
CCS Symposium 2021 @ University of Tsukuba

Robust fault detection and clustering in
semiconductor manufacturing processes

Oct. 8, 2021

Woong-Kee Loh
School of Computing, Gachon University

Page 2

❑ Introduction

❑ Related Work

❑ Fault Detection Algorithm

❑ Variable Selection Method

❑ Clustering Algorithm

❑ Evaluation

❑ Conclusions

❑ References

Contents

Page 3

❑ Semiconductor Manufacturing Processes
 Semiconductor manufacturing consists of many processes;

each process is also composed of many sequential steps

 Some manufacturing steps are performed continuously
without any intermission (e.g., etching and lithography)

 A sequence of continuous steps is called a run, and is
performed in a series of black box-like equipment

Introduction

Page 4

❑ Fault Detection and Classification (FDC) [7,13]

 Even if a fault has occurred in any run step, it can only be
detected when the entire run has been finished

 Various sensors are attached to manufacturing equipment

 Values read periodically from each sensor collectively
constitute a (streaming) time-series data

 Multiple time-series data are input to sophisticated
algorithms based on statistics, expert systems, and data
mining

Page 5

❑ Contributions of this study

 We propose an algorithm for fault detection in
semiconductor manufacturing processes
 A modification of discord detection algorithm called HOT SAX [9]

 We propose an algorithm for clustering runs using the
result of our fault detection algorithm

Page 6

❑ Evaluation of our algorithms

 We used the experiment data obtained from real-world
semiconductor etching processes

 Our fault detection algorithm accurately distinguishes the
normal and the perturbed (faulty) runs
 Achieved 100% accuracy without false positive or false negative

 Our clustering algorithm generated good clusters of runs
having similar sources of faults

Page 7

❑ Representation of time-series

 Compressed representation for efficient storage and
computation of time-series

 Discrete Fourier Transform (DFT), Piecewise Aggregate
Approximation (PAA), etc.

 Symbolic representation
 Transforms continuous real values in time-series into a finite

number of discrete symbols

Related Work

Page 8

❑ Symbolic Aggregation approXimation (SAX) [11,12]

 A symbolic representation

 Given two parameters w and a, a time-series X of length n
is transformed into a sequence 𝑋 of length w, where each
symbol in 𝑋 is obtained from a symbol set of size a

X (n = 128)

b

a

b

c b
c c

a

𝑋 = babcbcca (w = 8, a = 3)

Page 9

❑ Applying SAX to time-series data mining

 Discord detection using SAX [9, 17]

 Finding motifs (the patterns appearing very frequently in a
time-series) [3, 14]

 Minimizing the number of parameters [10]

 iSAX: efficient disk-based indexes for large-scale time-
series databases [16]

Page 10

❑ Stream sequences

 While a run is being performed, the sequence of values
from each sensor is assigned to a variable

 Example: a run which consists of 11 steps (s1 ~ s11) and
collects stream sequences for 55 variables (v5 ~ v59)

Fault Detection Algorithm

Page 11

❑ Our fault detection algorithm

 Given a set of runs, it finds the runs that produced
perturbed wafers

 2 run groups: model runs and experimental runs
 All the model runs produced normal wafers, while a few of

experimental runs produced perturbed ones

 We employ the idea and terms introduced by the discord
detection algorithm called HOT SAX [9]

Page 12

❑ Decision of fault

 For every combination (variable v, step s), our algorithm
checks:

 min 𝐷 𝑆′𝑣,𝑠, 𝑀𝑖 > max 𝐷 𝑀𝑖 , 𝑀𝑗

 Discord ratio 𝑅𝐷 =
𝐷𝑒𝑥𝑝

𝐷𝑚𝑜𝑑
=

min 𝐷 𝑆′𝑣,𝑠,𝑀𝑖

max 𝐷 𝑀𝑖,𝑀𝑗

 Mi is a stream subsequence for (v, s) from a model run Ri

 S’v,s is a stream subsequence from an experimental run to test

 If RD > 1.0, our algorithm takes it as an evidence of fault
occurred in the corresponding step s.

 If any combination in a certain experimental run reports a
fault, the whole run is regarded as perturbed.

Page 13

Subsequence concatenation

❑ Decision of fault cont’d

 Example: v = 51, s = 2

… …

Model runs

Experimental run

𝑅𝐷 =
𝐷𝑒𝑥𝑝

𝐷𝑚𝑜𝑑
=
min 𝐷 𝑆′𝑣,𝑠, 𝑀𝑖

max 𝐷 𝑀𝑖 , 𝑀𝑗

Page 14

❑ Adopting SAX transformation

 Actually, we use an estimate 𝑅𝐷 (≥ 0) instead of RD

 𝑅𝐷 =
𝐷𝑒𝑥𝑝
𝐷𝑚𝑜𝑑

=
min 𝑀𝐼𝑁𝐷𝐼𝑆𝑇 𝐸, 𝑀𝑖

max 𝑀𝐼𝑁𝐷𝐼𝑆𝑇 𝑀𝑖, 𝑀𝑗

 𝐸, 𝑀𝑖, and 𝑀𝑗are SAX-transformed subsequences of S’v,s,

Mi, and Mj, respectively

Page 15

❑ Adopting SAX transformation cont’d

 𝑅𝐷 > 1.0 does not necessarily imply RD > 1.0

 We define fault probability function 𝐹 𝑅𝐷

 𝐹 𝑅𝐷 = ቐ
0 if 𝑅𝐷 ≤ 1

1 − exp −
𝑅𝐷−1

2

2𝜎2
otherwise

 If 𝐹 𝑅𝐷 is close to 1.0, it is regarded that a fault has
occurred in the corresponding step

Page 16

❑ Adopting SAX transformation cont’d

 𝐹 𝑅𝐷 graphs for a few s values

Page 17

❑ Differences of our algorithm from HOT SAX

 While HOT SAX requires the length l of discord
subsequence as an input, our algorithm derives the length
from a run step

 Our algorithm checks whether a stream subsequence S’v,s

is the discord subsequence or not, while HOT SAX finds a
discord subsequence that may be located at any position

Page 18

❑ Rationale of adopting SAX transformation

 SAX reduces the size of stream data dramatically
 Given a parameter w, the SAX-transformed sequence has w/(n*8)

(<< 1.0) times the size of original data, where n is the length of
original data

 SAX helps improve the performance of our algorithm
 For computing MINDIST() between two SAX-transformed

sequences of length w, we need only w (< n) arithmetic operations

Page 19

❑ Variable selection

 Selecting the minimal number of variables that assure
accurate results of our fault detection algorithm

 By using smaller number of variables, we can achieve
higher performance of our algorithm

 Our variable selection method is based on Dempster-
Shafer Theory (DST), which is a mathematical theory of
probability

 DST has been used for various applications of real-time
malfunction diagnosis

Variable Selection Method

Page 20

❑ DST compared with traditional probability theory

 DST calculates probabilities based on ‘evidences’
 E.g., when a coin is tossed, the probability (support) of having a

head up is 0, if there is no evidence

 The probability of a proposition A in DST is represented
with two measures support s(A) and plausibility pl(A)
 0.0 ≤ s(A) ≤ pl(A) ≤ 1.0

 pl(A) = 1 – s(A’)

 DST provides a rule of combination for combining
probability measures (evidences) from multiple
‘independent’ sources
 E.g., a semiconductor manufacturing process where two sensors

generate fault alert independently with their own probabilities

Page 21

❑ Outline of our variable selection method

 Computes a goodness measure for each variable in an
experimental run
 Probability (support) that the variable correctly contributes for

detecting faults in a certain experimental run

 Calculated for each of experimental runs independently

 Joint goodness measure for each variable is calculated
using DST’s rule of combination

 Variables with the highest joint goodness measures are
selected for our fault detection algorithm

Page 22

❑ Goodness measure g(vi) for a variable vi

 𝑔 𝑣𝑖 = ቐ
1 − max 𝐹 𝑅𝐷 if 𝑅 is a normal run

max 𝐹 𝑅𝐷 if 𝑅 is a perturbed run

 max 𝐹 𝑅𝐷 is the maximum 𝐹 𝑅𝐷 across all the steps

❑ Support s(vi)

 𝑠 𝑣1, … , 𝑣𝑁, 𝜃 =
1

𝑁
𝑔 𝑣1 , … ,

1

𝑁
𝑔 𝑣𝑁 , 1 −

1

𝑁
σ𝑔(𝑣𝑖)

 N is the number of variables, indicates ‘any’ variable

 Calculated for each of experimental runs

Page 23

❑ Combination of support values

 Using DST’s rule of combination

 s1 and s2 are support values calculated in any two different
experimental runs

 DST’s rule of combination is commutative and associative;
hence the joint goodness value can be calculated in any
order of runs

Page 24

❑ Our clustering algorithm

 It forms clusters of experimental runs using the result of
our fault detection algorithm
 It uses the fault steps of experimental runs, i.e., the experimental

runs with the same fault steps are gathered

 Even in case we do not know the source of faults in a
certain experimental run, we can estimate it by
investigating the experimental runs in the same cluster

Clustering Algorithm

Page 25

❑ Representation of runs

 A bitmap B = b1b2…bS is used to represent the fault steps
for each experimental run (S = the number of steps)

 A bit bi is set to 1, if a fault has occurred in the
corresponding step; the bit is reset to 0, otherwise.

Page 26

❑ Clustering procedure

 Initially, for each experimental run Ri, a cluster Ci

containing the Ri only is created

 Our algorithm merges the clusters containing the two
experimental runs Ri and Rj (i ≠ j) , if it holds:

 𝑂𝑛𝑒𝑏𝑖𝑡(𝐵𝑖𝐵𝑗) ≤ 𝜀

 Onebit() function returns the number of 1 bits in a bitmap,
the sign represents XOR operator, and ε is a pre-
specified parameter

Page 27

❑ Experiment data

 Real-world semiconductor etching process data

 2 run groups
 model run group: 10 normal runs

 experimental run group: 3 normal and 7 perturbed runs

 Each run consists of 11 steps, and real-time stream data of
55 variables were collected at 10Hz

Evaluation – settings

Page 28

❑ Experiment data cont’d
Baseline runs Experiment runs

Run# Run# Description

FDA_12 FDA_14 Unperturbed control run

FDA_16 FDA_15 −0.5mT change to base pressure

FDA_19 FDA_17 +0.5mT change to base pressure

FDA_21 FDA_20 −1% MFC conversion shift

FDA_24 FDA_23 +1% MFC conversion shift

FDA_28 FDA_25 Source RF cable: loss simulation

FDA_32 FDA_31 Unperturbed control run

FDA_37 FDA_34 Bias RF cable: power delivered

FDA_39 FDA_38 Unperturbed control run

FDA_44 FDA_43 Added chamber leak rate by 1.3mT/min

Page 29

❑ First experiment

 We used the 11 variables selected by principal component
analysis (PCA) in [7]

 Our algorithm caused false positive on FDA_20 and
FDA_23 and false negative on FDA_31

Evaluation – result

Page 30

❑ Second experiment

 We perform K-fold cross validation (K = 10), and
experimental runs are also used to select variables

 For each experimental run R (R = {FDA_14, FDA_15, … ,
FDA_43}), variables are selected from the model runs and
the remaining experimental runs − {R}

We achieved 100% accuracy without any false positive or false negative!

Page 31

❑ Third experiment

 We perform our clustering algorithm with ε = 0 (toughest)

 Experimental runs in the same cluster have similar sources
of faults

 Our algorithm can be used in investigating the source of
any anomaly in semiconductor manufacturing processes

Clusters Experimental runs Fault Classification

Cluster 1 FDA_14&31&38 Normal runs

Cluster 2 FDA_15&17 Pressure control system

Cluster 3 FDA_20&23 Gas delivery system

Cluster 4 FDA_25&34 RF power system

Cluster 5 FDA_43 Process chamber leak

Page 32

❑ Proposed algorithms
 Fault detection algorithm, which is a modification of the discord

detection algorithm called HOT SAX [9]

 A method to select minimal number of variables assuring
accurate results of our fault detection algorithm based on DST

 An algorithm for clustering experimental runs using the result of
our fault detection algorithm

❑ Evaluation of our algorithms
 Our fault detection algorithm accurately distinguished the

normal and the perturbed runs incurring no false positive or
false negative

 Our clustering algorithm generated good clusters of
experimental runs having similar sources of faults

Conclusions

Page 33

1. J. R. Boston, “A signal detection system based on Dempster-Shafer theory and comparison to fuzzy
detection,” IEEE Trans. Systems, Man, and Cybernetics, Part C: Applications and Reviews, Vol. 30, No. 1, pp.
45-51, Feb. 2000.

2. K. Chan and A. W. Fu, “Efficient Time Series Matching by Wavelets,” In Proc. of the IEEE Int’l Conf. on Data
Engineering (ICDE), Sydney, Australia, pp. 126-133, Mar. 1999.

3. B. Chiu, E. Keogh, and S. Lonardi, “Probabilistic Discovery of Time Series Motifs,” In Proc. of the ACM
SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining, Washington DC, USA, pp. 493-498, Aug. 2003.

4. H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh, “Querying and Mining of Time Series Data:
Experimental Comparison of Representations and Distance Measures,” In Proc. of the VLDB Endowment
(PVLDB), pp. 1542-1552, Aug. 2008.

5. C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, “Fast Subsequence Matching in Time-Series
Databases,” In Proc. of the ACM SIGMOD Int’l Conf. on Management of Data, Minneapolis, MN, USA, pp.419-
429, May 1994.

6. P. Geurts, “Pattern Extraction for Time Series Classification,” In Proc. of the European Conf. on Principles of
Data Mining and Knowledge Discovery, Freiburg, Germany, pp. 115-127, Sep. 2001.

7. S. J. Hong, G. S. May, J. Yamartino, and A. Skumanich, “Automated Fault Detection and Classification of
Etch Systems Using Modular Neural Networks,” In Proc. of the SPIE, Vol. 5378, Santa Clara, CA, USA, pp.
134-141, Feb. 2004.

8. E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra, “Locally Adaptive Dimensionality Reduction for
Indexing Large Time Series Databases,” In Proc. of ACM SIGMOD Conf. on Management of Data, Santa
Barbara, CA, USA, pp. 151-162, May 2001.

9. E. Keogh, J. Lin, and A. Fu, “HOT SAX: Efficiently Finding the Most Unusual Time Series Subsequence,” In
Proc. of the IEEE Int’l Conf. on Data Mining (ICDM), Houston, TX, USA, pp. 226-233, Nov. 2005.

References

Page 34

10.E. Keogh, S. Lonardi, and C. Ratanamahatana, “Towards Parameter-Free Data Mining,” In Proc. of the ACM
SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining, Seattle, WA, USA, pp. 206-215, Aug. 2004.

11. J. Lin, E. Keogh, S. Lonardi, and B. Chiu, “A Symbolic Representation of Time Series, with Implications for
Streaming Algorithms,” In Proc. of the ACM SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery (DMKD), San Diego, CA, USA, pp. 2-11, Jun. 2003.

12.J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experiencing SAX: a Novel Symbolic Representation of Time Series,”
Data Mining and Knowledge Discovery (DMKD), Vol. 15, No. 2, pp. 107-144, Aug. 2007.

13. G. S. May and C. J. Spanos, “Automated malfunction diagnosis of semiconductor fabrication equipment: a
plasma etch application,” IEEE Trans. Semiconductor Manufacturing, Vol. 6, No. 1, pp. 28-40, Feb. 1993.

14.P. Patel, E. Keogh, J. Lin, and S. Lonardi, “Mining Motifs in Massive Time Series Databases,” In Proc. of the
IEEE Int’l Conf. on Data Mining (ICDM), Maebashi City, Japan, pp. 370-377, Dec. 2002.

15.K. Sentz and S. Ferson, Combination of Evidence in Dempster-Shafer Theory, Sandia National Laboratories,
SAND 2002-0835, Apr. 2002.

16.J. Shieh and E. Keogh, “iSAX: Indexing and Mining Terabyte Sized Time Series,” In Proc. of the ACM SIGKDD
Int’l Conf. on Knowledge Discovery and Data Mining, Las Vegas, NV, USA, pp. 623-632, Aug. 2008.

17. L. Wei, N. Kumar, V. N. Lolla, E. Keogh, S. Lonardi, and C. A. Ratanamahatana, “Assumption-Free Anomaly
Detection in Time Series,” In Proc. of the Int’l Scientific and Statistical Database Management Conf. (SSDBM),
Santa Barbara, CA, USA, pp. 237-240, Jun. 2005.

18.H. Wu, M. Siegel, R. Stiefelhagen, and J. Yang, “Sensor Fusion Using Dempster-Shafer Theory,” In Proc. of
IEEE Instrumentation and Measurement Technology Conference, Anchorage, AK, USA, pp. 7-12, May 2002.

Page 35

