The muon anomalous magnetic moment: how supercomputers can help us find new physics

Christoph Lehner (Regensburg & BNL)

October 8, 2021 - CCS International Symposium 2021

What is a muon?

- Elementary point-like particle
- Same electric charge as an electron
- Approximately 200 times heavier than an electron
- Like the electron, behaves as if it was intrinsically spinning about a vector \vec{S}

These properties combine to give it a magnetic moment

$$\vec{\mu} = \mathbf{g}\left(\frac{e}{2m}\right)\vec{S}$$

such that when put in a magnetic field, it exhibits precession similar to a spinning top.

We can measure this precession very precisely.

The magnetic moment and quantum corrections

The *g*-factor in $\vec{\mu} = g\left(\frac{e}{2m}\right)\vec{S}$ describes the strength of coupling to a magnetic field, which can be computed from theory also **very** precisely.

The quantum effects arise from virtual particle contributions from all known **and unknown** particles.

By comparing high-precision experiments and theory, we have the potential to learn about such contributions of new particles.

Contributions from known particles: The Standard Model

Open questions: dark matter, size of matter-antimatter asymmetry, origin of neutrino masses, $\ldots \Rightarrow$ Standard Model is incomplete

Contributions from known particles: The Standard Model $a_{\mu}(SM) = a_{\mu}(QED) + a_{\mu}(Weak) + a_{\mu}(Hadronic)$ QED $116584718.9(1) \times 10^{-11}$ 0.001 ppm Weak § $153.6(1.0) \times 10^{-11}$ 0.01 ppm Hadronic... ... Vacuum Polarization (HVP) $6845(40) \times 10^{-11}$ 0.37 ppm α^2 [0.6%]...Light-by-Light (HLbL) $92(18) \times 10^{-11}$ 0.15 ppm [20%]

Numbers from Theory Initiative Whitepaper

Uncertainty dominated by hadronic contributions

Status and impact of hadronic vacuum polarization contribution

Lattice QCD computation of the hadronic vacuum polarization

We can express

$$a_{\mu}^{\mathrm{HVP}} = \sum_{t} w_{t} C(t)$$

with analytically calculable w_t and

$$C(t) = \sum_{\vec{x}} \langle \operatorname{Tr}[D(U)_{\vec{x},t;\vec{0},0}^{-1} \Gamma D(U)_{\vec{0},0;\vec{x},t}^{-1} \Gamma] \rangle,$$

where $\langle \cdot \rangle$ denotes the expectation value over a certain ensemble of $SU(3)^{4V}$ matrices U with V being a four-dimensional space-time volume. Γ are matrices in an internal 12-dimensional space.

 $(V \text{ can be } 10^9)$

The Wilson Dirac operator

A substantial part of the numerical challenge lies in inverting the operator

$$egin{aligned} D(U)_{x,y} &= rac{1}{2} \sum_{\mu=0}^{3} \delta_{x+\hat{\mu},y} (\gamma_{\mu} - \mathbb{1}) U_{\mu}(x) \ &- rac{1}{2} \sum_{\mu=0}^{3} \delta_{x-\hat{\mu},y} (\gamma_{\mu} + \mathbb{1}) U_{\mu}^{\dagger}(y) \ &+ rac{1}{2} \kappa \delta_{x,y} \end{aligned}$$

with 4 × 4 matrices γ_{μ} , real number κ , and unit vectors $\hat{\mu}$.

High-performance computing

Grid Python Toolkit (GPT)

https://github.com/lehner/gpt

 A toolkit for lattice QCD and related theories as well as QIS (a parallel digital quantum computing simulator) and Machine Learning

- Python frontend, C++ backend
- Built on Grid data parallelism (MPI, OpenMP, SIMD, and SIMT)

Guiding principles:

Performance Portability

common Grid-based framework for current and future (exascale) architectures

Modularity / Composability

build up from modular high-performance components, several layers of composability, "composition over parametrization"

The Grid data parallelism paradigm

https://github.com/paboyle/Grid

Start with a vector $v_x \in O$ with $x \in L$ and a *d*-dimensional Cartesian lattice *L*. Examples below have d = 1 and $L = \{0, ..., 7\}$.

In lattice QCD, L makes up a space-time grid and v will be fermionic/bosonic fields.

High-performance building block: small stencil operators

Common in lattice QCD: local operators with a small stencil (examples: Dirac matrix, Δ operator)

For such transformations, only knowledge of a few neighbors is needed.

High-performance building block: site-local operators

Examples: (bi-)linear combinations of vectors

High-performance building block: reductions

Examples: inner product in lattice QCD, probability of measurement

For all these operations, the following data grouping preserves locality:

Such a group can be combined to a single SIMD word or mapped on a (fastest moving) thread index for coalesced memory access in SIMT architectures (Grid's SIMD/SIMT paradigm):

$$s_0 \equiv \begin{pmatrix} v_0 \\ v_4 \end{pmatrix}, \quad s_1 \equiv \begin{pmatrix} v_1 \\ v_5 \end{pmatrix}, \quad s_2 \equiv \begin{pmatrix} v_2 \\ v_6 \end{pmatrix}, \quad s_3 \equiv \begin{pmatrix} v_3 \\ v_7 \end{pmatrix}$$
 (1)

Size of lattice of *s* reduces depending on SIMD word size.

Example: derivative on periodic lattice

The 8 operations

$$v'_i = v_{i+1 \mod 8} - v_i$$
 (2)

with $i \in \{0, 1, \dots, 7\}$ turn into 4 operations on SIMD words

$$s_j' = s_{j+1} - s_j \tag{3}$$

with $j \in \{0, 1, 2, 3\}$ and border permutation

$$s_4 \equiv \begin{pmatrix} v_4 \\ v_0 \end{pmatrix} \,. \tag{4}$$

Check:

$$s_0 \equiv \begin{pmatrix} v_0 \\ v_4 \end{pmatrix} \,, \qquad \qquad s_1 \equiv \begin{pmatrix} v_1 \\ v_5 \end{pmatrix} \,, \qquad \qquad s_2 \equiv \begin{pmatrix} v_2 \\ v_6 \end{pmatrix} \,, \qquad \qquad s_3 \equiv \begin{pmatrix} v_3 \\ v_7 \end{pmatrix}$$

MPI parallelism

Here we allow for a *d*-dimensional Cartesian partition of the lattice *L*:

Challenge for Lattice QCD: small stencil operations

Only communication between neighboring nodes needed. Communication burden generally suppressed by surface to volume ratio.

GPT - layout and dependencies

Python script / Jupyter notebook

gpt (Python)

- Defines data types and objects (group structures etc.)
- Expression engine (linear algebra)
- Algorithms (Solver, Eigensystem, ...)
- · File formats
- · Stencils / global data transfers
- QCD, QIS, ML subsystems

cgpt (Python library written in C++)

- Global data transfer system (gpt creates pattern, cgpt optimizes data movement plan)
- Virtual lattices (tensors built from multiple Grid tensors)
- · Optimized blocking, linear algebra, and Dirac operators
- Vectorized ranlux-like pRNG (parallel seed through 3xSHA256)

Example: solvers are modular and can be mixed

General design principle: use modularity of python code instead of large number of parameters to configure solvers/algorithms; Python can also be used in configuration files

```
# Create an coarse-grid deflated, even-odd preconditioned CG inverter
# (eig is a previously loaded multi-grid eigensystem)
sloppy_light_inverter = g.algorithms.inverter.preconditioned(
    q.gcd.fermion.preconditioner.eo1 ne(parity=q.odd),
   q.algorithms.inverter.sequence(
        g.algorithms.inverter.coarse_deflate(
            eig[1],
            eia[0].
            eig[2],
            block=200,
        ),
        q.algorithms.inverter.split(
            g.algorithms.inverter.cg({"eps": 1e-8, "maxiter": 200}),
            mpi_split=[1,1,1,1],
        ).
   ),
```

All algorithms implemented in Python – Example: Euler-Langevin stochastig DGL integrator

```
21
22
     class langevin_euler:
         @g.params_convention(epsilon=0.01)
        def __init__(self, rng, params):
24
             self.rng = rng
26
             self.eps = params["epsilon"]
28
        def call (self, fields, action):
29
             qr = action.gradient(fields, fields)
30
             for d, f in zip(qr, fields):
31
                 f @= q.qroup.compose(
32
                     -d * self.eps
33
                     + self.rng.normal element(g,lattice(d)) * (self.eps * 2.0) ** 0.5.
                     f.
34
35
                 )
36
```

Implemented algorithms:

- ▶ BiCGSTAB, CG, CAGCR, FGCR, FGMRES, MR solvers
- Multi-grid, split-grid, mixed-precision, and defect-correcting solver combinations
- Coarse and fine-grid deflation
- Arnoldi, implicitly restarted Lanczos, power iteration
- Chebyshev polynomials
- All-to-all vector generation
- SAP and even-odd preconditioners
- Gradient descent and non-linear CG optimizers
- Runge-Kutta integrators, Wilson flow
- Fourier acceleration
- Coulomb and Landau gauge fixing
- Domain-wall–overlap transformation and MADWF
- Symplectic integrators (leapfrog, OMF2, and OMF4)
- Markov: Metropolis, heatbath, Langevin, HMC in progress

Performance

Benchmark results committed to github https://github.com/lehner/gpt/tree/master/benchmarks/ reference

Results available for GPU and CPU architectures. In the following, focus on Juwels booster (NVIDIA A100) and QPace4 (A64FX, same as Fugaku).

Juwels Booster (node has $4 \times A100-40$ GB): Single-node domain-wall fermion D operator

```
Initialized GPT
   Copyright (C) 2020 Christoph Lehner
GPT ·
        1.543473 s :
                 : DWF Dslash Benchmark with
                     fdimensions : [64, 32, 32, 32]
                     precision : single
                     Ls
                               : 12
        7.958636 s : 1000 applications of Dhop
GPT :
                     Time to complete
                                         : 2.93 s
                     Total performance
                                         : 11325.46 GFlops/s
                 :
                     Effective memory bandwidth : 7824.86 GB/s
GPT :
        7.959499 s :
                 : DWE Dslash Benchmark with
                     fdimensions : [64, 32, 32, 32]
                 .
                     precision : double
                 :
                     Ls
                            : 12
        17.420620 s : 1000 applications of Dhop
GPT :
                     Time to complete
                                          : 5.78 s
                     Total performance
                                         : 5749.77 GElops/s
                     Effective memory bandwidth : 7945.14 GB/s
Finalized GPT
```

Compare to HBM bandwidth of 1,555 GB/s per GPU

QPace4 (node has one A64FX): Single-node domain-wall fermion $D \hspace{-1.5mm}/$ operator

```
Initialized GPT
   Copyright (C) 2020 Christoph Lehner
GPT :
        0.265714 s :
                 : DWF Dslash Benchmark with
                     fdimensions : [24, 24, 24, 24]
                     precision : single
                            : 8
                     LS
        20.218240 s : 1000 applications of Dhop
GPT :
                     Time to complete
                 ÷.,
                                       : 3.67 s
                     Total performance
                                      : 954.90 GFlops/s
                     Effective memory bandwidth : 677.11 GB/s
GPT :
        20.218842 s :
                 : DWF Dslash Benchmark with
                     fdimensions : [24, 24, 24, 24]
                     precision : double
                     Ls
                               : 8
        45.245379 s : 1000 applications of Dhop
GPT :
                     Time to complete
                                      : 7.36 s
                     Total performance
                                         : 475.80 GFlops/s
                     Effective memory bandwidth : 674.77 GB/s
Finalized GPT
```

Compare to HBM bandwidth of 1,000 GB/s per A64FX

Juwels Booster (node has $4 \times$ A100-40GB): Single-node site-local matrix products

Initialized GPT Convright (C) 2020 Christoph Lebner			GPT :	62.262581 s :	atrix Multiply Reachmark with	
copyright to, core on interopy conten					fdimensions . [49 49 49	1281
GPT -	1 599357 # 1				Tuthenstons : [40, 40, 40,	120]
011.	· Matrix Multiply Reportently with				precision : double	
	Addression (40, 40, 40, 40, 40, 40, 40, 40, 40, 40,	1201				
	: Tuimensions : [40, 40, 40,	126)	GPT :	72.003471 s : 1	0 matrix_multiply	
	: precision : single			:	Object type	: ot_matrix_color(3)
	1			1	Time to complete	: 0.012 s
GPT :	10.985099 s : 10 matrix_multiply				Effective memory bandwidth	: 5264.01 GB/s
	: Object type	: ot_matrix_color(3)		4		
	: Time to complete	: 0.0058 s	GPT :	78.174681 s : 1	0 matrix_multiply	
	: Effective memory bandwidth	: 5271.36 GB/s			Object type	: ot_matrix_spin(4)
	1			4	Time to complete	: 0.02 s
GPT :	16.689329 s : 10 matrix_multiply			:	Effective memory bandwidth	: 5439.91 GB/s
	: Object type	: ot_matrix_spin(4)		:		
	: Time to complete	: 0.01 s	GPT :	128.232979 s : 1	0 matrix_multiply	
	: Effective memory bandwidth	: 5333.21 GB/s		:	Object type	: ot_matrix_spin_color(4,3)
	:			:	Time to complete	: 0.22 s
GPT :	62.092583 s : 10 matrix_multiply			:	Effective memory bandwidth	: 4416.45 GB/s
	: Object type	: ot_matrix_spin_color(4,3)		:		
	: Time to complete	0.097 s				
	: Effective memory bandwidth	: 5057.37 GB/s	Finalized GPT			
	1					

Compare to HBM bandwidth of 1,555 GB/s per GPU

Juwels Booster (node has $4 \times A100-40GB$): Inner product (reduction)

:	28.406798 s : 100	rank_inner_product	
	:	Object type	: ot_vector_singlet(12)
	:	Block	: 4 × 4
	:	Data resides in	: accelerator
	:	Performed on	: accelerator
	:	Time to complete	: 0.13 s
	:	Effective memory bandwidth	: 4827.16 GB/s
	:		
	:	rip: timing: unprofiled	= 0.000000e+00 s (= 0.00 %)
	: ri;	o: timing: rip: view	= 9.706020e-04 s (= 0.70 %)
	: rij	o: timing: rip: loop	= 1.369879e-01 s (= 99.30 %)
	: rij	o: timing: total	= 1.379585e-01 s (= 100.00 %)

GPT

Compare to HBM bandwidth of 1,555 GB/s per GPU

Performance summary

Machine	Operation	Performance	Bandwidth
Booster	$ ot\!$	12 TF/s	7.8 TB/s
Booster	ColorMatrix $ imes$		5.2 TB/s
Booster	${\sf SpinColorMatrix}\ \times$		5.1 TB/s
Booster	SpinColorVector $\langle \cdot, \cdot angle$		4.8 TB/s
QPace4	$ ot\!$	0.95 TF/s	0.68 TB/s
SuperMUC-NG	$ ot\!$	0.72 TF/s	0.51 TB/s

Single-node SP performance of Wilson D and linear algebra on Juwels Booster (4xA100, HBM BW 1.6 TB/s per A100), Qpace4 (A64FX, HBM BW of 1 TB/s per node), and the SuperMUC-NG (Skylake 8174). The D performance is inherited from Grid, the linear algebra performance is based on cgpt.

Total cost of a high-precision calculation of a_{μ}^{HVP}

► Need the equivalent of several 100,000 inversions of D(U) on lattices of size 96 × 96 × 96 × 192.

This corresponds to several hundred million core hours on leadership class supercomputers.

Status and impact of hadronic vacuum polarization contribution

Uncertainties of lattice QCD results expected to be reduced by an order-of-magnitude in coming years. Clarify: New Physics needed to explain tension?