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Abstract

Over the last 20 years, the open-source community has provided more and more software on which the world's high-
performance computing systems depend for performance and productivity. The community has invested millions of
dollars and years of effort to build key components. However, although the investments in these separate software ele-
ments have been tremendously valuable, a great deal of preductivity has also been lost because of the lack of planning,
coordination, and key integration of technologies necessary to make them weork together smoethly and efficiently, both
within individual petascale systems and berween different systems. |t seems clear that this completely uncoordinated
development model will not provide the software needed to support the unprecedented parallelism required for peta/
exascale computation on millions of cores, or the flexibility required to exploit new hardware models and features, such
as transactional memory, speculative execution, and graphics processing units. This report describes the work of the
community to prepare for the challenges of exascale computing, ultimately combing their efforts in a coordinated Inter-

national Exascale Software Project.

Keywords

exascale computing, high-performance computing, software stack
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e International Exascale
Software Project

e Meeting 3:
Tsukuba, Japan
Oct. 18-20, 2009

My first trip to Tsukuba!
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DOE HPC Roadmap to Exascale Systems

FY 2012 FY 2016 FY 2018 FY 2021 FY 2022 FY 2023

E f ___...i _______________________________________ / .’_ ’ ______ ; _____________________ N ;
¥ ! FRONTIER Exascale
L | . l -— :
N i | ORNL Systems
O ORNL : ORNL i HPE/AMD
i | IBM/NVIDIA s
) :
— | I
EI I
S, | ! e
§ o ANL oo ——ANL ol HPE
g : Crayflntel KNL : _HPE/AVDINVIDIA nte
3 | H Perlrniithzr.;.._; i
: F Wi : .
' : LBNL LBNL
: HPE/AMD/NVIDIA v
A e oo HPEAMDMVIDA
| | - B
NI Sc l| L CROSS(ROADS
5 : LLNL ! ' erra i ~— _
R IBM BG/Q : LLNL i LANL/SNL ,
\ , LANL/SNL : LLNL :
NI -" Grayfintel XeonKNL IBMNVIDIA HPE/Intel \_ HPEAMD

gy
ElC\'P Eﬁgih_;}hr Version 2.0



64

o _________decommissioned _ ________

DOE HPC Roadmap to Exascale Systems

FY 2012 FY 2016 FY 2018
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To date, only
NVIDIA GPUs
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AMD, Intel and
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Frontier System Frontier Cabinet Frontier Node

AMD extraordinary engineering

84 Ok Riop : ' T (3 ?Il‘IZ?:lI\I:DriEI:ies * 1 AMD “Trento” CPU (optimized Milan)
4 AMD MI250X GPUs
@ BiERGY I'ﬂ‘(‘\,_)‘l‘l et * 8,000 Ibs _
N T m— * Supports 400 KW * 512 GiB DDR4 memory on CPU
ol * 512 GiB HBM2e total per node
- S v @ 4 Cassini NICs connected to the 4 GPUs
e
System
* 74 compute racks ‘ A ,
e 29 MW Power Consumption Campute Shades fen Compute blade
* 9,408 nodes o ' e 2 AMD nodes
* 9.2 PB memory T
(4.6 PB HBM, 4.6 PB DDR4) { iy
 Cray Slingshot network with

dragonfly topology e
e 37 PB Node Local Storage
e 716 PB Center-wide storage
* 4000 ft? foot print

Lesocrnr All water cooled, even DIMMS and NICs

FACILITY

5 %OAK RIDGE

National Laboratory
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OAK RIDGE NATIONAL LABORATORY'S FRONTIER SUPERCOMPUTER

TOP500 GREENSO00

12

45 i Fhﬁwmlﬂﬂl

Ents ':I SB ,‘_'.l"-lln-- i
A ~ H

74 HPE Cray EX cabinets

* 9,408 AMD EPYC CPUs,
37,632 AMD GPUs

* 700 petabytes of storage

capacity, peak write speeds
of 5 terabytes per second

using Cray Clusterstor
Storage System

* 90 miles of HPE Slingshot

networking cables

: Sources: May 30, 2022 Top500 release

1.1 exaflops of
performance on the
May 2022 Top500.

R

62.04 gigaflops/watt
power efficiency on
a single cabinet.
52.23 gigaflops/watt
power efficiency on
the full system

-

6.88 exaflops on the
HPL-Al benchmark.

-




Exascale Computing Project has three technical areas to meet

national goals

Performant mission and science applications @ scale

Ease Diverse

of use

Foster application
development

architectures

HPC
leadership

I R T —

Application Development (AD) Software

Technology (ST)
Develop and enhance the predictive Produce expanded and vertically
capability of applications critical to integrated software stack to achieve
the DOE

full potential of exascale computing

-

Hardware

and Integration (HI)

Integrated delivery of ECP
products on targeted systems at
leading DOE computing facilities

80+ unique software
products spanning
programming models
and run times, math
libraries, data and
visualization

25 applications ranging from
national security, to energy, earth
systems, economic security,
materials, and data

76 https://www.exascaleproject.orqg/

6 vendors supported
by PathForward
focused on memory,

node, connectivity
advancements;
deployment to facilities

;Q\b 1

EXASCALE
COMPUTING
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Application Development KPP-1 and KPP-2 Readiness Overview

v Aurora EAS £ e Aurora EAS
rontier KPP-2 A
PP (Intel Proprletary) PP (Intel Proprietary)

Initial Build/Test

LatticeQCD
NWChemEx
EXAALT
QMCPACK
ExaSMR

WDMApp
WarpX
ExaSky
EQSIM
E3SM-MMF

CANDLE

ExaFel (Blocked ROCm) —

Verified GAMESS
Full Build/Test Inltlal Build/Test ExaAM

ExaWind

Initial Build/Test

__ -

__ —

Verified ExaStar

Initial Build/Test ExaSGD

Ready ExaFEL

Initial Build/Test

Full Build/Test

Full Build/Test

Frontier TDS

Blocked (ROCm)

The project team noticed during a recent work around to compiler bugs preventing compilation of Spinifel relies on an

upstream compiler built locally by the OLCF team. Integration into a formal ROCm release is still pending, so we have chosen to mark this as formally
blocked even though the team can currently make progress with the unofficial compiler build.

/;.\\\

)

(&

13

’ EXASCAHLE
COMPUTING
PROJECT
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Extreme-scale Scientific Software Stack

(E4S)

E4S: HPC software ecosystem — a curated software portfolio

» A Spack-based distribution of software tested for interoperability
and portability to multiple architectures

» Available from source, containers, cloud, binary caches

» Leverages and enhances SDK interoperability thrust

* Not a commercial product — an open resource for all
« Growing functionality: May 2022: E4S 22.05 — 100+ full release products

Community policies
Commitment to SW quality

DocPortal
Single portal to all
E4S product info

Curated collection
The end of dependency hell

Quarterly releases
Release 22.2 — February

Turnkey stack
A new user experience

https://eds.io

Portfolio testing\

Especially leadership
platforms

Build caches
10X build time
improvement

——

P

Commercial E4S, SSO/

N
ost-ECP Strategy

——

https://e4s.i0

E4S lead: Sameer Shende (U Oregon)

Also includes other products, e.g.,
Al: PyTorch, TensorFlow, Horovod
Co-Design: AMReX, Cabana, MFEM

\
EXASCAHLE
\) —) COMPUTING

PROJECT
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ECP is Improving the LLVM Compiler Ecosystem

*Very popular open-
source compiler
infrastructure

*Permissive license

*Modular, well-
defined IR allows
use by a lot of
different languages,
ML frameworks, etc.

Backend
infrastructure
allowing the efficient
creation of backends
for new
(heterogeneous)
hardware.

A state-of-the-art
C++ frontend,
CUDA support,
scalable LTO,
sanitizers and other
debugging
capabilities, and
more.

*Enhancing the
implementation of
OpenMP in LLVM

*Unified memory

*Prototype OMP
features for LLVM

*OMP Optimizations
*OMP test suite

*Tracking OMP
implementation
quality

*Training

The LLVM Compiler Infrastructure

LLVM Overview

Latest LLVM Release!
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+ PROTEAS-TUNE

*Core optimization
improvements to
LLVM

*OpenMP offload

*OpenACC capability
for LLVM
*Clacc
*Flacc

*Autotuning for
OpenACC and
OpenMP in LLVM

*Integration with Tau
performance tools

*SYCL characterizing
and benchmarking

*Leading LLVM-DOE
fork

*Training

Other ECP activities with LLVM emerging organically.

*Developing an open-
source, production
Fortran frontend

*Upstream to LLVM
public release

*Support for OpenMP
and OpenACC

*Recently approved
by LLVM

*Initial implementation
of serial F77
compiler for CPUs
under review

+ HPCToolkit

*Improvements to
OpenMP profiling

*Enhancing LLVM to
optimize template

interface OMPT expansion for
FlexCSI, Kokkos,
+OMPT specification RAJA, etc.
improvements

*Flang testing and

*Refine HPCT for evaluation

OMPT improvements
+Kitsune and Tapir

Active involvement with broad LLVM community: LLVM Dev, EuroLLVM

ECP personnel had 10+ presentations at the 2020 Dev Meeting

COMPILER INFRASTRUCTURE

*Increasing
dependence on
LLVM

*Many vendors import
and redistribute
LLVM

*Contributions and
collaborations with
many vendors
through LLVM

«AMD
*ARM
*Cray
*HPE
*|IBM
*Intel
*NVIDIA

VIRTUAL

DEVELOPERS’ MEETING

OCTOBER 6-8

&OAK RIDGE

. National Laboratory
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So how did we do?




Reflections from ECP Panel at ECP AHM in May 2022

7 LO '
anel Overview
scientists within ;ontro_l technologies possible significant
3 namic .
power ru:r:'(:réee“n;important data aLgOfithfan.‘ o
* bt imu ]
® As we enter the era of Exascale, it iS  processes components exascale computational targe
. ijssues Process use - : T- .
time to reflect andersinding. addess: TVEANGEEMBAL Bme one m¥or COMPULINE inciuge
resources d@[ approaches technology hardware provide ..o I
0O . . ? e BHLD, d — science
What did we get right . storage scientific challecr?g?}ss CHITENE Gitferent SySte I I I change
. . 2 owever doe i L £ _t techn[queg Sil’T]LJI.atiOﬂ g[oba{ computation
O What did we miss: capabilities SOf’t\;‘\Cfg\;eeogggjn new energy h_: ; develop example lct:)r[nplex
. . : critica < , scalable
O  What did we omit? wreas ANAYSIS _ require tools research ., application
r d climate u :
.. . required erformance T support memo_ry Aehoe
® Many of you participated in these community PO e aroblems methods PTOEramming
workshops and reports P evpected architectures optimization high deSIEN work
o dealign challenge  environment uncertainty
. security based
o Comments and questions -
welcome!
o Please use ZOOM Q&A window Jeffrey Vetter (ORNL), Moderator
Pete Beckman (ANL)
Jack Dongarra (UTK, ORNL)
Bob Lucas (Ansys)
Kathy Yelick (UCB)
Vetter | ORNL 5

HUnK RIDGE
National Laboratory



15 years is an eternity in computing - How did our predictions do?

Hits

Misses

Overlooked

» System power came in at
O(20MW) not O(1GW)

* Few major software rewrites /
evolution

 So far, FORTRAN -> C++ is
the main conversion

» ECP included applications,
software, and hardware

« ~70 teams, ~1000
researchers

« IESP

« Concurrency (1B-way
parallelism)

» Open-source software

» Systems deployed 4 years
later than expected (of 2018)

* Programming systems are
multiplying and
immature/incomplete

» Hardware diversity

 Demise of vendor interest in

HPC

* Fault tolerance
HOW STANDARDS PROUFERATE:

(&6E: AJC CHARGERS, (HARACTER ENCODINGS, INSTANT MESSAGING, ETC)

SITUATION:

THERE ARE
[4 COMPETING
STANDPRDS.

17! RiDICULoLUs!

WE NEED To DEVELOR
ONE UNIVERSAL STANDRRD
THAT COVERS EVERYONES

SITUATION:
THERE ARE
|15 COMPETING
STANDEARDS.

* Productive programming
models (ala AI/ML): Python,
Jupyter, Julia

e Cost of ECP + NRE +
Procurements approaches $3.6B
usD

« AI/ML is not predicted (or
even mentioned)

 Cloud deployment models
» Green/sustainable computing

OAK RIDGE

National Laboratory
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Pondering Post-Exascale
Computing

» Thinking about the next 10 years
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Important Architectural
Trends

e Heterogeneous integration
Chiplets

e Ecosystems and Standards
— CXL, UCle, BoW, ...

e Open-source Tools and IP

— RISC-V, OpenlLane,
Silicon Compiler, etc

e Open foundries

* Codesign will be more
important than ever

CHIPS enables rapid integration of
functional blocks at the chiplet level

Custom chiplets Commercial chiplets

= =
— - -_.'
| — -w.-'-| ‘ -
Today — Monolithic Tomorrow — Modular == ]
Image: Intel gﬁ | _ -
_ e r’—rljﬁ
COMM RADAR EW SIGINT
- - -
e — - -
Adagtive filter [l SerDes Bl SerDes
Bl Beamforming [ Besnforming Adaptive fiter

Bl croecomp. [ QRDecorrp. [ QR Decomp.

Figure 1. CHIPS Vision (DARPA)

[DARPA ERI Summit
2018]

AMD to Fuse FPGA Al Engines Onto EPYC
Processors, Arrives in 2023

By Paul Alcorn published May 04, 2022

AMD to arr

NVIDIA Opens NVLink for Custom Silicon Integration
000

Ultra Energy-Ef
CPUs Opens Ni

New UCle Chiplet Standard Supported by
Intel, AMD, and Arm

ch 02, 2022

Tuesday, March 22

By Paul Alcorn published Mar

Wiring it up Modular AMD Chips to Embrace Custom 3rd
Party Chiplets
o @ @ o o By Francisco Pires published June 17, 2022

Supercharging le

0000G

Univer:

Spurring adva

Intel Is Opening up lts Chip Factories to Academia

By Agam Shah




Reimagining Codesign

« 2021 Workshop

 Four priority research
directions

— Drive Breakthrough Computing
Capabilities with Targeted Heterogeneity
and Rapid Design

— Software and Applications that Embrace
Radical Architecture Diversity

- Engineered Security and Integrity from
Transistors to Applications

— Design with Data-Rich Processes

 We must make codesign algile, more
accurate, and use real workloads

7 Sep 2022 Abisko

Overview Brochure

Basic Research Needs for
Reimagining Codesign for
Advanced Scientific Computing

Unlocking Transformational Opportunities
for Future Computing Systems for Science

16-18 March 2021

https://doi.org/10.2172/1822198

"'-ri:”t’ U.S. DEPARTMENT OF Ofﬂce Of
2.0 ENERGY science

\\\\\\\\\\\ A A B A
https://www.osti.gov/biblio/1822198-reimagining-codesign-advance d-scientific-comput ing-unlocking-trans formati ional-opportunities-future: -computing-systems -science

1

38
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Abisko: Microelectronics
Codesign




Abisko Microelectronics Codesign Overview

Applications
/Aotifs, Composition

Algorithms

API, Motifs
Y 5
20
n
/A, IR GJ
s
Architecture @)

Circuit scale up,
Interconnects, PDK

Devices and
Circuits

Compact models

b N
. .ational Laboratory

141



Abisko Microelectronics Codesign Overview

Collaborator

OAK RIDGE . HARVARD
FSil CGr

I
|
|
. UNIVERSITY
National Laboratory I *
|
|
|
|

& . 0 100
Arl_zona_ State Georgla
!I'l Sandia National Laboratories ~ University Tech.

L. 2

Fermilab

1. Develop better techniques for codesign from algorithms to
devices and materials

2. Design Spiking Neural Network chiplet that can be integrated
with contemporary computer architectures

3. Explore new devices and materials for the SNN chiplet
(neuron, synapse, plasticity, etc.)

4. Design language abstractions and runtime
support for SNN chiplet

Outputs

Myelin sheat

| Myelinated axon

I nipiuts

Source: Wikipedia



Abisko Microelectronics Codesign Overview

OAK RIDGE . HARVARD Collaborator
ESl Gr

- UNIVERSITY
National Laboratory *

I
|
|
Arizona State Georgia :
!
m University g & I v
|
|

Sandia National Laboratories Tech. Fermilab

1. Develop better techniques for codesign from algorithms to
devices and materials

2. Design Spiking Neural Network chiplet that can be integrated
with contemporary computer architectures

3. Explore new devices and materials for the SNN chiplet
(neuron, synapse, plasticity, etc.)

4. Design language abstractions and runtime
support for SNN chiplet

Outputs

Myelin sheat

Myelinated axon

I nipiuts

Source: Wikipedia

Motivation

Transportation
CMS Sensors

3.8T Solenoid

€ W\ ! Muon System
w /1, V4 2 Al Endcap
. (CSC+RPC)

Applications =

Motifs, Composition




3.8T Solenoid e

Abisko Microelectronics Codesign Overview e

Muon System
Endcap

) . AN N "t - A
Collaborator Appllcatlons \ i f -, ;\ (CSC+RPC)

|
OAK RIDGE ESU Gy 2% | Motivation
National Laboratory ~Aemamn Georgia l * * Transportation
. . . arc & “ * CMS Sensors
) Sandia National Laboratories ~ Uersi®y Tech. i Fermilab Motifs, Composition TRACKeR
1. Develop better techniques for codesign from algorithms to Algorithms
devices and materials F .o ] )
*  ML: SLAYER, Whetstone, EONS, Algorithms nest D
2. Design Spiking Neural Network chiplet that can be integrated eProp, STDP = | ‘
with contemporary computer architectures ¢ Non-ML: Graph algorithms, CSP

3. Explore new devices and materials for the SNN chiplet *  Simulators: NEST, Brian2

(neuron, synapse, plasticity, etc.)
4. Design language abstractions and runtime
support for SNN chiplet

o, N Axon terminal
s \ \

API, Motifs

Outputs

Myelin sheat

| Myelinated axon

I nipiuts

Source: Wikipedia



3.8T Solenoid

Abisko Microelectronics Codesign Overview e

nE W L Muon System
. . o I, " e ™ \ Endca
Collaborator Applications =% =) e

OAK RIDGE - HARVARD | Motivati
% Gr i otivation

|

|

. UNIVERSITY
National Laboratory * * Transportation

pcgsy
Arizona State Georgia = *  CMS Sensors
| Sandia National Laboratories ~ University Tech. Fermilab Motifs, Composition
1. Develop better techniques for codesign from algorithms to Algorithms
devices and materials - ML: SLAYER, Whetstone, EONS, Algorithms nest::
2. Design Spiking Neural Network chiplet that can be integrated eProp, STDP
with contemporary computer architectures ¢ Non-ML: Graph algorithms, CSP

e Simulators: NEST, Brian2

3. Explore new devices and materials for the SNN chiplet
(neuron, synapse, plasticity, etc.)

4. Design language abstractions and runtime
support for SNN chiplet

API, Motifs

Software

* DSL and API for neuromorphic co-processing
e Built on LLVM and MLIR

* Portable across Abisko chiplet, GPUs, etc.

©
MLIR

COMPILER INFRASTRUCTURE

ISA, IR

Outputs

Myelin sheat

Myelinated axon

I nipiuts

Source: Wikipedia



Abisko Microelectronics Codesign Overview

3.8T Solenoid

| Applications
Collaborator
: HARVARD | i i
OAK RIDGE ESU Gr ARVARD ! Motivation
National Laboratory Bt Georgla e : * +  Transportation
. . . arc & “ * CMS Sensors
'I" Sandia National Laboratories ~ Vnversity Tech. i Fermilab Motifs, Composition
1. Develop better techniques for codesign from algorithms to Algorithms
devices and materials « ML: SLAYER, Whetstone, EONS, Algorithms nest::
2. Design Spiking Neural Network chiplet that can be integrated eProp, STDP
with contemporary computer architectures * Non-ML: Graph algorithms, CSP

3. Explore new devices and materials for the SNN chiplet
(neuron, synapse, plasticity, etc.)

4. Design language abstractions and runtime
support for SNN chiplet

Software

e Built on LLVM and MLIR

~
S | °

_~

e OUPUS - Architecture
Myelinated axon > * Design neuromorphic chiplet

* RISC-V neuromorphic extensions
Heterogeneous integration with
contemporary technologies

I nipiuts

Source: Wikipedia °

* DSL and API for neuromorphic co-processing

Portable across Abisko chiplet, GPUs, etc.

Simulators: NEST, Brian2
API, Motifs
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MLIR

COMPILER INFRASTRUCTURE

ISA, IR 2.5D and 3D integration
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Chiplet Architectures

* Design an (analog) SNN chiplet that can
be easily integrated with contemporary
technologies

— Heterogeneous integration with mixed
processes

— Compatible with existing processes

* Extensive advances in chiplets,
packaging, and heterogeneous
Integration recently

— Open Domain-Specific Architecture
— UClIe, BoW, TSMC SolIC-CoW, Intel Foveros

* Using open toolchain and architecture to
explore chiplet designs: RISC-V,
Openlane

RISC-V"°
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CHIPS enables rapid integration of
functional blocks at the chiplet level

Custom chiplets Commercial chiplets
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Figure 1. CHIPS Vision (DARPA)
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conv 0

ASIC Flow for Digital NN (baseline) 3bits 794 um

 Investigate the performance of fully customized
ASIC design for ultra-fast NN inference

input: | [(None, 13, 21, 1)]

conv2d_input
output: | [(None, 13, 21, 1)]

InputLayer

A J

— ORNL: HLS and RTL conv2d | Convap | 0| (None, 13,21, 1) conv0
output: | (None, 6, 10, 32)
— Geogia Tech: ASIC Synthesis and PD i
- Model details: o gnivgt a2 {810 [ maxpooling
— Fixed NN architecture with quantized weights ' convi
input: | (None, 3, 5, 32)
— Experimented with 2bit or 3bit of inputs (limited by 5 Foupur | @one, 12,60
FermiLab implementation) v
input: | (None, 1, 2, 64) N
L FIOW: flaten | Flatten output: (None, 128) | 2b|ts 526 um
— Vitis HLS to generate RTL T ) dense0
. . output: | (None, 64)
— Catapult logic synthesis
— Customized backend layout tool (incl. tech dropout | Dropout “1;“‘;_ ggj;
mapping, placement and routing) ' ] ;
ense
» Achieved clock frequency of 1~ 2GHz in a 28nm dene 1 | D 2|80 0 'ﬁ ;
technology
1. L P
2, B?tyvsi:it:::‘Teeattel::es and weights DIZyNtTon Layer R Vivado Toolchai RTL . Catapu|t ASIC
3. Bus width of Interface Eh/Es XilinxCL NEl© Jelidiein > Synthesis
4. Fixed/Loadable Weights Generator
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with contemporary computer architectures * Non-ML: Graph algorithms, CSP
3. Explore new devices and materials for the SNN chiplet * Simulators: NEST, Brian2
(neuron, synapse, plasticity, etc.)
4. Design language abstractions and runtime
support for SNN chiplet

API, Motifs

Software

* DSL and API for neuromorphic co-processing
* Built on LLVM and MLIR
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Devices and Circuits

e Goals

— Harness the interplay between mobile defects (ions and vacancies) and electronic properties to realize functional elements
for spiking and non-spiking analog neuromorphic networks

— Create and validate small network models; generate device and network data for co-design

— Understand and mitigate radiation induced degradation mechanisms at the device and circuit level
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< lon
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(O]
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Experimental TaOx ReRAM Conductance Distributions

Developed TaOx 200ohm spacing between resistance targets
100ohm spread between R, R, .«

weight mapping and

programming routine §
for optimizing 3
inference accuracy a
) H
2 4 6 8 10 12 14 16 18 20
Resistance (kQ)
8 Resulting conductance distribution

wn

D

O

>

N 4

H*

o0 100 150 200 250 300 350 400 450 500

Conductance (uS)



Abisko Microelectronics Codesign Overview

3.8T Solenoid

IRON YOKE

Muon System

- = wnE Endca
| Applications = e
Collaborator
: HARVARD | i i o
OAK RIDGE ESU Gr ARVARD ! Motivation
National Laboratory Bt Georgla e : * +  Transportation
s
. . . iversi I “ ¢ CMS Sensors
| Sandia National Laboratories ~ University Tech. | Fermilab Motifs, Composition
1. Develop better techniques for codesign from algorithms to Algorithms
devices and materials - ML: SLAYER, Whetstone, EONS, Algorithms nest::
2. Design Spiking Neural Network chiplet that can be integrated eProp, STDP =
with contemporary computer architectures * Non-ML: Graph algorithms, CSP Y
3. Explore new devices and materials for the SNN chiplet * Simulators: NEST, Brian2 L

API, Motifs

(neuron, synapse, plasticity, etc.)
4. Design language abstractions and runtime

Software
support for SNN chiplet |
PP P + DSL and API for neuromorphic co-processing @ XACC
poes— o * Built on LLVM and MLIR i |
\ ™,

—_ .

MLIR

Portable across Abisko chiplet, GPUs, etc.

COMPILER INFRASTRUCTURE

Yin ISA, IR 2.5D and 3D integration

Simulation/Emulation 5
JBALADDIN &

b2 < Myelinated axon > * Design neuromorphic chiplet . gem5
n S . .
- + RISC-V neuromorphic extensions Architecture
Source: Wikipedia * Heterogeneous integration with Meahl ReRAM
contemporary technologies
Circuit scale up,
. . . Interconnects, PDK
Devices and Circuits
* ioninsertion (reversible doping) sets analog states . s
* mRaman captures transition linear, De‘"ces and g
. . . ()
non-linear switching Ci rCUitS ﬁ Computing Discovery Platform
*  Will extend to 36x36 x-bar array E e, e
e Electronic and other optical spectroscopies
Compact models
L CNMS scanning probe
. Ining microscopy and chemical imaging
Materials

DC+3GHz  laser
beam AFM/PFM

signal

.
D

* Non-equilibrium probes to few nm

Data-driven modeling
On-demand neuromorphism

[ S R T

bias, V

o ol

.
e Q
: 2
P
D :

gy,

T mm—"y
S8 E s oeooow

Irtersty @)




%OAK RIDGE

National Laboratory

Conclusions




228

Recap

Exascale is here!

Our predictions were reasonably accurate,
but we completely missed some

- Al/ML
— Programming systems remain major challenge

Post-exascale

— Heterogeneous integration and Chiplet
architectures are vastly diversifying the
architectural landscape

— Post exascale will be accelerated by recent
major semiconductor investments

Abisko microelectronics codesign project
developing a chiplet for analog SNN

Start building your own chiplets today!

Visit us (post COVID ©)

— We host interns and other
visitors year round

» Faculty, grad, undergrad,
high school, industry

Jobs at ORNL

— Visit https://jobs.ornl.gov

Contact me
vetter@ornl.gov

Experimental Computing

Lab

— Lots of emerging a

rchs

— https://excl.ornl.qov

%

OAK RIDGE

National Laboratory
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