can be integrated 
with contemporary computer architectures

3. Explore new devices and materials for the SNN chiplet 
(neuron, synapse, plasticity, etc.)

4. Design language abstractions and runtime 
support for SNN chiplet



Chiplet Architectures

• Design an (analog) SNN chiplet that can 
be easily integrated with contemporary 
technologies
– Heterogeneous integration with mixed 

processes
– Compatible with existing processes

• Extensive advances in chiplets, 
packaging, and heterogeneous 
integration recently
– Open Domain-Specific Architecture
– UCIe, BoW, TSMC SoIC-CoW, Intel Foveros

• Using open toolchain and architecture to 
explore chiplet designs: RISC-V, 
OpenLane

7 Sep 2022 Abisko 150
[IEEE HIR 2021]

[DARPA ERI Summit 2018]



Evaluation of 2.5D Chiplet for Neuromorphic Computing

Sandia VO2 ECRAM

refine
improve



ASIC Flow for Digital NN (baseline)

• Investigate the performance of fully customized 
ASIC design for ultra-fast NN inference

– ORNL: HLS and RTL
– Geogia Tech: ASIC Synthesis and PD

• Model details: 
– Fixed NN architecture with quantized weights
– Experimented with 2bit or 3bit of inputs (limited by 

FermiLab implementation)

• Flow:
– Vitis HLS to generate RTL
– Catapult logic synthesis
– Customized backend layout tool (incl. tech 

mapping, placement and routing)

• Achieved clock frequency of 1~ 2GHz in a 28nm 
technology

Vivado Toolchain
Python

DNN Layer 
Generator

Catapult ASIC 
Synthesis

Layer
XilinxCL

1. Layer Parameters
2. Bitwidth of features and weights
3. Bus width of Interface
4. Fixed / Loadable Weights

RTL
ASIC Synthesis

conv0

conv1

dense0

dense1

maxpooling

526 um2bits

794 um3bits
conv 0 

7 Sep 2022 Abisko 155



Abisko Microelectronics Codesign Overview

Algorithms

Software

Architecture

Devices and 
Circuits

Applications

Software
• DSL and API for neuromorphic co-processing
• Built on LLVM and MLIR
• Portable across Abisko chiplet, GPUs, etc.

Architecture
• Design neuromorphic chiplet
• RISC-V neuromorphic extensions
• Heterogeneous integration with 

contemporary technologies

Devices and Circuits
• ion insertion (reversible doping) sets analog states
• mRaman captures transition linear, 

non-linear switching
• Will extend to 36x36 x-bar array
• Electronic and other optical spectroscopies

Motivation
• Transportation
• CMS Sensors

ECRAM

Algorithms
• ML: SLAYER, Whetstone, EONS, 

eProp, STDP
• Non-ML: Graph algorithms, CSP
• Simulators: NEST, Brian2

Collaborator

2.5D and 3D integration
Simulation/EmulationISA, IR

Compact models

API, Motifs

Motifs, Composition

Circuit scale up, 
Interconnects, PDK
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1. Develop better techniques for codesign from algorithms to 
devices and materials

2. Design Spiking Neural Network chiplet that can be integrated 
with contemporary computer architectures

3. Explore new devices and materials for the SNN chiplet 
(neuron, synapse, plasticity, etc.)

4. Design language abstractions and runtime 
support for SNN chiplet



Devices and Circuits
• Goals

– Harness the interplay between mobile defects (ions and vacancies) and electronic properties to realize functional elements 
for spiking and non-spiking analog neuromorphic networks

– Create and validate small network models; generate device and network data for co-design

– Understand and mitigate radiation induced degradation mechanisms at the device and circuit level

TiN
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switching 
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- -- -
-

-

++

O-2 anions 
exchange
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+
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Devices
1) ECRAM

2) ReRAM

Circuits

inputs
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spiking 
neuron

output
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Prototypes



Experimental TaOx ReRAM Conductance Distributions 

200ohm spacing between resistance targets
100ohm spread between Rmin, Rmax

Resulting conductance distributionTiN

Ta (15 nm)

TiN

TaOx 
(5-10 nm) ++

+ +

- --
-

-
-

++

VTE

+
+

+
+

+

--

Developed TaOx
weight mapping and 
programming routine 
for optimizing 
inference accuracy



Abisko Microelectronics Codesign Overview

Algorithms

Software

Architecture

Devices and 
Circuits

Materials

Applications

Software
• DSL and API for neuromorphic co-processing
• Built on LLVM and MLIR
• Portable across Abisko chiplet, GPUs, etc.

Architecture
• Design neuromorphic chiplet
• RISC-V neuromorphic extensions
• Heterogeneous integration with 

contemporary technologies

Materials
• Non-equilibrium probes to few nm
• Data-driven modeling
• On-demand neuromorphism

Devices and Circuits
• ion insertion (reversible doping) sets analog states
• mRaman captures transition linear, 

non-linear switching
• Will extend to 36x36 x-bar array
• Electronic and other optical spectroscopies

Motivation
• Transportation
• CMS Sensors

ECRAM

Domain wall memristor Computational data mining

Algorithms
• ML: SLAYER, Whetstone, EONS, 

eProp, STDP
• Non-ML: Graph algorithms, CSP
• Simulators: NEST, Brian2

Computing Discovery Platform

Collaborator

2.5D and 3D integration
Simulation/EmulationISA, IR

Compact models

API, Motifs

Motifs, Composition

Circuit scale up, 
Interconnects, PDK
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CNMS scanning probe 
microscopy and chemical imaging
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1. Develop better techniques for codesign from algorithms to 
devices and materials

2. Design Spiking Neural Network chiplet that can be integrated 
with contemporary computer architectures

3. Explore new devices and materials for the SNN chiplet 
(neuron, synapse, plasticity, etc.)

4. Design language abstractions and runtime 
support for SNN chiplet



Conclusions
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Recap

• Visit us (post COVID )
– We host interns and other 

visitors year round
• Faculty, grad, undergrad, 

high school, industry

• Jobs at ORNL
– Visit https://jobs.ornl.gov

• Contact me 
vetter@ornl.gov

• Experimental Computing 
Lab
– Lots of emerging archs
– https://excl.ornl.gov

• Exascale is here!

• Our predictions were reasonably accurate, 
but we completely missed some 
– AI/ML
– Programming systems remain major challenge

• Post-exascale
– Heterogeneous integration and Chiplet 

architectures are vastly diversifying the 
architectural landscape

– Post exascale will be accelerated by recent 
major semiconductor investments

• Abisko microelectronics codesign project 
developing a chiplet for analog SNN

• Start building your own chiplets today!

https://jobs.ornl.gov/
mailto:vetter@ornl.gov
https://excl.ornl.gov/
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