Robust fault detection and clustering in semiconductor manufacturing processes

Oct. 8, 2021

Woong-Kee Loh School of Computing, Gachon University

Contents

- Introduction
- Related Work
- Fault Detection Algorithm
- Variable Selection Method
- Clustering Algorithm
- Evaluation
- Conclusions
- References

Introduction

Semiconductor Manufacturing Processes

- Semiconductor manufacturing consists of many processes; each process is also composed of many sequential steps
- Some manufacturing steps are performed continuously without any intermission (e.g., etching and lithography)
- A sequence of continuous steps is called a *run*, and is performed in a series of black box-like equipment

□ Fault Detection and Classification (FDC) [7,13]

- Even if a fault has occurred in any run step, it can only be detected when the entire run has been finished
- Various sensors are attached to manufacturing equipment
- Values read periodically from each sensor collectively constitute a (streaming) time-series data
- Multiple time-series data are input to sophisticated algorithms based on statistics, expert systems, and data mining

Contributions of this study

- We propose an algorithm for fault detection in semiconductor manufacturing processes
 A modification of discord detection algorithm called HOT SAX [9]
- We propose an algorithm for clustering runs using the result of our fault detection algorithm

Evaluation of our algorithms

- We used the experiment data obtained from real-world semiconductor etching processes
- Our fault detection algorithm accurately distinguishes the normal and the perturbed (faulty) runs

Achieved 100% accuracy without false positive or false negative

 Our clustering algorithm generated good clusters of runs having similar sources of faults

Related Work

Representation of time-series

- Compressed representation for efficient storage and computation of time-series
- Discrete Fourier Transform (DFT), Piecewise Aggregate Approximation (PAA), etc.
- Symbolic representation
 - Transforms continuous real values in time-series into a finite number of discrete symbols

Symbolic Aggregation approXimation (SAX) [11,12]

- A symbolic representation
- Given two parameters w and a, a time-series X of length n is transformed into a sequence \hat{X} of length w, where each symbol in \hat{X} is obtained from a symbol set of size a

Applying SAX to time-series data mining

- Discord detection using SAX [9, 17]
- Finding motifs (the patterns appearing very frequently in a time-series) [3, 14]
- Minimizing the number of parameters [10]
- *iSAX*: efficient disk-based indexes for large-scale timeseries databases [16]

Fault Detection Algorithm

Stream sequences

- While a run is being performed, the sequence of values from each sensor is assigned to a *variable*
- Example: a run which consists of 11 steps (s₁ ~ s₁₁) and collects stream sequences for 55 variables (v₅ ~ v₅₉)

Our fault detection algorithm

- Given a set of runs, it finds the runs that produced perturbed wafers
- 2 run groups: model runs and experimental runs
 - All the model runs produced normal wafers, while a few of experimental runs produced perturbed ones
- We employ the idea and terms introduced by the discord detection algorithm called HOT SAX [9]

Decision of fault

For every combination (variable v, step s), our algorithm checks:

 $\square \min\{D(S'_{\nu,s}, M_i)\} > \max\{D(M_i, M_j)\}$

• Discord ratio
$$R_D = \frac{D_{exp}}{D_{mod}} = \frac{\min\{D(S'_{v,s},M_i)\}}{\max\{D(M_i,M_j)\}}$$

■ *M_i* is a stream subsequence for (*v*, *s*) from a model run *R_i*

\Box $S'_{v,s}$ is a stream subsequence from an experimental run to test

- If R_D > 1.0, our algorithm takes it as an evidence of fault occurred in the corresponding step s.
- If any combination in a certain experimental run reports a fault, the whole run is regarded as perturbed.

Adopting SAX transformation

D Actually, we use an estimate \hat{R}_D (\geq o) instead of R_D

Adopting SAX transformation cont'd R̂_D > 1.0 does not necessarily imply R_D > 1.0 We define fault probability function F(R̂_D)

$$\square F(\hat{R}_D) = \begin{cases} 0 & \text{if } \hat{R}_D \le 1\\ 1 - \exp\left\{-\frac{(\hat{R}_D - 1)^2}{2\sigma^2}\right\} & \text{otherwise} \end{cases}$$

□ If $F(\hat{R}_D)$ is close to 1.0, it is regarded that a fault has occurred in the corresponding step

■ Adopting SAX transformation *cont'd* ■ $F(\hat{R}_D)$ graphs for a few σ values

Differences of our algorithm from HOT SAX

- While HOT SAX requires the length *l* of discord subsequence as an input, our algorithm derives the length from a run step
- Our algorithm checks whether a stream subsequence S'_{v,s} is the discord subsequence or not, while HOT SAX finds a discord subsequence that may be located at any position

Rationale of adopting SAX transformation

- SAX reduces the size of stream data dramatically
 - Given a parameter w, the SAX-transformed sequence has w/(n*8) (<< 1.0) times the size of original data, where n is the length of original data

SAX helps improve the performance of our algorithm

For computing MINDIST() between two SAX-transformed sequences of length w, we need only w (< n) arithmetic operations</p>

Variable Selection Method

Variable selection

- Selecting the minimal number of variables that assure accurate results of our fault detection algorithm
- By using smaller number of variables, we can achieve higher performance of our algorithm
- Our variable selection method is based on *Dempster-ShaferTheory (DST*), which is a mathematical theory of probability
- DST has been used for various applications of real-time malfunction diagnosis

DST compared with traditional probability theory

- DST calculates probabilities based on 'evidences'
 - E.g., when a coin is tossed, the probability (support) of having a head up is o, if there is no evidence
- The probability of a proposition A in DST is represented with two measures support s(A) and plausibility pl(A)
 0.0 ≤ s(A) ≤ pl(A) ≤ 1.0

 $\square pl(A) = 1 - s(A')$

- DST provides a *rule of combination* for combining probability measures (evidences) from multiple 'independent' sources
 - E.g., a semiconductor manufacturing process where two sensors generate fault alert independently with their own probabilities

Outline of our variable selection method

- Computes a goodness measure for each variable in an experimental run
 - Probability (support) that the variable correctly contributes for detecting faults in a certain experimental run
 - Calculated for each of experimental runs independently
- Joint goodness measure for each variable is calculated using DST's rule of combination
- Variables with the highest joint goodness measures are selected for our fault detection algorithm

Goodness measure $g(v_i)$ for a variable v_i

 $g(v_i) = \begin{cases} 1 - \max\{F(\hat{R}_D)\} & \text{if } R \text{ is a normal run} \\ \max\{F(\hat{R}_D)\} & \text{if } R \text{ is a perturbed run} \end{cases} \\ \max\{F(\hat{R}_D)\} & \text{is the maximum } F(\hat{R}_D) \text{ across all the steps} \end{cases} \\ \end{tabular}$

$$\square s\langle v_1, \dots, v_N, \theta \rangle = \left\langle \frac{1}{N} g(v_1), \dots, \frac{1}{N} g(v_N), 1 - \frac{1}{N} \sum g(v_i) \right\rangle$$

N is the number of variables, *θ* indicates `any' variable
 Calculated for each of experimental runs

Combination of support values Using DST's rule of combination

$$s_{joint}(v_i) = \frac{1}{k} \sum_{v_A \cap v_B = v_i} s_1(v_A) s_2(v_B)$$
$$k = \sum_{v_A \cap v_B = \emptyset} s_1(v_A) s_2(v_B)$$

- s₁ and s₂ are support values calculated in any two different experimental runs
- DST's rule of combination is commutative and associative; hence the joint goodness value can be calculated in any order of runs

Clustering Algorithm

Our clustering algorithm

- It forms clusters of experimental runs using the result of our fault detection algorithm
 - It uses the fault steps of experimental runs, i.e., the experimental runs with the same fault steps are gathered
- Even in case we do not know the source of faults in a certain experimental run, we can estimate it by investigating the experimental runs in the same cluster

Representation of runs

- A bitmap $B = b_1 b_2 \dots b_S$ is used to represent the fault steps for each experimental run (S = the number of steps)
- A bit b_i is set to 1, if a fault has occurred in the corresponding step; the bit is reset to 0, otherwise.

Clustering procedure

- Initially, for each experimental run R_i, a cluster C_i containing the R_i only is created
- Our algorithm merges the clusters containing the two experimental runs R_i and R_j (i ≠ j), if it holds:
 Onebit(B_i⊕B_i) ≤ ε
- Onebit() function returns the number of 1 bits in a bitmap, the sign ⊕ represents XOR operator, and ɛ is a prespecified parameter

Evaluation – settings

Experiment data

- Real-world semiconductor etching process data
- 2 run groups
 - model run group: 10 normal runs
 - experimental run group: 3 normal and 7 perturbed runs
- Each run consists of 11 steps, and real-time stream data of 55 variables were collected at 10Hz

Experiment data cont'd

Baseline runs	Experiment runs					
Run#	Run#	Description				
FDA_12	FDA_14	Unperturbed control run				
FDA_16	FDA_15	–o.5mT change to base pressure				
FDA_19	FDA_17	+0.5mT change to base pressure				
FDA_21	FDA_20	–1% MFC conversion shift				
FDA_24	FDA_23	+1% MFC conversion shift				
FDA_28	FDA_25	Source RF cable: loss simulation				
FDA_32	FDA_31	Unperturbed control run				
FDA_37	FDA_34	Bias RF cable: power delivered				
FDA_39	FDA_38	Unperturbed control run				
FDA_44	FDA_43	Added chamber leak rate by 1.3mT/min				

Evaluation – result

First experiment

- We used the 11 variables selected by principal component analysis (PCA) in [7]
- Our algorithm caused false positive on FDA_20 and FDA_23 and false negative on FDA_31

Table 5 max{r (ND)} values obtained in the first experiment.												
	1	2	3	4	5	6	7	8	9	10	11	Decision
FDA_14	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	normal
FDA_15	0.000	<u>1.000</u>	1.000	0.927	0.000	0.000	0.000	0.000	0.000	0.000	0.000	perturbed
FDA_17	0.000	<u>1.000</u>	<u>1.000</u>	0.000	0.000	0.000	<u>0.986</u>	0.000	0.147	0.000	0.000	perturbed
FDA_20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	normal (f.p)
FDA_23	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	normal (f.p)
FDA_25	0.000	0.000	<u>0.694</u>	<u>0.537</u>	<u>1.000</u>	1.000	<u>0.832</u>	<u>0.832</u>	1.000	1.000	0.000	perturbed
FDA_31	0.000	0.336	0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	perturbed (f.n)
FDA_34	0.000	0.006	<u>0.990</u>	<u>0.992</u>	0.827	1.000	1.000	1.000	0.169	1.000	0.000	perturbed
FDA_38	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	normal
FDA_43	0.000	0.000	0.000	0.000	0.077	0.000	0.249	0.000	1.000	0.000	0.000	perturbed

Table 3 max{ $F(\hat{R}_D)$ } values obtained in the first experiment.

Second experiment

- We perform K-fold cross validation (K = 10), and experimental runs are also used to select variables
- For each experimental run R ($R \in \mathcal{E} = \{FDA_{14}, FDA_{15}, ..., FDA_{43}\}$), variables are selected from the model runs and the remaining experimental runs $\mathcal{E} \{R\}$

Table 4 $\max\{F(\hat{R}_D)\}$ values obtained in the second experiment.												
	1	2	3	4	5	6	7	8	9	10	11	Decision
FDA_14	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	normal
FDA_15	0.000	<u>1.000</u>	<u>1.000</u>	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	perturbed
FDA_17	0.000	1.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	perturbed
FDA_20	0.000	0.855	0.913	<u>0.992</u>	0.998	<u>0.991</u>	0.000	0.905	0.978	0.992	0.000	perturbed
FDA_23	0.000	<u>0.759</u>	<u>0.571</u>	<u>0.957</u>	0.983	0.956	0.000	0.559	0.870	0.981	0.000	perturbed
FDA_25	0.000	0.000	<u>0.997</u>	<u>0.904</u>	<u>0.815</u>	1.000	<u>0.997</u>	<u>0.997</u>	0.985	1.000	0.000	perturbed
FDA_31	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.105	0.000	0.000	0.000	normal
FDA 34	0.000	0.125	1.000	1.000	0 504	1.000	1.000	1.000	0.855	1.000	0.000	perturbed
We achieved 100% accuracy without any false positive or false negative!												
FDA_43	0.000	0.000	0.000	0.000	0.000	0.009	0.213	0.213	<u>0.995</u>	0.024	0.000	perturbed

Third experiment

- We perform our clustering algorithm with $\varepsilon = o$ (toughest)
- Experimental runs in the same cluster have similar sources of faults
- Our algorithm can be used in investigating the source of any anomaly in semiconductor manufacturing processes

Clusters	Experimental runs	Fault Classification
Cluster 1	FDA_14&31&38	Normal runs
Cluster 2	FDA_15&17	Pressure control system
Cluster 3	FDA_20&23	Gas delivery system
Cluster 4	FDA_25&34	RF power system
Cluster 5	FDA_43	Process chamber leak

Conclusions

Proposed algorithms

- Fault detection algorithm, which is a modification of the discord detection algorithm called HOT SAX [9]
- A method to select minimal number of variables assuring accurate results of our fault detection algorithm based on DST
- An algorithm for clustering experimental runs using the result of our fault detection algorithm

Evaluation of our algorithms

- Our fault detection algorithm accurately distinguished the normal and the perturbed runs incurring no false positive or false negative
- Our clustering algorithm generated good clusters of experimental runs having similar sources of faults

References

- 1. J. R. Boston, "A signal detection system based on Dempster-Shafer theory and comparison to fuzzy detection," *IEEE Trans. Systems, Man, and Cybernetics, Part C: Applications and Reviews*, Vol. 30, No. 1, pp. 45-51, Feb. 2000.
- 2. K. Chan and A. W. Fu, "Efficient Time Series Matching by Wavelets," In *Proc. of the IEEE Int'l Conf. on Data Engineering (ICDE)*, Sydney, Australia, pp. 126-133, Mar. 1999.
- 3. B. Chiu, E. Keogh, and S. Lonardi, "Probabilistic Discovery of Time Series Motifs," In *Proc. of the ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining*, Washington DC, USA, pp. 493-498, Aug. 2003.
- 4. H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh, "Querying and Mining of Time Series Data: Experimental Comparison of Representations and Distance Measures," In *Proc. of the VLDB Endowment* (*PVLDB*), pp. 1542-1552, Aug. 2008.
- 5. C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, "Fast Subsequence Matching in Time-Series Databases," In *Proc. of the ACM SIGMOD Int'l Conf. on Management of Data*, Minneapolis, MN, USA, pp.419-429, May 1994.
- 6. P. Geurts, "Pattern Extraction for Time Series Classification," In *Proc. of the European Conf. on Principles of Data Mining and Knowledge Discovery*, Freiburg, Germany, pp. 115-127, Sep. 2001.
- S. J. Hong, G. S. May, J. Yamartino, and A. Skumanich, "Automated Fault Detection and Classification of Etch Systems Using Modular Neural Networks," In *Proc. of the SPIE*, Vol. 5378, Santa Clara, CA, USA, pp. 134-141, Feb. 2004.
- 8. E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra, "Locally Adaptive Dimensionality Reduction for Indexing Large Time Series Databases," In *Proc. of ACM SIGMOD Conf. on Management of Data*, Santa Barbara, CA, USA, pp. 151-162, May 2001.
- 9. E. Keogh, J. Lin, and A. Fu, "HOT SAX: Efficiently Finding the Most Unusual Time Series Subsequence," In *Proc. of the IEEE Int'l Conf. on Data Mining (ICDM)*, Houston, TX, USA, pp. 226-233, Nov. 2005.

- 10. E. Keogh, S. Lonardi, and C. Ratanamahatana, "Towards Parameter-Free Data Mining," In Proc. of the ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining, Seattle, WA, USA, pp. 206-215, Aug. 2004.
- 11. J. Lin, E. Keogh, S. Lonardi, and B. Chiu, "A Symbolic Representation of Time Series, with Implications for Streaming Algorithms," In *Proc. of the ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery (DMKD)*, San Diego, CA, USA, pp. 2-11, Jun. 2003.
- 12. J. Lin, E. Keogh, L. Wei, and S. Lonardi, "Experiencing SAX: a Novel Symbolic Representation of Time Series," Data Mining and Knowledge Discovery (DMKD), Vol. 15, No. 2, pp. 107-144, Aug. 2007.
- 13. G. S. May and C. J. Spanos, "Automated malfunction diagnosis of semiconductor fabrication equipment: a plasma etch application," *IEEE Trans. Semiconductor Manufacturing*, Vol. 6, No. 1, pp. 28-40, Feb. 1993.
- 14. P. Patel, E. Keogh, J. Lin, and S. Lonardi, "Mining Motifs in Massive Time Series Databases," In *Proc. of the IEEE Int'l Conf. on Data Mining (ICDM)*, Maebashi City, Japan, pp. 370-377, Dec. 2002.
- 15. K. Sentz and S. Ferson, *Combination of Evidence in Dempster-Shafer Theory, Sandia National Laboratories*, SAND 2002-0835, Apr. 2002.
- **16**. J. Shieh and E. Keogh, "iSAX: Indexing and Mining Terabyte Sized Time Series," In *Proc. of the ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining*, Las Vegas, NV, USA, pp. 623-632, Aug. 2008.
- 17. L. Wei, N. Kumar, V. N. Lolla, E. Keogh, S. Lonardi, and C. A. Ratanamahatana, "Assumption-Free Anomaly Detection in Time Series," In Proc. of the Int'l Scientific and Statistical Database Management Conf. (SSDBM), Santa Barbara, CA, USA, pp. 237-240, Jun. 2005.
- 18. H. Wu, M. Siegel, R. Stiefelhagen, and J. Yang, "Sensor Fusion Using Dempster-Shafer Theory," In *Proc. of IEEE Instrumentation and Measurement Technology Conference*, Anchorage, AK, USA, pp. 7-12, May 2002.

