13th symposium on Discovery, Fusion, Creation of New Knowledge by Multidisciplinary Computational Sciences CCS, Univ. Tsukuba Oct. 8. 2021

General relativistic radiation magnetohydrodynamics (GR-RMHD) simulations of black hole accretion flows based on solving the radiative transfer equation

Yuta Asahina Center for Computational Sciences University of Tsukuba

- 1. Introduction of simulations of black hole (BH) accretion flows and INAZUMA code based on solving the radiative transfer equation
- 2. Comparison of the results of the INAZUMA code with those of an approximate method by test simulations
- 3. Simulations of BH accretion flows with the INAZUMA code
- 4. Performance of the INAZUMA code
- 5. Summary

- 1. Introduction of simulations of black hole (BH) accretion flows and INAZUMA code based on solving the radiative transfer equation
- 2. Comparison of the results of the INAZUMA code with those of an approximate method by test simulations
- 3. Simulations of BH accretion flows with the INAZUMA code
- 4. Performance of the INAZUMA code
- 5. Summary

Black Hole (BH) Accretion Flows

- Rotating gas accretes into a compact object such as a BH forming an accretion flow
- A part of the gravitational energy is converted to the radiation
- The radiation force needs to be considered when the mass accretion rate is high

Radiation Hydrodynamics Simulations

Ohsuga et al. (2005) conducted 2D radiation HD simulations of the supercritical accretion flows around a black hole.

- Hot outflow with the velocity of 0.1c is formed around the rotation axis by strong radiation pressure
- The radiation is important for the outflow formation and structure of the accretion flow

General Relativistic Radiation Magnetohydrodynamics (GR-RMHD) Simulations

Takahashi et al. (2016) carried out 3D GR-RMHD simulations with the approximate method to solve the radiation transfer, which is called the M1 method. The strong radiation pressure accelerates the outflow.

Takahashi et al. (2016)

M1 method

Radiative Transfer Equation

- In order to solve this equation, we need to obtain the radiation pressure $P^{ij} = \mathbb{D}E_r$
- M1 method assumes that the Eddington tensor is below in order to close these equations (Gonzalez et al. 2007)

$$\mathbb{D} = \frac{1-\chi}{2}\mathbb{I} + \frac{3\chi - 1}{2}\mathbf{n} \otimes \mathbf{n}, \quad \chi = \frac{3+4\|\mathbf{f}\|^2}{5+2\sqrt{4-3}\|\mathbf{f}\|^2}, \quad \mathbf{f} = \frac{\mathbf{F}_{\mathrm{r}}}{cE_{\mathrm{r}}}$$

Radiative Transfer Equation

- In order to solve this equation, we need to obtain the radiation pressure $P^{ij} = \mathbb{D}E_r$
- M1 method assumes that the Eddington tensor is below in order to close these equations (Gonzalez et al. 2007)

$$\mathbb{D} = \frac{1-\chi}{2}\mathbb{I} + \frac{3\chi - 1}{2}\mathbf{n} \otimes \mathbf{n}, \quad \chi = \frac{3+4\|\mathbf{f}\|^2}{5+2\sqrt{4-3}\|\mathbf{f}\|^2}, \quad \mathbf{f} = \frac{\mathbf{F}_{\mathrm{r}}}{cE_{\mathrm{r}}}$$

Radiative Transfer Equation solved in INAZUMA code

Conservation of the radiation energy and momentum

$$\partial_t (\sqrt{-g} R^t_{\mu}) + \partial_i (\sqrt{-g} R^i_{\mu}) = \sqrt{-g} R^{\kappa}_{\lambda} \Gamma^{\lambda}_{\mu\kappa} - \sqrt{-g} G_{\mu}$$

Frequency-integrated radiative transfer equation

$$\frac{1}{\sqrt{-g}} \frac{\partial}{\partial x^{\alpha}} \left[\left(e^{\alpha}_{(0)} + \sum_{i=1}^{3} l_{(i)} e^{\alpha}_{(i)} \right) \sqrt{-g} I \right] \\ + \frac{1}{\sin \bar{\theta}} \frac{\partial}{\partial \bar{\theta}} \left(\sin \bar{\theta} \omega_{(\bar{\theta})} I \right) + \frac{1}{\sin^{2} \bar{\theta}} \frac{\partial}{\partial \bar{\phi}} \left(\omega_{(\bar{\phi})} I \right) + \omega_{(0)} I \\ = -\gamma (1 - \boldsymbol{v} \cdot \boldsymbol{l}) \rho(\kappa_{\text{abs}} + \kappa_{\text{sca}}) I + \gamma^{-3} (1 - \boldsymbol{v} \cdot \boldsymbol{l})^{-3} \rho \left(\frac{j_{0}}{4\pi} + \kappa_{\text{sca}} \frac{E_{\text{com}}}{4\pi} \right)$$
 Shibata et al. (2014)

The computational cost becomes higher since we should consider the momentum space $(\bar{\theta}, \bar{\varphi})$.

- 1. Introduction of simulations of black hole (BH) accretion flows and INAZUMA code based on solving the radiative transfer equation
- 2. Comparison of the results of the INAZUMA code with those of an approximate method by test simulations
- 3. Simulations of BH accretion flows with the INAZUMA code
- 4. Performance of the INAZUMA code
- 5. Summary

Beam Crossing Test

- The M1 method cannot solve the beam crossing since the radiation collides with each other
- The INAZUMA code can solve beam crossing successfully without collision

Radiation Propagation from Rotating Medium

- The radiation emitted from the rotating medium cannot reach the center for the M1 method
- For the INAZUMA code, the radiation fulfill the center region

Interaction with Optically Thick Cloud (M1 method)

Optically thick cloud for scattering

- Optically thick cloud for scattering with the velocity of 0.6c locates in the gray circle
- The scattered radiation collides with the injected radiation unphysically
- The M1 method cannot solve this test

Interaction with Optically Thick Cloud (INAZUMA)

- The scattered radiation can propagates in the upper left direction without unphysical radiation collision
- The INAZUMA code can solve the interaction of radiation with the optically thick cloud for scattering

- 1. Introduction of simulations of black hole (BH) accretion flows and INAZUMA code based on solving the radiative transfer equation
- 2. Comparison of the results of the INAZUMA code with those of an approximate method by test simulations
- 3. Simulations of BH accretion flows with the INAZUMA code
- 4. Performance of the INAZUMA code
- 5. Summary

Application to BH Accretion Flows

ullet

- We start simulations from an equilibrium torus given by Fishbone & Moncrief (1976)
- We simulate six models with the maximum density of the initial torus of $\rho_0 = 10^{-5,-4,-3,-2,-1,0} \text{ g cm}^{-3}$
- We assume the weak poloidal magnetic field in the torus (blue curves)
- Free-free emission/absorption and isotropic electron scattering are considered
- The radiation energy is assumed to be small and isotropic
 - Grid points $(N_r, N_{\theta}, N_{\overline{\theta}}, N_{\overline{\varphi}}) = (300, 300, 32, 16)$

Profiles of the Density and Radiation Energy Density

- The density and radiation energy density profiles are similar globally between M1 and INAZUMA except around the axis
- The radiation energy density around the axis is small in the M1 method

Dependence of Radiation Luminosity and Kinetic Luminosity

L _{rad-out}	: Outward radiation luminosity			
<i>L</i> _{rad-BH}	: Radiation energy flux falling into the BH			
$L_{\rm kin}$: Outward kinetic luminosity			
L _{edd}	: The luminosity at which the radiation force is balanced by gravity in a spherically symmetric system			
$\dot{M}_{\rm edd} = L_{\rm edd}/c^2$				

- All luminosities tend to increase with an increase of $\dot{M}_{\rm in}$ since the released gravitational energy increases with the mass accretion rate
- The dependence is similar between the INAZUMA code and the M1 method

Difference of the Radiation Field (Low Accretion Rate Model)

· The radiation emitted from the accretion flow can freely propagate radially outward

• $f^{(rr)}$ for the M1 method tends to be larger than that for INAZUMA

Dependence of the Radiation Field on the Mass Accretion Rate

- As the mass accretion rate increases, the opacity also increases, so f^(rr) approaches 1/3
- Except around the rotation axis, f^(rr) is similar dependence between the M1 method and INAZUMA code since the opacity is large in these regions (blue and green symbols),
- Around the rotation axis, $f^{(rr)}$ for the M1 method is larger than that for INAZUMA code (red symbols)

- 1. Introduction of simulations of black hole (BH) accretion flows and INAZUMA code based on solving the radiative transfer equation
- 2. Comparison of the results of the INAZUMA code with those of an approximate method by test simulations
- 3. Simulations of BH accretion flows with the INAZUMA code
- 4. Performance of the INAZUMA code
- 5. Summary

Strong Scaling

- INAZUMA code has been implemented in Oakforest-PACS at the CCS, Cray XC50 at National Astronomical Observatory of Japan, and Fugaku at the RIKEN Center for Computational Science
- Calculation speed is almost proportional to the number of nodes
- Parallelization efficiency is about 90%

Computational Cost Normalized by the Cost of the M1 Method

The number of grids in space is 300 x 300.

The number of photon directions $(N_{\overline{\theta}} \times N_{\overline{\varphi}})$	Time	$\Delta t \ (imes 10^{-3} t_{g})$	computational cost	Expected cost
M1 method	1	4.1	1	1
8x16	5.2	1.4	1.8	141/13 ~ 11
16x32	25	0.7	4.1	525/13 ~ 40
32x64	161	0.3	13	2,061/13 ~ 160

- For the M1 method, 13 equations are solved
- For INAZUMA code, $N_{\overline{\theta}} \times N_{\overline{\varphi}}$ equations are solved in addition to 13 equations (e.g., 128 equations for 8x16)
- The computational cost is much smaller than the expected cost
- The simulation time step (Δt) need to be small for the INAZUMA code since the advection speed in $\overline{\varphi}$ -direction is larger than those in other directions

Why is the cost of solving the radiative transfer equation is low?

$$\frac{1}{\sqrt{-g}} \frac{\partial}{\partial x^{\alpha}} \left[\left(e^{\alpha}_{(0)} + \sum_{i=1}^{3} l_{(i)} e^{\alpha}_{(i)} \right) \sqrt{-g} I \right] \\ + \frac{1}{\sin \bar{\theta}} \frac{\partial}{\partial \bar{\theta}} \left(\sin \bar{\theta} \omega_{(\bar{\theta})} I \right) + \frac{1}{\sin^{2} \bar{\theta}} \frac{\partial}{\partial \bar{\phi}} \left(\omega_{(\bar{\phi})} I \right) + \omega_{(0)} I \\ = \left[-\gamma (1 - \boldsymbol{v} \cdot \boldsymbol{l}) \rho(\kappa_{\text{abs}} + \kappa_{\text{sca}}) I + \gamma^{-3} (1 - \boldsymbol{v} \cdot \boldsymbol{l})^{-3} \rho \left(\frac{j_{0}}{4\pi} + \kappa_{\text{sca}} \frac{E_{\text{com}}}{4\pi} \right) \right]$$

Radiative transfer equation

- Since the advection velocity does not evolve with time, it is sufficient to calculate it **once** at the beginning of the simulation
- The source term can be solved analytically

Moment equations

- The advection velocity need to be calculated for each time step
- Since the source term is implicitly solved, the Newton-Raphson method is used to iterate to converge the solution

Summary

- We have developed the GR-RMHD code INAZUMA solving the radiative transfer equation
- We perform some test simulations and apply the INAZUMA code to the black hole accretion flow
- INAZUMA code can solve the radiative transfer exactly in the optically thin region far from the black hole and around the rotation axis
- The outward radiation luminosity, kinetic luminosity, and the luminosity falling into the BH are similar between the INAZUMA code and the M1 method
- The computational cost of the INAZUMA code is lower than the expected cost