

CCS 2021, Tsukuba, Oct 8, 2021

1

Development and application of real-time timedependent density functional theory (RT-TDDFT) code, INQ, optimized for hybrid CPU-GPU HPC systems

Tadashi Ogitsu Lawrence Livermore National Laboratory

Lawrence Livermore National Laboratory

LLNL is one of seventeen DOE national laboratories and is located about one hour

DOE Leadership Class HPC systems at LLNL

June	2021 TOP500 list		Rmax	Rpeak	Power
Rank	System	Cores	(TFlop/s)	(TFlop/s)	(kW)
1	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442,010.0	537,212.0	29,899
2	Summit - IBM Power System AC922, IBM POWER9 2 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDI Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States	2C 2,414,592 R	148,600.0	200,794.9	10,096
3	Sierra - IBM Power System AC922, <u>BM POWER9 220</u> 3.1GHz, <u>NVIDIA Volta GV100</u> , Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94,640.0	125,712.0	7,438

Nonperturbative Studies of Functional Materials Under Nonequilibrium condition (NPNEQ)

Project Goal and Approach

Develop open source RT-TDDFT software, *INQ*, optimized for the DOE Leadership Class HPC systems

- Programmabiliity (users = scientists)
- Transferability
- Performance

Validate the software using the state-of-art ultrafast experimental capability at SLAC

Comprehensive software dissemination activities

- Conferences
- Workshops
- Facility Users Meetings
- Summer School
- Online tutorials

Facilitate Advancement of Ultrafast Sciences

Why (RT-TD)DFT on GPUs

Current situation

- Most of DOE HPC systems are GPU-based
- Around 15% of DOE HPC resources are used by DFT simulations
- Current DFT codes: monolithic design poses challenge in GPU adaptation
- Limited success with high arithmetic intensity: GW, hybrid
 - No successful case for plain DFT (GGA/LDA)

Lassen/Sierra (2018)

El Capitan (2023)

of nitroglycerine

CPU + GPU HPC architecture (schematics)

- Computing power: GPU >> CPU
- CPU-GPU copy: order of μ sec overhead

• GPU-GPU copy: intranode significantly faster than internode

- If predominant portion of computing time is spent by one function, offloading the execution of function to GPU will significantly reduce computing time
- Planewave pseudopotential DFT algorithm has three distinct subroutines that necessitates frequent offloading
 - GPU acceleration is offset by CPU-GPU copy overhead
 - Simple offloading is not suitable for DFT

Our strategy

- All data resides in GPU memory
- Computations are performed only on GPU (to avoid GPU-CPU copy overhead)

The physics in inq

- From time independent quantum mechanics (DFT) to time dependent one (RT-TDDFT)
 - Non-equilibrium (spin-)electron-ion coupled dynamics
 - Materials response to opto-electromagnetic pulse stimuli
- Platform to explore beyond Ehrenfest dynamics method
 - Programable INQ library for scientists

Lawrence Livermore National Laboratory

 GPU performance ensured by INQ team

"Berry curvature memory through electrically driven stacking transitions," Xiao, Pemmaraju, Lindenberg et al. *Nat. Phys.* **16**, 1028 (2020)

rrrr

BERKELEY LAB

- Electronic stimuli triggers sliding of WTe₂ layers
- Non-linear Hall signals for 3 and 4 layers of WTe₂ show different behaviors, while longitudinal conductance behave similarly (c, d)
- Calculated Berry curvature distribution explains why Berry dipole is reversed for 3 layers WTe₂

Lawrence Livermore

National Laboratory

INQ: a new code written from scratch for GPUs

- Complexity of GPU programing is hidden within INQ library
- Users can use INQ as a standalone (RT-TD)DFT code
- Other codes can use INQ library to run on the GPU

Code Structure

GPU programming with INQ

Only CUDA (NVIDIA) is supported now, however, adaptation of INQ library to AMD and Intel GPUs will be performed by INQ team. No change in main routine will be necessary

INQ is a programing platform for scientists

Traditional Paradigm

electronic structure code	input file	$user \\ scripts$
$fortran \ / \ c \ / \ c++$	arbitrary format	$bash \ / \ python$

INQ Paradigm

inq library	inq-based programs
	C++

The users write a custom (RT-TD)DFT program using C++ and INQ library

Example: how INQ modules could be used

Input consists in a normal C++ program using inq functionality

Validation with other codes

inq reproduces accurately the physical results of established codes

Large systems validation: Stopping Power

Electronic stopping power of a proton in an FCC aluminum supercell

National Laboratory

TDDFT Computational scaling

(LLNL Lassen GPU supercomputer)

BERKELEY LAE

Science

INQ development plan

	FY21		FY22				FY23		
	CPU+GPU	+MPI opt.		Adopting to AMD/Intel GPUs		Us			
INQ	Fast hybrid exc-corr		Spiral Boundary Condition		n Ele	Electric/magnetic field			
	Spin-Orbit Coupling		Beyond Ehrenfest			Nuclear spin			
	CCMS/	Benasqu			CCMS				CCMS
Outreach	Users	(TBD)				(100)			
	Meeting								

- CCMS: LLNL's summer school
- Online tutorial could be arranged upon request
- Your participation to our regular online meetings will be welcomed
 - Software use, programming, scientific collaboration

National Laboratory

Thank you for your attention!

Project URL: <u>https://sc-programs.llnl.gov/npneq</u> Download INQ: <u>https://gitlab.com/npneq/inq</u> Contact: <u>ogitsu1@llnl.gov</u>

