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What is a muon?

» Elementary point-like particle

» Same electric charge as an electron
» Approximately 200 times heavier than an electron

» Like the electron, behaves as if it was intrinsically spinning
about a vector S

These properties combine to give it a magnetic moment
e —
— _ . S
H g-<2n7>
such that when put in a magnetic field, it exhibits precession
similar to a spinning top.

We can measure this precession very precisely.
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The magnetic moment and quantum corrections QA

The g-factor in ji =g (ﬁ) S describes the strength of coupling to
a magnetic field, which can be computed from theory also very
precisely.

Anomalous magnetic moment

Dirac: g = 2 a=(g—-2)/2 g>2§

//\\ quantum effects / \\‘

The quantum effects arise from virtual particle contributions from
all known and unknown particles.

By comparing high-precision experiments and theory, we have the
potential to learn about such contributions of new particles.
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Contributions from known particles: The Standard Model

Quarks

Leptons

Open questions: dark matter, size of matter-antimatter asymmetry, origin
of neutrino masses, ... = Standard Model is incomplete
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Contributions from known particles: The Standard Model

a,(SM) = a,(QED) + a,(Weak) + a,(Hadronic)

QED ¢

116584718.9(1) x 107" 0.001 ppm

+o. 153.6 (1.0) x 10711 0.01 ppm

madronic... \

...Vac%um Polarization (HVP) 6845 (40) x 101! 0.37 ppm
2 2
a “ g\ . [0.6%]
...Ligf;tiby-Light (HLbL) 92.(18) x 101 0.15 ppm
C;LFH—&‘* +... [20%] )

Numbers from Theory Initiative Whitepaper

Uncertainty dominated by hadronic contributions
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Status and impact of hadronic vacuum polarization contribution

HVP from:
T P T I T P T T T T
LM20 b i
BMW20 —O0—i
ETM18/19 +H——@—
Mainz/CLS19 t 4
FHM19 ——
PACS19 ¢ ®
RBC/UKQCD18 L i
BMW17 b ® !
RBC/UKQCD A E
data/lattice 3
BDJ19 i £
J17 0 T o
§ not used in WP20,
DHMZ19 — 2
KNT19 - £
LL|

WP20 .
e b b e b Ly ol b by

E - - E 0

(ajM-asxp ) x 10"

Ab-initio lattice QCD(+QED) calculations

Hybrid window method restricts scales that
enter from lattice/dispersive data

Dispersive, et e~ — hadrons (20+ years

of experiments)
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Lattice QCD computation of the hadronic vacuum polarization

We can express
HVP
= 2w

with analytically calculable w; and

C(t) = 3 (TD(WU), L5 ,TO(U);E L T,

=

X

where (-) denotes the expectation value over a certain ensemble of
SU(3)*Y matrices U with V being a four-dimensional space-time
volume. I are matrices in an internal 12-dimensional space.

(V can be 10°)
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The Wilson Dirac operator

A substantial part of the numerical challenge lies in inverting the
operator

3
1
D(U)X,y = 2 Zéx+ﬂ,Y(7u - l)UM(X)
©n=0

3
1
-5 > iyl + DUL(Y)
pn=0

1
+ EH(SX’}/

with 4 x 4 matrices 7, real number x, and unit vectors /i.
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High-performance computing



Grid Python Toolkit (GPT)

» A toolkit for lattice QCD
and related theories as

“‘ well as QIS (a parallel

< =
R
R
L

digital quantum
computing simulator) and
Machine Learning

‘ » Python frontend, C4++

backend

..“ » Built on Grid data
parallelism (MPI,

OpenMP, SIMD, and

https://github.com/lehner/gpt SIMT)

Initial commit Feb. 2020, 47k lines of C++/Python, >1400 commits so far, 12 contributors 8 /20


https://github.com/lehner/gpt

Guiding principles:

» Performance Portability
common Grid-based framework for current and future (exascale)
architectures

» Modularity / Composability
build up from modular high-performance components, several layers
of composability, “composition over parametrization”
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The Grid data parallelism paradigm

https://github.com/paboyle/Grid


https://github.com/paboyle/Grid

Start with a vector v, € O with x € L and a d-dimensional Cartesian
lattice L. Examples below have d =1 and L ={0,...,7}.

AT

In lattice QCD, L makes up a space-time grid and v will be
fermionic/bosonic fields.
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High-performance building block: small stencil operators

Common in lattice QCD: local operators with a small stencil (examples:

Dirac matrix, A operator)

For such transformations, only knowledge of a few neighbors is needed.
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High-performance building block: site-local operators

Examples: (bi-)linear combinations of vectors

T

=

—

(TIITLT
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High-performance building block: reductions

Examples: inner product in lattice QCD, probability of measurement

(T
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For all these operations, the following data grouping preserves locality:

S/hDT Q T/rp y

Such a group can be combined to a single SIMD word or mapped on a
(fastest moving) thread index for coalesced memory access in SIMT
architectures (Grid's SIMD/SIMT paradigm):

(D) an (@) =) () o

Size of lattice of s reduces depending on SIMD word size.
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Example: derivative on periodic lattice
The 8 operations
V; = Vil mod 8 — Vi (2)
with i € {0,1,...,7} turn into 4 operations on SIMD words
S} =Sj+1— 5 (3)

with j € {0,1,2,3} and border permutation

Check:
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MPI parallelism

Here we allow for a d-dimensional Cartesian partition of the lattice L:
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Challenge for Lattice QCD: small stencil operations

]

RN

1T \

Only communication between neighboring nodes needed. Communication
burden generally suppressed by surface to volume ratio.
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GPT - layout and dependencies



Python script / Jupyter notebook

gpt (Python)
e Defines data types and objects (group structures etc.)
e Expression engine (linear algebra)
Algorithms (Solver, Eigel
File formats
Stencils / global data transfers

QCD, QIS, ML subsystems

a movement plan)
e Virtual lattices (tensors built from multiple Grid tensors)
e Optimized blocking, linear algebra, and Dirac operators

o Vectorized ranlux-like pRNG (parallel seed through
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Example: solvers are modular and can be mixed

General design principle: use modularity of python code instead of
large number of parameters to configure solvers/algorithms;
Python can also be used in configuration files

# Create an coarse-grid deflated, even-odd preconditioned CG inverter
# (eig is a previously loaded multi-grid eigensystem)
sloppy_light_inverter = g.algorithms.inverter.preconditioned(
g.qcd. fermion.preconditioner.eol_ne(parity=g.odd),
g.algorithms.inverter.sequence(
g.algorithms.inverter.coarse_deflate(
eig[1],
eig[o],
eigl2],
block=200,
)!
g.algorithms.inverter.split(
g.algorithms.inverter.cg({"eps": le-8, "maxiter": 200}),
mpi_split=[1,1,1,1],
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All algorithms implemented in Python — Example: Euler-Langevin
stochastig DGL integrator

21

22 class langevin_euler:

23 @qg.params_convention(epsilon=0.01)

24 def __init__(self, rng, params):

25 self.rng = rng

26 self.eps = params["epsilon"]

27

28 def __call__(self, fields, action):

29 gr = action.gradient(fields, fields)
30 for d, f in zip(gr, fields):

31 f @= g.group.compose(

32 -d * self.eps

33 + self.rng.normal_element(g.lattice(d)) * (self.eps * 2.0) ** 0.5,
34 f,

35 )

36
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Implemented algorithms:

>
| 2

VVyVVVVVYVVYVYVY

BiCGSTAB, CG, CAGCR, FGCR, FGMRES, MR solvers

Multi-grid, split-grid, mixed-precision, and defect-correcting
solver combinations

Coarse and fine-grid deflation

Arnoldi, implicitly restarted Lanczos, power iteration
Chebyshev polynomials

All-to-all vector generation

SAP and even-odd preconditioners

Gradient descent and non-linear CG optimizers
Runge-Kutta integrators, Wilson flow

Fourier acceleration

Coulomb and Landau gauge fixing
Domain-wall-overlap transformation and MADWF
Symplectic integrators (leapfrog, OMF2, and OMF4)
Markov: Metropolis, heatbath, Langevin, HMC in progress
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Performance



Benchmark results committed to github
https://github.com/lehner/gpt/tree/master/benchmarks/

reference

¥ master ~

lehner supermuc-ng timing -

bnl_knl

juron
juwels_booster
Irz_supermuc_ng
apace3

gpaced
stampede2_knl

summit

gpt / benchmarks / reference /

onApr1 O History

8 months ago
8 months ago
2 months ago

last month
8 months ago
4 months ago
6 months ago

8 months ago

Rank  Systom

. NRCPC.

Chin

K Nid
United States

NuDT
Chin
7 JUWELS Booster M

Germany.

Cores.

760848

241457

1572480

10.649.60

Rmax
(TFlop/s)  (TFlop/s)

wz0100

G400 19215

w1200

Power
oW

92120 2989
20
92150

0.475.

703600 1766

Results available for GPU and CPU architectures. In the following, focus
on Juwels booster (NVIDIA A100) and QPace4 (A64FX, same as

Fugaku).
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https://github.com/lehner/gpt/tree/master/benchmarks/reference
https://github.com/lehner/gpt/tree/master/benchmarks/reference

Juwels Booster (node has 4x A100-40GB): Single-node
domain-wall fermion [} operator

Initialized GPT
Copyright (C) 2020 Christoph Lehner

GPT :

GPT :

GPT :

GPT :

1.543473 s :
: DWF Dslash Benchmark with

7.958636 s :
7.959499 s :

: DWF Dslash Benchmark with

17.420620 s :

fdimensions [64, 32, 32,
precision : single
Ls 12

1000 applications of Dhop
Time to complete
Total performance
Effective memory bandwidth

$2.93s
: 11325.46 GFlops/s
1 7824.86 GB/s

fdimensions [64, 32, 32, 32]
precision : double
Ls 12

1000 applications of Dhop
Time to complete
Total performance
Effective memory bandwidth

Finalized GPT

: 5.78 s
1 5749.77 GFlops/s
1 7945.14 GB/s

Compare to HBM bandwidth of 1,555 GB/s per GPU
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QPace4 (node has one A64FX): Single-node domain-wall fermion
D operator

Initialized GPT
Copyright (C) 2020 Christoph Lehner

GPT : 0.265714 s :
: DWF Dslash Benchmark with
fdimensions : [24, 24, 24, 24]
precision : single
Ls : 8
GPT : 20.218240 s : 1000 applications of Dhop
Time to complete : 3.67 s
Total performance : 954.90 GFlops/s
Effective memory bandwidth : 677.11 GB/s
GPT : 20.218842 s :
: DWF Dslash Benchmark with
fdimensions : [24, 24, 24, 24]
precision : double
Ls i 8
GPT : 45.245379 s : 1000 applications of Dhop
Time to complete : 7.36 s
Total performance : 475.80 GFlops/s

Effective memory bandwidth : 674.77 GB/s

Finalized GPT

Compare to HBM bandwidth of 1,000 GB/s per A64FX

24 / 29



Juwels Booster (node has 4x A100-40GB): Single-node site-local

matrix products

Initialized GPT
Copyright (C) 2020 Christoph Lehner

T 1.589357 5 :
+ Matrix Multiply Benchmark with

© precision  : single

T ¢ 10.985099 s

0 matrix_multiply

t Object type

Tine to complete
Effective memory bandwidth

T 16.689329 s :

0 matrix_multiply

Object type
© Time to complete
Effective memory bandwidth

T ¢ 62.092583 s : 10 matrix_multiply
t Object type
Tine to complete
: Effective memory bandwidth

fdimensions : (48, 48, 48, 128]

ot_natrix_color(3)

: 0.0058 s

5271.36 GB/s

ot_matrix_spin(4)
0.01 s

: 5333.21 GB/s

+ ot_matrix_spin_color(4,3)

0.097 s
5057.37 GB/s

T

T

T

62.262581 5 :

+ Matrix Multiply Benchmark with

72.003471 s :

78.174681 s

128.232979 s :

10

10

fdinensions : (48, 48, 48,
precision double

matrix_nultiply
Object type

Time to complete
Effective memory bandwidth

matrix_nultiply

Object type

Time to conplete
Effective menory bandwidth

matrix_multiply

Object type

Time to complete
Effective memory bandwidth

Finalized

Compare to HBM bandwidth of 1,555 GB/s per GPU

128)

ot_matrix_color(3)

100125

5264.01 GB/s

ot_matrix_spin(4)

10,025

5439.91 G8/s

ot_matrix_spin_color(4,3)

10225

4416.45 GB/s
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Juwels Booster (node has 4x A100-40GB): Inner product

(reduction)

GPT : 28.406798 s : 100 rank_inner_product
: Object type
Block
Data resides in
performed on
Tine to complete
Effective memory bandwidth

rip: timing: unprofiled
: rip: timing: rip: view

: rip: timing: rip: loop

: rip: timing: total

Compare to HBM bandwidth of 1,555 GB/s per GPU

: ot_vector_singlet(12)
taxd

: accelerator

: accelerator

1013 s

: 4827.16 GB/s

= 0.000000e+00 s (=  0.00 %)

9.706020e-04 s (= 0.70 %)
1.369879e-01 s (= 99.30 %)
= 1.379585e-01 s (= 100.00 %)



Performance summary

Machine Operation Performance Bandwidth
Booster 7] 12TF/s 7.8 TB/s
Booster ColorMatrix x 52 TB/s
Booster SpinColorMatrix x 5.1 TB/s
Booster SpinColorVector (-, ) 4.8 TB/s
QPace4 v 0.95 TF/s 0.68 TB/s
SuperMUC-NG [P 0.72 TF/s 051 TB/s

Single-node SP performance of Wilson [J and linear algebra on Juwels Booster (4xA100, HBM BW 1.6 TB/s per
A100), Qpace4 (A64FX, HBM BW of 1 TB/s per node), and the SuperMUC-NG (Skylake 8174). The [§

performance is inherited from Grid, the linear algebra performance is based on cgpt.
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Total cost of a high-precision calculation of aEVP

» Need the equivalent of several 100,000 inversions of D(U) on
lattices of size 96 x 96 x 96 x 192.

» This corresponds to several hundred million core hours on
leadership class supercomputers.
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Status and impact of hadronic vacuum polarization contribution

HVP from:
T T P T T T T T T T
LM20 b |
BMW20 —0—
ETM18/19 +——@———
Mainz/CLS19 k i
FHM19 ——
PACS19 ¢ ®
RBC/UKQCD18 L i
BMW17 b ® !
RBC/UKQCD A
data/lattice
BDJ19 oA =
Ji7 - T b
§ not used in WP20,
DHMZ19 - 2
KNT19 - £
LL|
WP20 i
bbb IR ] ol
50 - -30 0
M 10
(a -a~® ) x 10
[}

Ab-initio lattice QCD(+QED) calculations

Hybrid window method restricts scales that
enter from lattice/dispersive data

Dispersive, ete™

of experiments)

— hadrons (20+ years

Uncertainties of lattice QCD results expected to be reduced by an
order-of-magnitude in coming years. Clarify: New Physics needed

to explain tension?
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