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❑ Semiconductor Manufacturing Processes
 Semiconductor manufacturing consists of many processes; 

each process is also composed of many sequential steps

 Some manufacturing steps are performed continuously 
without any intermission (e.g., etching and lithography)

 A sequence of continuous steps is called a run, and is 
performed in a series of black box-like equipment

Introduction
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❑ Fault Detection and Classification (FDC) [7,13]

 Even if a fault has occurred in any run step, it can only be 
detected when the entire run has been finished

 Various sensors are attached to manufacturing equipment

 Values read periodically from each sensor collectively 
constitute a (streaming) time-series data

 Multiple time-series data are input to sophisticated 
algorithms based on statistics, expert systems, and data 
mining
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❑ Contributions of this study

 We propose an algorithm for fault detection in 
semiconductor manufacturing processes
 A modification of discord detection algorithm called HOT SAX [9]

 We propose an algorithm for clustering runs using the 
result of our fault detection algorithm
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❑ Evaluation of our algorithms

 We used the experiment data obtained from real-world 
semiconductor etching processes

 Our fault detection algorithm accurately distinguishes the 
normal and the perturbed (faulty) runs
 Achieved 100% accuracy without false positive or false negative

 Our clustering algorithm generated good clusters of runs 
having similar sources of faults
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❑ Representation of time-series

 Compressed representation for efficient storage and 
computation of time-series

 Discrete Fourier Transform (DFT), Piecewise Aggregate 
Approximation (PAA),  etc.

 Symbolic representation
 Transforms continuous real values in time-series into a finite 

number of discrete symbols

Related Work
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❑ Symbolic Aggregation approXimation (SAX) [11,12]

 A symbolic representation

 Given two parameters w and a, a time-series X of length n
is transformed into a sequence 𝑋 of length w, where each 
symbol in 𝑋 is obtained from a symbol set of size a

X (n = 128)

b

a

b

c b
c c

a

𝑋 = babcbcca (w = 8, a = 3)
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❑ Applying SAX to time-series data mining

 Discord detection using SAX [9, 17]

 Finding motifs (the patterns appearing very frequently in a 
time-series) [3, 14]

 Minimizing the number of parameters [10] 

 iSAX: efficient disk-based indexes for large-scale time-
series databases [16]
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❑ Stream sequences

 While a run is being performed, the sequence of values 
from each sensor is assigned to a variable

 Example: a run which consists of 11 steps (s1 ~ s11) and 
collects stream sequences for 55 variables (v5 ~ v59)

Fault Detection Algorithm
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❑ Our fault detection algorithm

 Given a set of runs, it finds the runs that produced 
perturbed wafers

 2 run groups: model runs and experimental runs
 All the model runs produced normal wafers, while a few of 

experimental runs produced perturbed ones

 We employ the idea and terms introduced by the discord 
detection algorithm called HOT SAX [9]
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❑ Decision of fault

 For every combination (variable v, step s), our algorithm 
checks:

 min 𝐷 𝑆′𝑣,𝑠, 𝑀𝑖 > max 𝐷 𝑀𝑖 , 𝑀𝑗

 Discord ratio 𝑅𝐷 =
𝐷𝑒𝑥𝑝

𝐷𝑚𝑜𝑑
=

min 𝐷 𝑆′𝑣,𝑠,𝑀𝑖

max 𝐷 𝑀𝑖,𝑀𝑗

 Mi is a stream subsequence for (v, s) from a model run Ri

 S’v,s is a stream subsequence from an experimental run to test

 If RD > 1.0, our algorithm takes it as an evidence of fault 
occurred in the corresponding step s.

 If any combination in a certain experimental run reports a 
fault, the whole run is regarded as perturbed.
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Subsequence concatenation

❑ Decision of fault cont’d

 Example: v = 51, s = 2

… …

Model runs

Experimental run

𝑅𝐷 =
𝐷𝑒𝑥𝑝

𝐷𝑚𝑜𝑑
=
min 𝐷 𝑆′𝑣,𝑠, 𝑀𝑖

max 𝐷 𝑀𝑖 , 𝑀𝑗



Page 14

❑ Adopting SAX transformation

 Actually, we use an estimate 𝑅𝐷 (≥ 0) instead of RD

 𝑅𝐷 =
𝐷𝑒𝑥𝑝
𝐷𝑚𝑜𝑑

=
min 𝑀𝐼𝑁𝐷𝐼𝑆𝑇 𝐸, 𝑀𝑖

max 𝑀𝐼𝑁𝐷𝐼𝑆𝑇 𝑀𝑖, 𝑀𝑗

 𝐸, 𝑀𝑖, and 𝑀𝑗are SAX-transformed subsequences of S’v,s, 

Mi, and Mj, respectively
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❑ Adopting SAX transformation cont’d

 𝑅𝐷 > 1.0 does not necessarily imply RD > 1.0

 We define fault probability function 𝐹 𝑅𝐷

 𝐹 𝑅𝐷 = ቐ
0 if 𝑅𝐷 ≤ 1

1 − exp −
𝑅𝐷−1

2

2𝜎2
otherwise

 If 𝐹 𝑅𝐷 is close to 1.0, it is regarded that a fault has 
occurred in the corresponding step
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❑ Adopting SAX transformation cont’d

 𝐹 𝑅𝐷 graphs for a few s values
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❑ Differences of our algorithm from HOT SAX

 While HOT SAX requires the length l of discord 
subsequence as an input, our algorithm derives the length 
from a run step

 Our algorithm checks whether a stream subsequence S’v,s

is the discord subsequence or not, while HOT SAX finds a 
discord subsequence that may be located at any position
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❑ Rationale of adopting SAX transformation

 SAX reduces the size of stream data dramatically
 Given a parameter w, the SAX-transformed sequence has w/(n*8) 

(<< 1.0) times the size of original data, where n is the length of 
original data

 SAX helps improve the performance of our algorithm
 For computing MINDIST() between two SAX-transformed 

sequences of length w, we need only w (< n) arithmetic operations
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❑ Variable selection

 Selecting the minimal number of variables that assure 
accurate results of our fault detection algorithm

 By using smaller number of variables, we can achieve 
higher performance of our algorithm

 Our variable selection method is based on Dempster-
Shafer Theory (DST), which is a mathematical theory of 
probability

 DST has been used for various applications of real-time 
malfunction diagnosis

Variable Selection Method
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❑ DST compared with traditional probability theory

 DST calculates probabilities based on ‘evidences’
 E.g., when a coin is tossed, the probability (support) of having a 

head up is 0, if there is no evidence

 The probability of a proposition A in DST is represented 
with two measures support s(A) and plausibility pl(A)
 0.0 ≤ s(A) ≤ pl(A) ≤ 1.0

 pl(A) = 1 – s(A’)

 DST provides a rule of combination for combining 
probability measures (evidences) from multiple 
‘independent’ sources
 E.g., a semiconductor manufacturing process where two sensors 

generate fault alert independently with their own probabilities
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❑ Outline of our variable selection method

 Computes a goodness measure for each variable in an 
experimental run
 Probability (support) that the variable correctly contributes for 

detecting faults in a certain experimental run

 Calculated for each of experimental runs independently

 Joint goodness measure for each variable is calculated 
using DST’s rule of combination

 Variables with the highest joint goodness measures are 
selected for our fault detection algorithm
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❑ Goodness measure g(vi) for a variable vi

 𝑔 𝑣𝑖 = ቐ
1 − max 𝐹 𝑅𝐷 if 𝑅 is a normal run

max 𝐹 𝑅𝐷 if 𝑅 is a perturbed run

 max 𝐹 𝑅𝐷 is the maximum 𝐹 𝑅𝐷 across all the steps

❑ Support s(vi)

 𝑠 𝑣1, … , 𝑣𝑁, 𝜃 =
1

𝑁
𝑔 𝑣1 , … ,

1

𝑁
𝑔 𝑣𝑁 , 1 −

1

𝑁
σ𝑔(𝑣𝑖)

 N is the number of variables,  indicates ‘any’ variable

 Calculated for each of experimental runs
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❑ Combination of support values

 Using DST’s rule of combination

 s1 and s2 are support values calculated in any two different 
experimental runs

 DST’s rule of combination is commutative and associative; 
hence the joint goodness value can be calculated in any 
order of runs
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❑ Our clustering algorithm

 It forms clusters of experimental runs using the result of 
our fault detection algorithm
 It uses the fault steps of experimental runs, i.e., the experimental 

runs with the same fault steps are gathered

 Even in case we do not know the source of faults in a 
certain experimental run, we can estimate it by 
investigating the experimental runs in the same cluster

Clustering Algorithm
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❑ Representation of runs

 A bitmap B = b1b2…bS is used to represent the fault steps 
for each experimental run (S = the number of steps)

 A bit bi is set to 1, if a fault has occurred in the 
corresponding step; the bit is reset to 0, otherwise.
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❑ Clustering procedure

 Initially, for each experimental run Ri, a cluster Ci

containing the Ri only is created

 Our algorithm merges the clusters containing the two 
experimental runs Ri and Rj (i ≠ j) , if it holds:

 𝑂𝑛𝑒𝑏𝑖𝑡(𝐵𝑖𝐵𝑗) ≤ 𝜀

 Onebit() function returns the number of 1 bits in a bitmap, 
the sign  represents XOR operator, and ε is a pre-
specified parameter
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❑ Experiment data

 Real-world semiconductor etching process data

 2 run groups
 model run group: 10 normal runs

 experimental run group: 3 normal and 7 perturbed runs

 Each run consists of 11 steps, and real-time stream data of 
55 variables were collected at 10Hz

Evaluation – settings
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❑ Experiment data cont’d
Baseline runs Experiment runs

Run# Run# Description

FDA_12 FDA_14 Unperturbed control run

FDA_16 FDA_15 −0.5mT change to base pressure

FDA_19 FDA_17 +0.5mT change to base pressure

FDA_21 FDA_20 −1% MFC conversion shift

FDA_24 FDA_23 +1% MFC conversion shift

FDA_28 FDA_25 Source RF cable: loss simulation

FDA_32 FDA_31 Unperturbed control run

FDA_37 FDA_34 Bias RF cable: power delivered

FDA_39 FDA_38 Unperturbed control run

FDA_44 FDA_43 Added chamber leak rate by 1.3mT/min
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❑ First experiment

 We used the 11 variables selected by principal component 
analysis (PCA) in [7]

 Our algorithm caused false positive on FDA_20 and 
FDA_23 and false negative on FDA_31

Evaluation – result
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❑ Second experiment

 We perform K-fold cross validation (K = 10), and 
experimental runs are also used to select variables

 For each experimental run R (R = {FDA_14, FDA_15, … , 
FDA_43}), variables are selected from the model runs and 
the remaining experimental runs − {R}

We achieved 100% accuracy without any false positive or false negative!
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❑ Third experiment

 We perform our clustering algorithm with ε = 0 (toughest)

 Experimental runs in the same cluster have similar sources 
of faults

 Our algorithm can be used in investigating the source of 
any anomaly in semiconductor manufacturing processes

Clusters Experimental runs Fault Classification

Cluster 1 FDA_14&31&38 Normal runs

Cluster 2 FDA_15&17 Pressure control system

Cluster 3 FDA_20&23 Gas delivery system

Cluster 4 FDA_25&34 RF power system

Cluster 5 FDA_43 Process chamber leak
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❑ Proposed algorithms
 Fault detection algorithm, which is a modification of the discord 

detection algorithm called HOT SAX [9]

 A method to select minimal number of variables assuring 
accurate results of our fault detection algorithm based on DST

 An algorithm for clustering experimental runs using the result of 
our fault detection algorithm

❑ Evaluation of our algorithms
 Our fault detection algorithm accurately distinguished the 

normal and the perturbed runs incurring no false positive or 
false negative

 Our clustering algorithm generated good clusters of 
experimental runs having similar sources of faults

Conclusions
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